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Evolutionary Multi-objective Optimization of Robustness and
Innovation in Redundant Genetic Representations

Yaochu Jin, Robin Gruna, Ingo Paenke, and Bernhard Sendhoff

Abstract— Robustness and innovation are two essential facets most likely lead to the lethal consequences, thus prevgntin

for biological evolution, where robustness means the relate
insensitivity of an organism’s phenotype to mutations, whe
innovation (evolvability) denotes the individual's ability to
evolve novel phenotypes that help its survival and reproduton.

evolution from creating new functionalities. For a clearer
understanding of the mechanisms underlying evolvability
and robustness, we investigate in this work evolvability in

Although much research has been conducted on robustness and & harrow sense, that is, systems’ ability to generate new

evolvability of both biological and computational evolutionary
systems, little work on the quantitative analysis of the rehtion-
ship between robustness and evolvability has been reported

In this work, a measure for innovation called local variability
has been suggested. Based on a neutrality degree borroweaifin
literature [1] and local variability, a multi-objective ev olutionary
algorithm has been employed to maximize the robustness and
innovation by optimizing the genotype-phenotype mapping b
the redundant representation. The obtained Pareto-optimb
solutions are then analyzed to reveal the trade-off relatinship
between robustness and innovation of the redundant represe
tation.

I. INTRODUCTION

phenotypes, termed innovation hereafter. Although it has
been recognized qualitatively that there is a trade-offvben
robustness and innovation, little qualitative resultsehbgen
reported with few exceptions [5].

Biological robustness can be achieved with a variety
of mechanisms, such as feedback, genotypic redundancy,
functional modularity, among others [3]. In the field of
evolutionary computation, various methods have also been
developed for the search of robust solutions [6], [7], [8]. [

In this paper, we focus on the relationship between robgstne
and innovation of a redundant representation. Section Il
provides a mathematical definition multi-objective optian

Itis a challenging and extremely important task to undekjon problems. A Boolean model for redundant genotype-
stand how natural evolution has managed to bring about t"[bﬁenotype mapping is introduced in Section IlI, followed
huge biological diversity and complexity from simple paryy a description of three coding schemes for optimizing the
ticles and molecules. In addition to environmental changegodel, a definition of quantitative measures for robustness

it is believed that two important principles, i.e., robless

and innovation ability, as well as a brief account of the

and evolvability, may have played a central role in shapingyti-objective evolutionary algorithm employed to opiz@

biological diversity and complexity [2].

the redundant representation. The experimental resuits ar

Biological robustness means organisms’ ability to mamtaigescribed and discussed in Section 1V, where an explicit and

relatively their functionality under a certain degree démal

guantitative trade-off between robustness and innovaton

and external perturbations. An important issue directly rejemonstrated and analyzed. Section V concludes the paper.

lated to robustness is evolvability, which is organismsliggh
to evolve inheritable novel phenotypic functionalitiesatth

IIl. MULTI-OBJECTIVEOPTIMIZATION

help the organism survive and reproduce. In recent years,
research on robustness and evolvability has become one ofconsider the following multi-objective minimization prob

the main research topics in systems biology [2], [3].

Research on robustness and evolvability is still in its

infancy [4], [5]. Not only a sophisticated quantitative def

inition for biological robustness and evolvability is btil
missing, but the biological origin, that is, how evolutioash

shaped the various biological mechanisms for robustneks an

evolvability remains to be understood.

