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Evolutionary Multi-objective Optimization of Robustness and
Innovation in Redundant Genetic Representations

Yaochu Jin, Robin Gruna, Ingo Paenke, and Bernhard Sendhoff

Abstract— Robustness and innovation are two essential facets
for biological evolution, where robustness means the relative
insensitivity of an organism’s phenotype to mutations, while
innovation (evolvability) denotes the individual’s ability to
evolve novel phenotypes that help its survival and reproduction.
Although much research has been conducted on robustness and
evolvability of both biological and computational evolutionary
systems, little work on the quantitative analysis of the relation-
ship between robustness and evolvability has been reported.

In this work, a measure for innovation called local variability
has been suggested. Based on a neutrality degree borrowed from
literature [1] and local variability, a multi-objective ev olutionary
algorithm has been employed to maximize the robustness and
innovation by optimizing the genotype-phenotype mapping of
the redundant representation. The obtained Pareto-optimal
solutions are then analyzed to reveal the trade-off relationship
between robustness and innovation of the redundant represen-
tation.

I. I NTRODUCTION

It is a challenging and extremely important task to under-
stand how natural evolution has managed to bring about the
huge biological diversity and complexity from simple par-
ticles and molecules. In addition to environmental changes,
it is believed that two important principles, i.e., robustness
and evolvability, may have played a central role in shaping
biological diversity and complexity [2].

Biological robustness means organisms’ ability to maintain
relatively their functionality under a certain degree of internal
and external perturbations. An important issue directly re-
lated to robustness is evolvability, which is organisms’ ability
to evolve inheritable novel phenotypic functionalities that
help the organism survive and reproduce. In recent years,
research on robustness and evolvability has become one of
the main research topics in systems biology [2], [3].

Research on robustness and evolvability is still in its
infancy [4], [5]. Not only a sophisticated quantitative def-
inition for biological robustness and evolvability is still
missing, but the biological origin, that is, how evolution has
shaped the various biological mechanisms for robustness and
evolvability remains to be understood.

In a broader sense, robustness contributes to evolvabil-
ity in that without robustness, evolutionary tinkering will
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most likely lead to the lethal consequences, thus preventing
evolution from creating new functionalities. For a clearer
understanding of the mechanisms underlying evolvability
and robustness, we investigate in this work evolvability in
a narrow sense, that is, systems’ ability to generate new
phenotypes, termed innovation hereafter. Although it has
been recognized qualitatively that there is a trade-off between
robustness and innovation, little qualitative results have been
reported with few exceptions [5].

Biological robustness can be achieved with a variety
of mechanisms, such as feedback, genotypic redundancy,
functional modularity, among others [3]. In the field of
evolutionary computation, various methods have also been
developed for the search of robust solutions [6], [7], [8], [9].
In this paper, we focus on the relationship between robustness
and innovation of a redundant representation. Section II
provides a mathematical definition multi-objective optimiza-
tion problems. A Boolean model for redundant genotype-
phenotype mapping is introduced in Section III, followed
by a description of three coding schemes for optimizing the
model, a definition of quantitative measures for robustness
and innovation ability, as well as a brief account of the
multi-objective evolutionary algorithm employed to optimize
the redundant representation. The experimental results are
described and discussed in Section IV, where an explicit and
quantitative trade-off between robustness and innovationis
demonstrated and analyzed. Section V concludes the paper.

II. M ULTI -OBJECTIVEOPTIMIZATION

Consider the following multi-objective minimization prob-
lem:

minimize Fm(x) m = 1, 2, · · · , M ; (1)

subject to gj(x) ≥ 0, j = 1, 2, · · · , J ; (2)

hk(x) = 0, k = 1, 2, · · · , K; (3)

xL
i ≤ xi ≤ xU

i , i = 1, 2, · · · , n, (4)

where Fm(x) are theM different objective functions to
be minimized,x = (x1, x2, · · · , xn)T is the n-dimensional
decision space,gj(x) are theJ inequality constraints,hk(x)
are theK equality constraints, andxL

i andxU
i are the lower

and upper bounds of thei-th decision parameter, respectively.
For the multi-objective minimization problem defined

above, solutionx(1) is said to dominate solutionx(2), if x(1)

is no worse thanx(2) in all objectives, i.e.,

∀m = 1, 2, · · · , M, Fm(x(1)) ≤ Fm(x(2)), (5)



and ifx(1) is strictly better thanx(2) in at least one objective:

∃m′ ∈ {1, 2, · · · , M}, such thatFm′(x(1)) < Fm′(x(2)).
(6)

If a solution x∗ is not dominated by any other feasible
solutions, solutionx∗ is called Pareto-optimal. A set of all
Pareto-optimal solutions is known as the Pareto set in the
decision space, and the Pareto front in the objective space.

III. E VOLUTIONARY MULTI -OBJECTIVE OPTIMIZATION

OF A REDUNDANT GENOTYPE-PHENOTYPEMAPPINGS

A. A Boolean Model

Redundant representations have been widely studied in
evolutionary computation [10]. In this work, we consider a
genotype-phenotype mapping fromn-dimensional genotype
spaceG ∈ {0, 1}n to m-dimensional phenotype spaceP ∈
{0, 1}m, where a genotypeg = (g1, ..., gn) is mapped to a
phenotypep = (p1, ..., pm) as follows:

pi = fki

i (gi1 , ..., giki
), (7)

wherepi, i = 1, 2, . . . , m is thei-th phenotype trait,gj , j =
1, 2, · · · , n is the j-th gene, and

i1 = min {j, j = 1, ..., n,∀cij = 1, }, (8)

iki
= max {j, j = 1, ..., n,∀cij = 1, }, (9)

whereC = (cij)m×n is a binary matrix:

cij =1 : ⇐⇒ phenotype traitpi is affected by genegj ,

cij =0 : ⇐⇒ phenotype traitpi is independent of genegj.

Thus,fki

i (.) is a Boolean function withki inputs, where

ki =

n∑

j=1

cij , (10)

is also known as the arity of the Boolean function.
If ki > 1, that is, if phenotype traitpi is influenced by

more than one gene, it is called polygenic. In contrast, the
number of phenotype traits affected by genegj is given by
the sum of the elements in the column:

lj =
m∑

i=1

cij . (11)

If lj > 1, then genegj is said to be pleiotropic. Without loss
of generality, it is assumed thatC is chosen such thatlj ≥ 1
for all i = 1, . . . , n. This means that each gene affects at
least one phenotype trait.

The mapping can be defined by the dependencies between
genes and phenotype traits, and a set of Boolean functions
that determine the values of the phenotype traits. Since the
connection between genotype and phenotype determines the
number of inputs for a certain phenotype trait and thus for the
corresponding Boolean function, the dependencies between
genes and phenotype traits are determined at first. Once the
connection matrixC has been fixed, the Boolean functions
fki

i : {0, 1}ki → {0, 1}, i = 1 . . .m can then be defined.
An example of genotype-phenotype mapping with eight

genes and four phenotype traits is given in Fig. 1, where the

arity of the Boolean function for the four phenotype traits is
three, six, four, and two, respectively. The connection matrix
in this example is as follows:

C =







1 0 0 1 0 0 0 1
1 1 1 1 1 0 1 0
0 1 1 0 1 1 0 0
0 0 1 0 0 0 1 0







. (12)
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Fig. 1. An example of genotype-phenotype mapping, where thenumber
of genes is eight, and the number of phenotype traits is four.

In the following, we are going to evolve the connection
matrix C as well as the Boolean functions to maximize
the robustness and evolvability using the NSGA-II [11],
which is one of the most popular evolutionary multi-objective
optimization algorithms.

B. Encoding of the Boolean Model

The first stage of the multi-objective evolutionary approach
is to determine the scheme for representing the genotype-
phenotype mapping model. In this work, an encoding with a
fixed coding length and relatively compact has been adopted.