In a broader sense, robustness contributes to evolvaljly,qare & (
ity in that without robustness, evolutionary tinkering Wil }, minir;lizedx = (
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lem:
minimize F,.(x) m=12---,M; (1)
subjectto  g;(x) > 0, i=12--- J; (2)
leszszUv 71215275”7 (4)

x) are the M different objective functions to
21,29, ,x,)7 is the n-dimensional
decision spacey;(x) are theJ inequality constraints(x)
are theK equality constraints, and” andz¥ are the lower
and upper bounds of theth decision parameter, respectively.
For the multi-objective minimization problem defined
above, solutiorx") is said to dominate solution(®, if x(*)
is no worse tharx(?) in all objectives, i.e.,

vm:lvza"' aMaFm(X(l))SF’m(X(Q))? (5)



and ifx(1) is strictly better thanx(?) in at least one objective: arity of the Boolean function for the four phenotype tras i
Im’ € {1,2,---, M}, such thatF,, (X(l)) < F (x(g)). Fhreg, six, four, a}nd two, respectlvely. The connectionrixat
©6) in this example is as follows:

If a solution x* is not dominated by any other feasible 1001 0001
solutions, solutionx* is called Pareto-optimal. A set of all C— 11111010 (12)
Pareto-optimal solutions is known as the Pareto set in the 01101100
decision space, and the Pareto front in the objective space. 001 00010

Ill. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION
OF A REDUNDANT GENOTYPEPHENOTYPEMAPPINGS

A. A Boolean Mode

Redundant representations have been widely studied in
evolutionary computation [10]. In this work, we consider a
genotype-phenotype mapping fromdimensional genotype

spaceg € {0,1}" to m-dimensional phenotype spage e

{0,1}™, where a genotypg = (g1, -..,9») IS mapped to a Fig. 1.

phenotypep = (p1, ..., pm) as follows:

Pi = fF (Girs - Gir, ) ©)

wherep;, i = 1,2,...,m is thei-th phenotype traitg;, j =
1,2,---,n is the j-th gene, and

min {]7j =1, ...,n,Vcij =1, },
max {]7j = 1, ...,n,Vcij = 1, },

(8)
9)

i =
Uy, =
whereC' = (¢;j)mxn IS @ binary matrix:
cij =1 : <= phenotype traip; is affected by gene;,
¢i; =0 : <= phenotype traip; is independent of geng;.

Thus, f¥(.) is a Boolean function withk; inputs, where

n

ki = Zcija

j=1

(10)

is also known as the arity of the Boolean function.
If k; > 1, that is, if phenotype traip; is influenced by

more than one gene, it is called polygenic. In contrast, theection matrixC' determines the polygeny; =

number of phenotype traits affected by geyeis given by
the sum of the elements in the column:

m
lj: E Cij-
i=1

(11)

’ f1(91’ 9 gs)|f5gl’ 9y gs‘i’zf 95' 971 fég 29 3 9 5 %)| figs’ g7)‘

[9: [9 [95 [ 9495 [96 [97 [ 9g |

An example of genotype-phenotype mapping, wherentimaber
of genes is eight, and the number of phenotype traits is four.

In the following, we are going to evolve the connection
matrix C as well as the Boolean functions to maximize
the robustness and evolvability using the NSGA-II [11],
which is one of the most popular evolutionary multi-objeeti
optimization algorithms.

B. Encoding of the Boolean Model

The first stage of the multi-objective evolutionary appitoac
is to determine the scheme for representing the genotype-
phenotype mapping model. In this work, an encoding with a
fixed coding length and relatively compact has been adopted.

The encoding of the Boolean model consists of two parts:
the encoding of the connection mattix and the encoding
of the Boolean function#fl‘, i = 1,...,m. The encoding
of C'is trivial, since each entry;; can be written in a binary
vector, leading to a fixed encoding length, independent
of the actual value of’.

Finding an encoding fog“fi is more difficult. The con-
Z;'L:1 Cij
of each phenotype traip;, i.e., the number of inputs of
the Boolean functionf*. Since f* is a Boolean function
fFi{0,1}% — {0,1}, it is completely defined when the
corresponding outputs for ea@h: inputs are determined. It
can be seen that such a canonical encoding is dependent on

If I; > 1, then gengy; is said to be pleiotropic. Without loss the actual value of matriC. During evolutionary search the

of generality, it is assumed thet is chosen such thaf > 1

size of such an encoding is changing and a seadhoc

forall i = 1,...,n. This means that each gene affects asearch operators have to be defined to guarantee that newly

least one phenotype trait.

generated solutions are feasible.

The mapping can be defined by the dependencies betweerA simpler option is to define an encoding fgS‘f?‘ inde-
genes and phenotype traits, and a set of Boolean functiopendent of its arity:;. To this end, it is assumed that = n
that determine the values of the phenotype traits. Since tkee to the fact that a phenotype trait cannot depend on more
connection between genotype and phenotype determines thann genes. Unfortunately, this approach would lead to an
number of inputs for a certain phenotype trait and thus fer thencoding with a length afm+2"m. Even for a medium size
corresponding Boolean function, the dependencies betweehgenotype and phenotype spaces, erg= 8 andn = 16,
genes and phenotype traits are determined at first. Once the length of the chromosome will become intractably large.
connection matrixC has been fixed, the Boolean functionsTo address this problem, we impose more restrictions on the

fF:{0,1}% — {0,1}, 4 =1...m can then be defined.

Boolean model so that a reasonably small encoding length

An example of genotype-phenotype mapping with eightan be achieved. Since the crucial part of the encoding is the
genes and four phenotype traits is given in Fig. 1, where thencoding of the Boolean functiorﬁ?‘ and its dependency



on k;, we are going to define a class of Boolean functions 2) Sngle Boolean Function Encoding: An even simpler

that are independent of the polygehy encoding can be achieved when the Boolean model is re-
Let f*- denote an arbitrary Boolean function with arity. ~ stricted to a single elementary Boolean function. In doing s

Then thek-ary extension off*«, f* 1. : {0,1}* — {0,1}, a fixed elementary arity. for the model is determined and

is recursively defined by the local Boolean functions afg-ary extensions of the same
elementary Boolean functiorf; = f*: Tree,i=1,...m.
Vi Tore (91,20 98) = This restriction leads to an encoding sizerof. + 2%« bit.
The structure of the encoding is schematically depicted as
{fke (915 791@8)7 if k= ke; follows: connection matrix
k—1 ke H .
f Tfke (f (917---7gke)793,-..7gk), if k>kzi3) | c11 | C12 | | Cmn || fke (16)
if k> k., and otherwise by 3) Majority Rule Encoding: In a further simplification of
the Boolean model, we dispense with an explicit definition
5T e (91,92, ovg8) = (1, ... L g1, 92, -, 9), of the Boolean functiong;. Instead, the phenotype traits

are determined by the majority rule. There are several
(14) possibilities to break ties. In our work, we set the output
where the first'k. — k) positions are set td. f*< is termed of majority rule to its first input in the case of a tie. This
the elementary Boolean function akgd its elementary arity. keeps the rule balanced and deterministic:
Fig. 2 shows an example of 4-ary extension of 2-ary Boolean

ki
function f2. L, ity g > ki/2;
=1

ke—k

(9j1+ 9o Jkl) 0. i Zgjl<ki/2;

=1
9j.(i)> Otherwise.

Hence, only the connection matrix has to be encoded:

|011|C12|"'|Cmn| (18)

9, These different encodings restrict the original model in a

strong way and so one could say that each presents a different
Fig. 2. An example of 4-ary extension of a 2-ary Boolean fiomctf4 Tr2- model on its own

With the definition of thek-ary extensionsf® e of C. Qualitative Measures for Robustness and Innovation

Boolean functions, the following three different approesh ~ There is no widely accepted quantitative definition for
to encoding the Boolean functions are considered, each @oustness and evolvability. In this work, we use local reut
which results in a reasonably compact and fixed encodirfifgree [12], [13] for estimating the robustness and thel loca
length. variability for approximating the evolvability of a genqugy-