The encoding of the Boolean model consists of two parts:
the encoding of the connection matrixC and the encoding
of the Boolean functionsfki

i , i = 1, . . . , m. The encoding
of C is trivial, since each entrycij can be written in a binary
vector, leading to a fixed encoding lengthmn, independent
of the actual value ofC.

Finding an encoding forfki

i is more difficult. The con-
nection matrixC determines the polygenyki =

∑n

j=1 cij

of each phenotype traitpi, i.e., the number of inputs of
the Boolean functionfki

i . Sincefki

i is a Boolean function
fki

i : {0, 1}ki → {0, 1}, it is completely defined when the
corresponding outputs for each2ki inputs are determined. It
can be seen that such a canonical encoding is dependent on
the actual value of matrixC. During evolutionary search the
size of such an encoding is changing and a set ofad hoc
search operators have to be defined to guarantee that newly
generated solutions are feasible.

A simpler option is to define an encoding forfki

i inde-
pendent of its arityki. To this end, it is assumed thatki = n
due to the fact that a phenotype trait cannot depend on more
thann genes. Unfortunately, this approach would lead to an
encoding with a length ofnm+2nm. Even for a medium size
of genotype and phenotype spaces, e.g.,m = 8 andn = 16,
the length of the chromosome will become intractably large.
To address this problem, we impose more restrictions on the
Boolean model so that a reasonably small encoding length
can be achieved. Since the crucial part of the encoding is the
encoding of the Boolean functionsfki

i and its dependency



on ki, we are going to define a class of Boolean functions
that are independent of the polygenyki.

Let fke denote an arbitrary Boolean function with arityke.
Then thek-ary extension offke , fk ↑fke : {0, 1}k → {0, 1},
is recursively defined by

fk ↑fke (g1, . . . , gk) =

{

fke(g1, . . . , gke
), if k = ke;

fk−1 ↑fke (fke(g1, . . . , gke
), g3, . . . , gk), if k > ke;

(13)
if k ≥ ke, and otherwise by

fk ↑fke (g1, g2, . . . , gk) = fke(1, . . . , 1
︸ ︷︷ ︸

ke−k

, g1, g2, . . . , gk),

(14)
where the first(ke − k) positions are set to1. fke is termed
the elementary Boolean function andke its elementary arity.
Fig. 2 shows an example of 4-ary extension of 2-ary Boolean
function f2.
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Fig. 2. An example of 4-ary extension of a 2-ary Boolean function: f4 ↑f2 .

With the definition of thek-ary extensionsfk ↑fke of
Boolean functions, the following three different approaches
to encoding the Boolean functions are considered, each of
which results in a reasonably compact and fixed encoding
length.

1) Multiple Boolean Functions Encoding: All fk ↑fke

have the same encoding size2ke , independent of their actual
arity k, since only the elementary Boolean functionfke

has to be encoded. Consequently, a restricted version of
the Boolean model can be defined as follows: determine a
fixed elementary arityke for the model and choose every
Boolean functionfi = fki ↑

f
ke

i

, i = 1, . . . m, where ki

is the polygeny of the corresponding phenotype traitpi and
is determined by the connection matrixC. It is important
to emphasize that each phenotype functionfi is the ki-
ary extension of different elementary Boolean functionsfke

i .
This model restriction leads to an encoding size ofnm +
m2ke bit, which is reasonably small forke = 2, 3, 4. The
structure of the encoding is schematically depicted below:

connection matrix
︷ ︸︸ ︷

c11 c12 · · · cmn

elementary Boolean functions
︷ ︸︸ ︷

fke

1 fke

2 · · · fke

m (15)

2) Single Boolean Function Encoding: An even simpler
encoding can be achieved when the Boolean model is re-
stricted to a single elementary Boolean function. In doing so,
a fixed elementary arityke for the model is determined and
the local Boolean functions areki-ary extensions of the same
elementary Boolean function:fi = fki ↑fke , i = 1, . . . m.
This restriction leads to an encoding size ofnm + 2ke bit.
The structure of the encoding is schematically depicted as
follows:

connection matrix
︷ ︸︸ ︷

c11 c12 · · · cmn fke (16)

3) Majority Rule Encoding: In a further simplification of
the Boolean model, we dispense with an explicit definition
of the Boolean functionsfi. Instead, the phenotype traits
are determined by the majority rule. There are several
possibilities to break ties. In our work, we set the output
of majority rule to its first input in the case of a tie. This
keeps the rule balanced and deterministic:

fi(gj1 , gj2 , . . . , gjki
) =







1, if
ki∑

l=1

gjl
> ki/2;

0, if
ki∑

l=1

gjl
< ki/2;

gj1(i), otherwise.