1) Multiple Boolean Functions Encoding: All f* 1 . phenotype mapping. _
have the same encoding si2k, independent of their actual  GVen an genotype-phenotype mappingg — P and a
arity k, since only the elementary Boolean functigic  N€ighborhood relationV over the set of genotype, then
has to be encoded. Consequently, a restricted version Bf!0cal neutral degree v (g) of mappingg is defined by [1]
the Boolean model can be defined as follows: determine a o Hg' € G:d(g) =o(g") AN(g,9)} (19)
fixed elementary arityk. for the model and choose every vo(9) = €GN 7

i N , {9’ €G:N(g,9)}

Boolean functionf; = f*~: ngce, i = 1,... m, wherek;
is the polygeny of the corresponding phenotype tpaiand
is determined by the connection mati. It is important
to emphasize that each phenotype functifnis the k;-
ary extension of different elementary Boolean functigfis. S . . ,
Trﬁs model restriction leads to an {zncoding sizengi— variability 9,(g) of mapping at genotypey is defined as
m2Fe bit, which is reasonably small fok, = 2,3,4. The 50(g) = H{g' € G:o(g) #o(g') ANN(g,9)}
structure of the encoding is schematically depicted below: o19) = Hg' € G:N(g,9)}

Similar to the definition of local neutral degree, a definitio
of the local variability can be defined as follows. Given an
genotype-phenotype mappigg G — P and a neighborhood
relation N over the set of genotype§, then thelocal

(20)

Note that the variabilityy captures the fraction of unique
connection matrix elementary Boolean functions phenotypes in the non-neutral neighborhood, which is ac-
- - complished by the set notation. Accordingly, € G, v4(g)+
f L 1] (5 5,(4) < 1 holds by definition,

len [e2 | | e || ffe




J, (j = 1,..., R) is the distance between the two neighbors

of solutions’ in the objective space:
OJA O @ -om _
L = 1Fi(s]1) = Fil(s1y)l, (21)
k=1

wherem is the number of objectives in the multi-objective
@ ® optimization problem, solutions! , and s/, are the two
Fig. 3. Two illustrative examples on calculating local nalidegree and N€ighboring solutions of solution]. A large distance is
:;;i;;ler gﬁ”?ﬁ!%&g ége v]:/igilljéeihfeizll?i?\ecsir?f;r’ezgﬁ?rlisc ;pdm&gﬁggj ﬁ]e?f?ttee ?ssigned to thhe b?undaryhsolutions in edach non-d(r)]mir?ated
: ront. Here, the larger the crowding distance, the less
genotype. @)o(9) = 05, 96(9) = 025, and (bh(9) = 05 05(9) = ded around the solutiosy it is. Fourth, a tournament
selection which leverages between non-dominated ranking
and crowdedness is conducted. Given two randomly chosen
Two illustrative examples on how to calculate local neutrahdividuals, the solution with the better (lower) rank wihg
degree and local variability are provided in Fig. 3. tournament. If the two solutions have the same rank, the one
The definition of local neutral degree has been discusse&dth the larger crowding distance wins. If the two solutions
in a number of studies. However, in most of these studiave the same rank and the same crowding distance, choose a
ies, the local neutral degree measure is investigated wittinner randomly. This procedure continues until the rezgir
respect to the single genotypes or neutral sets mapping namber of offspring is generated.
the same phenotype. In this work, we want to evaluate
different characteristics of neutrality with respect tatien
genotype spaces. We use the local neutral degree to calculét Experimental Results