(17)

Hence, only the connection matrix has to be encoded:

c11 c12 · · · cmn (18)

These different encodings restrict the original model in a
strong way and so one could say that each presents a different
model on its own.

C. Qualitative Measures for Robustness and Innovation

There is no widely accepted quantitative definition for
robustness and evolvability. In this work, we use local neutral
degree [12], [13] for estimating the robustness and the local
variability for approximating the evolvability of a genotype-
phenotype mapping.

Given an genotype-phenotype mappingφ : G → P and a
neighborhood relationN over the set of genotypesG, then
the local neutral degree νφ(g) of mappingφ is defined by [1]

νφ(g) :=
|{g′ ∈ G : φ(g) = φ(g′) ∧ N(g, g′)}|

|{g′ ∈ G : N(g, g′)}|
(19)

Similar to the definition of local neutral degree, a definition
of the local variability can be defined as follows. Given an
genotype-phenotype mappingφ : G → P and a neighborhood
relation N over the set of genotypesG, then the local
variability δφ(g) of mappingφ at genotypeg is defined as

δφ(g) :=
|{g′ ∈ G : φ(g) 6= φ(g′) ∧ N(g, g′)}|

|{g′ ∈ G : N(g, g′)}|
(20)

Note that the variabilityδ captures the fraction of unique
phenotypes in the non-neutral neighborhood, which is ac-
complished by the set notation. Accordingly,∀g ∈ G, νφ(g)+
δφ(g) ≤ 1 holds by definition.



  (a)                                                                (b) 

Fig. 3. Two illustrative examples on calculating local neutral degree and
local variability. In the figure, filled circles, squares andpentagons denote
different phenotypes, while the lines represent local neighborhood in the
genotype. (a)νφ(g) = 0.5, δφ(g) = 0.25, and (b)νφ(g) = 0.5, δφ(g) =
0.5.

Two illustrative examples on how to calculate local neutral
degree and local variability are provided in Fig. 3.

The definition of local neutral degree has been discussed
in a number of studies. However, in most of these stud-
ies, the local neutral degree measure is investigated with
respect to the single genotypes or neutral sets mapping to
the same phenotype. In this work, we want to evaluate
different characteristics of neutrality with respect to entire
genotype spaces. We use the local neutral degree to calculate
the mean neutral degree of a genotype-phenotype mapping,
which is accomplished by randomly sampling genotypes and
averaging their local neutral degree. A high mean neutral
degree indicates that there are many genotypes with a high
local neutral degree, and therefore the mean neutral degree
reflects how many neutral mutations or how much neutrality
is provided by the mapping. In the genotype space where
the neutral degree is high, mutations are most likely neutral
rather than deleterious. As a consequence, populations on
neutral networks tend to drift toward regions with a high
neutral degree to evolve robustness. This gives rise to the
consideration that the mean neutral degree is related to
mutational robustness.

D. Non-Dominated Sorting and Tournament Selection

The most significant difference of multi-objective opti-
mization to scalar optimization is the selection method. Inour
work, the selection method from NSGA-II [11] is adopted,
which consists of four major steps. First, the parent and
offspring populations are combined. This implies that NSGA-
II is an elitism. Second, the combined population is sorted
according to the non-dominance ranks. During the ranking,
non-dominated solutions in the combined population are
assigned a rank 1, which belongs to the first non-dominated
front. These individuals are removed temporally from the
population and the non-dominated individuals in the rest of
the population are identified, which consists of the second
non-dominated front of the population and are assigned a
rank 2. This procedure repeats until all individuals in the
combined population are assigned with a rank from 1 toR,
assuming thatR non-dominated fronts can be identified in
total. Third, a crowding distance reflecting the crowdedness
in the neighborhood of a particular solution is calculated.The
crowding distance of solutioni in the non-dominated front