the mean neutral degree of a genotype-phenotype mappingin the experiment, different encodings of the Boolean
which is accomplished by randomly sampling genotypes anflodel were optimized with respect to the mean variability
averaging their local neutral degree. A high mean neutrahd mean neutral degree. The results for a population of 50
degree indicates that there are many genotypes with a higitiividuals and 100 generations are summarized in Fig. 4.
local neutral degree, and therefore the mean neutral degregt can be seen that the different encodings lead to quite dif-
reflects how many neutral mutations or how much neutralitierent results. The random initial population with the ripié
is provided by the mapping. In the genotype space whegnolean function encoding is unevenly distributed acrbss t
the neutral degree is high, mutations are most likely néutrgpjective space. The mappings lie at some distance from the
rather than deleterious. As a consequence, populations @ge Pareto front, + 0, = 1, albeit mappings witty > 0.6
neutral networks tend to drift toward regions with a highgre almost on the true Pareto front. After 100 generatities, t
neutral degree to evolve robustness. This gives rise to thgappings lie evenly distributed on the theoretical tratfe-o
consideration that the mean neutral degree is related é@rface. This is different to the case in which single Boolea
mutational robustness. functions encoded. The randomly initialized populaticesli
almost entirely on the theoretical Pareto front, but only on
a sectionv < 0.5. After multi-objective optimization was
The most significant difference of multi-objective opti-performed, the mappings are more evenly distributed along
mization to scalar optimization is the selection methodidn this section. Only a few mappings lie on the Pareto front
work, the selection method from NSGA-II [11] is adoptedsection withz < 0.5. The solutions seem to have an uniform
which consists of four major steps. First, the parent andistance from each other. Fér2 < v < 0.5, however, no
offspring populations are combined. This implies that NSGAPareto optimal solutions have been found. In the case of
Il is an elitism. Second, the combined population is sortethe majority rule encoding, the randomly initialized mappi
according to the non-dominance ranks. During the rankinfiprm a compact cluster and evolutionary search finds Pareto
non-dominated solutions in the combined population areptimal mappings with0.5 < 7 < 0.8. In summary, all
assigned a rank 1, which belongs to the first non-dominategnotype-phenotype mappings found by different encodings
front. These individuals are removed temporally from thef the Boolean models and evolutionary search lie on the true
population and the non-dominated individuals in the rest d?areto frontv, + §, = 1. However, the found Pareto optimal
the population are identified, which consists of the secorgblutions are distributed along different regions. Onlyhwi
non-dominated front of the population and are assignedthe multiple Boolean function encoding was the evolutignar
rank 2. This procedure repeats until all individuals in thelgorithm able to find the complete Pareto optimal front.
combined population are assigned with a rank from lRto  These results indicate that the different encodings of
assuming that? non-dominated fronts can be identified inthe Boolean functions differ in their capability of realigi
total. Third, a crowding distance reflecting the crowdednewarious genotype-phenotype mappings. Since the multiple
in the neighborhood of a particular solution is calculafdte  Boolean function encoding restricts the original Boolean
crowding distance of solution in the non-dominated front model at the least, it is able to approximate the widest range

IV. OPTIMIZATION RESULTS ANDDISCUSSIONS

D. Non-Dominated Sorting and Tournament Selection
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Fig. 4. Multi-objective optimization evaluation of the Bean model ¢ = 16, m = 8) for maximal mean neutral degreég and maximal mean variability
d4. The model is encoded by different techniquasMultiple Boolean functions encoding with elementary aityb Single Boolean function encoding
with elementary arity 2c Majority rule encoding. Plots in the left panel show the fessof 50 randomly initialized genotype-phenotype mappimngth
n = 16 andm = 8. Those in the right panel show the approximated Pareto aptet of genotype-phenotype mappings after 100 genesatitire dotted
line indicates the theoretical Pareto front, determinedheydefinition of neutral degree and variability, i.7g, 4 S¢ = 1. The different encodings result
in different approximations of a Pareto optimal set.

of the theoretical Pareto front. For example, a genotyp®. Visualization of the Connection Matrix and Boolean
phenotype mapping: {0,1}'® — {0,1}® with variability ~Function

ds = 1 and neutral degreé, = 0 can be implemented. In an attempt to understand the Boolean model regarding

Despite that this mapping has a redundancy2f it pos- the genotype-phenotype mapping as well as the Boolean

sesses no neutrality. This means that the genotype spacg 1S = ; ) . .
Y 9 ype sp Fu‘\unctlons evolved, we visualize the connection matrix and

structured in such a way tha_t genotypes that map to .ﬂ? e truth value table of the Pareto-optimal models obtained
same phenotype are never neighbored and thus every singlé

. ) hen multiple Boolean functions of arity 2 are used in the
point mutations leads to a new phenotype. Therefore, such |
a mapping can be thought of as having low robustness andet . .
high evolvability The connection matrix and the truth value table of the 48