j, (j = 1, ..., R) is the distance between the two neighbors
of solutionsj

i in the objective space:

dj
i =

m∑

k=1

|Fk(sj
i−1) − Fk(sj

i+1)|, (21)

wherem is the number of objectives in the multi-objective
optimization problem, solutionssj

i−1 and sj
i+1 are the two

neighboring solutions of solutionsj
i . A large distance is

assigned to the boundary solutions in each non-dominated
front. Here, the larger the crowding distance, the less
crowded around the solutionsj

i it is. Fourth, a tournament
selection which leverages between non-dominated ranking
and crowdedness is conducted. Given two randomly chosen
individuals, the solution with the better (lower) rank winsthe
tournament. If the two solutions have the same rank, the one
with the larger crowding distance wins. If the two solutions
have the same rank and the same crowding distance, choose a
winner randomly. This procedure continues until the required
number of offspring is generated.

IV. OPTIMIZATION RESULTS AND DISCUSSIONS

A. Experimental Results

In the experiment, different encodings of the Boolean
model were optimized with respect to the mean variability
and mean neutral degree. The results for a population of 50
individuals and 100 generations are summarized in Fig. 4.

It can be seen that the different encodings lead to quite dif-
ferent results. The random initial population with the multiple
Boolean function encoding is unevenly distributed across the
objective space. The mappings lie at some distance from the
true Pareto front̄νφ + δ̄φ = 1, albeit mappings with̄ν > 0.6
are almost on the true Pareto front. After 100 generations, the
mappings lie evenly distributed on the theoretical trade-off
surface. This is different to the case in which single Boolean
functions encoded. The randomly initialized population lies
almost entirely on the theoretical Pareto front, but only on
a sectionν̄ < 0.5. After multi-objective optimization was
performed, the mappings are more evenly distributed along
this section. Only a few mappings lie on the Pareto front
section withν̄ < 0.5. The solutions seem to have an uniform
distance from each other. For0.2 < ν̄ < 0.5, however, no
Pareto optimal solutions have been found. In the case of
the majority rule encoding, the randomly initialized mapping
form a compact cluster and evolutionary search finds Pareto
optimal mappings with0.5 < ν̄ < 0.8. In summary, all
genotype-phenotype mappings found by different encodings
of the Boolean models and evolutionary search lie on the true
Pareto front̄νφ + δ̄φ = 1. However, the found Pareto optimal
solutions are distributed along different regions. Only with
the multiple Boolean function encoding was the evolutionary
algorithm able to find the complete Pareto optimal front.

These results indicate that the different encodings of
the Boolean functions differ in their capability of realizing
various genotype-phenotype mappings. Since the multiple
Boolean function encoding restricts the original Boolean
model at the least, it is able to approximate the widest range
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Fig. 4. Multi-objective optimization evaluation of the Boolean model (n = 16, m = 8) for maximal mean neutral degreēνφ and maximal mean variability
δ̄φ. The model is encoded by different techniques:a Multiple Boolean functions encoding with elementary arity2. b Single Boolean function encoding
with elementary arity 2.c Majority rule encoding. Plots in the left panel show the results of 50 randomly initialized genotype-phenotype mappings with
n = 16 andm = 8. Those in the right panel show the approximated Pareto optimal set of genotype-phenotype mappings after 100 generations. The dotted
line indicates the theoretical Pareto front, determined bythe definition of neutral degree and variability, i. e.ν̄φ + δ̄φ = 1. The different encodings result
in different approximations of a Pareto optimal set.

of the theoretical Pareto front. For example, a genotype-
phenotype mappingφ : {0, 1}16 → {0, 1}8 with variability
δ̄φ = 1 and neutral degreēνφ = 0 can be implemented.
Despite that this mapping has a redundancy of28, it pos-
sesses no neutrality. This means that the genotype space is
structured in such a way that genotypes that map to the
same phenotype are never neighbored and thus every single
point mutations leads to a new phenotype. Therefore, such
a mapping can be thought of as having low robustness and
high evolvability.

Alternatively, mappings with neutral degreeδ̄φ ≥ 0.9 and
variability ν̄φ ≤ 0.1 can be implemented by the multiple
and single Boolean functions encoding. In this case, almost
all single point mutations are neutral and lead to the same
phenotype. Therefore, such a mapping can be considered as
highly robust and less evolvable.

B. Visualization of the Connection Matrix and Boolean
Function

In an attempt to understand the Boolean model regarding
the genotype-phenotype mapping as well as the Boolean
functions evolved, we visualize the connection matrix and
the truth value table of the Pareto-optimal models obtained
when multiple Boolean functions of arity 2 are used in the
model.

The connection matrix and the truth value table of the 48
Pareto-optimal solutions are illustrated in Fig. 5, where each
box corresponds to one genotype-phenotype mapping model.
On the left side of each box shows the16 × 8 connectivity
matrix, where a white grid means that the corresponding
element is of value ’0’, and a black one denotes that the
corresponding element is ’1’. Recall that in the connection
matrix, cmn = 0, m = 1, 2..., 8; n = 1, 2, ...16 indicates that



Fig. 5. Visualization of the connection matrix and the truthvalue table of the Boolean function of the Pareto-optimal models with multiple Boolean
function of arity 2 (n = 16, m = 8). The 48 solutions are ranked according to an ascending meanneutrality degree. On the left side of each box (one
model) is the connection matrix, while on the right side is the truth value table of the function. In the table, a white griddenotes a ’0’ and a black one ’1’.



phenotype traitpm is not directly influenced by genegn,
and cmn = 1 indicates that phenotype traitpm is directly
influenced by genegn. Therefore, the pleiotropy of genegn

is given by the sum of columnn, whereas the polygeny of
phenotype traitpm is given by the sum of rowm. On the
right side of each box shows the truth value of the Boolean
function of arity 2, where them-row depicts the table of
truth value of the elementary Boolean functionf2

m.
From Fig. 5, we are not able to observe a clear regularity

in the structure of the connection matrix, which may be
attributed to the fact that robustness and innovation of
the Boolean models with multiple Boolean functions is a
combined result of connectivity and the Boolean function.

C. Uniformity of Pareto Optimal Genotype-Phenotype Map-
pings

We further analyze the Pareto-optimal mappings obtained
by the evolutionary algorithm by investigating the uniformity
of the genotype-phenotype mappings. A genotype-phenotype
mapping is uniformly redundant, if all accessible phenotypes
are represented by the same number of genotypes. In the
literature there is no direct statements about the relationship
between uniformity and evolvability, nor between uniformity
and robustness. It is believed, however, that uniformity is
an important issue when designing redundant genotype-
phenotype mappings. Here, the uniformity statistic intro-
duced by Ebner et al. [14] is adopted to estimate whether a
genotype-phenotype mapping is uniformly redundant or not.
At first, the probability of locating any of the phenotypes in
the solution space using random search is estimated, which is
accomplished by randomly sampling genotypes from geno-
type space and determining the corresponding phenotypes.
Then the relative frequency of each phenotype was displayed
as a histogram. Therefore the histogram summarizes the
sizes of theneutral sets of all phenotypes. The shape of
the estimated probability distribution reflects the uniformity
of the genotype-phenotype mapping. If the distribution is
flat, all phenotypes are represented by the same number of
genotypes and the genotype-phenotype mapping is uniformly
redundant. In the case of a highly uneven distribution, there
are phenotypes which cover an excessive amount of the geno-
type space and any search would be strongly biased toward
these phenotypes. Furthermore, if the genotype-phenotype
mapping is not surjective, the histogram shows phenotypes
with probability zero. These phenotypes do not lie in the
image of the mapping and can never be reached. It should be
mentioned that there is no natural ordering of the genotypes
and therefore the ordering of the genotypes in the histogram
is arbitrary. In this work, genotypes are represented as binary
vectors of a given length, we thus use the ordering of binary
numbers, starting with the all-zero genotype.

In the analysis, we examine the Pareto optimal solutions
when multiple Boolean functions encoding is used, in which
case a most complete Pareto optimal set of mappings has
been generated. The histogram representations of uniformity
of the 48 Pareto-optimal solutions are plotted in Fig. 6 (a).In
addition, the entropy of the estimated phenotype distribution

was calculated and compared with the neutral degree and
variability of the Pareto optimal mappings, both of which are
depicted in Fig. 6. The histogram representation of unifor-
mity shows that almost all Pareto optimal mappings represent
phenotypes by different numbers of genotypes. With an
increasing neutral degree, more and more phenotypes have
probability zero to be located by random search. In other
words, those Pareto-optimal models with a high degree
of neutrality map the whole genotype space to only few
phenotypes. This can also be seen in more detail when the
normed entropy of the phenotype distribution is considered.
Up to a neutral degreēνφ = 0.5 the entropy is relatively
high with values between0.8 and 1. For a neutral degree
ν̄φ > 0.5, the entropy decreases almost linearly to0.1.

The results suggest that the mean neutral degree is directly
related to the uniformity of a genotype-phenotype mapping.
It seems that the genotype-phenotype mappings implemented
by the proposed model can only provide a high entropy
up to a certain neutral degree threshold. Fig. 6 illustrates
that with an increasing degree of neutrality, entropy de-
creases and less and less phenotypes lie in the image of the
mappings. This can be seen in the histogram representation
of the uniformity estimation, where for a higher neutral
degree and lower entropy, more and more phenotypes have
a probability of zero. This observation is interesting in the
light of interpreting the mean neutral degree as robustnessto
genetic variations. The mapping with the highest robustness
would then be the constant mapping that maps the whole
genotype space to a single phenotype. There is no genetic
variation that could ever alter the phenotype. In this case,
no phenotypic adaptation is possible and thus the mapping
offers no evolvability.

V. CONCLUSIONS

An evolutionary multi-objective optimization algorithm
has been employed to maximize the robustness (local neutral-
ity) and innovation (local variability) for a class of redundant
Boolean representations. In this way, an explicit and quantita-
tive trade-off relationship between robustness and innovation
can be revealed. Such trade-off relationships indicate that
there is no single representation that can reach a maximum
of robustness and innovation at the same time. An optimal
representation then depends on the environmental condition:
if the environment is changing rapidly, a representation with
a higher innovation ability might be preferred to enhance the
survival probability, whereas in case of a slowing changing
environment, stronger robustness may provide the system a
chance to reach a higher fitness.

Many interesting issues remain to be investigated. On the
one hand, quantitative measures other than the local neutral-
ity and local variability [15] can be considered for measuring
robustness and innovation. In addition, similar optimization
and analysis can be extended to more complex, in particular,
dynamic genotype-phenotype mappings described e.g. by
random Boolean networks or ordinary differential equations.
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Fig. 6. Uniformity of Pareto optimal Boolean rule mappings (n = 16, m = 8) with respect to mean neutral degree and mean variability, encoded with
multiple Boolean functions and elementary arity 2.Left panel: Histogram representation of uniformity of the 48 Pareto-optimal models. Each histogram
corresponds to a mapping lying on the Pareto front. This statistic indicates the amount of genotype space covered by different phenotypes. The horizontal
axis represents the phenotype space, while the vertical axis indicates the relative frequency of each phenotype. The axises are omitted in the plots. The
histograms are sorted by an ascending mean neutral degree ofthe corresponding mapping, starting with from the upper left to the lower right. With an
ascending neutral degree, the number of accessible phenotypes decreases.Right panel: Entropy of the estimated phenotype distribution shown on the left.
The Pareto optimal mappings are depicted together with their corresponding entropy with the thick line. The entropy decreases as the degree of neutrality
increases.
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