' B Pareto-optimal solutions are illustrated in Fig. 5, wheaele

Alternatively, mappings with neutral degrég > 0.9 and box corresponds to one genotype-phenotype mapping model.
variability 7, < 0.1 can be implemented by the multiple On the left side of each box shows tthé x 8 connectivity
and single Boolean functions encoding. In this case, almostatrix, where a white grid means that the corresponding
all single point mutations are neutral and lead to the sansement is of value '0’, and a black one denotes that the
phenotype. Therefore, such a mapping can be consideredcasresponding element is '1’. Recall that in the connection

highly robust and less evolvable. matrix, ¢, = 0,m = 1,2...,8;n = 1,2,...16 indicates that



and a black one '1".

0’

= 8). The 48 solutions are ranked according to an ascending meatmality degree. On the left side of each box (one
while on the right side is ttuth value table of the function. In the table, a white gl&hotes a

1

m

Visualization of the connection matrix and the trutilue table of the Boolean function of the Pareto-optimaldei® with multiple Boolean

model) is the connection matrix

function of arity 2 @ = 16

Fig. 5.



phenotype traitp,, is not directly influenced by geng,, was calculated and compared with the neutral degree and
and ¢,,,, = 1 indicates that phenotype trait,, is directly variability of the Pareto optimal mappings, both of whiclke ar
influenced by gene,,. Therefore, the pleiotropy of geng,  depicted in Fig. 6. The histogram representation of unifor-
is given by the sum of column, whereas the polygeny of mity shows that almost all Pareto optimal mappings reptesen
phenotype traifp,, is given by the sum of rown. On the phenotypes by different humbers of genotypes. With an
right side of each box shows the truth value of the Booleaimcreasing neutral degree, more and more phenotypes have
function of arity 2, where then-row depicts the table of probability zero to be located by random search. In other
truth value of the elementary Boolean functigf). words, those Pareto-optimal models with a high degree
From Fig. 5, we are not able to observe a clear regularityf neutrality map the whole genotype space to only few
in the structure of the connection matrix, which may behenotypes. This can also be seen in more detail when the
attributed to the fact that robustness and innovation aformed entropy of the phenotype distribution is considered
the Boolean models with multiple Boolean functions is &Jp to a neutral degreg, = 0.5 the entropy is relatively
combined result of connectivity and the Boolean function. high with values betweef.8 and 1. For a neutral degree
vy > 0.5, the entropy decreases almost linearly0to.

C. Uniformity of Pareto Optimal Genotype-Phenotype Map- o
pings The results suggest that the mean neutral degree is directly

. . ._related to the uniformity of a genotype-phenotype mapping.
We further_ analyze th? Pareto_-optlrr_]al mappings _opta'nqgseems that the genotype-phenotype mappings implemented
by the evolutionary algorithm by investigating the unifatyn

of the genotype-phenotype mappings.Agenotype-phenotyB the proposed model can only provide a high entropy

2 . . ) to a certain neutral degree threshold. Fig. 6 illustrates
mapping is uniformly redundant, if all accessible phenetyp

ted by th b ¢ N I {Eat with an increasing degree of neutrality, entropy de-
are represented Dy the same number of genolypes. In & 565 and less and less phenotypes lie in the image of the

literature there is no direct statements about the relsltign ma
between uniformity and evolvability, nor between unifotyni of the uniformity estimation, where for a higher neutral

and robustness. It is believed, however, that uniformity 'aegree and lower entropy, more and more phenotypes have

an important issue when designing redundant genOtyIOS'probability of zero. This observation is interesting i th

phenotype mappings. Here, the uniformity statistic IntroI'ii;%ht of interpreting the mean neutral degree as robustttess

ppings. This can be seen in the histogram representation

duced by Ebner et al. [14] .is gdoptgd to estimate whether netic variations. The mapping with the highest robustnes
genotype-phenotype mapping is uniformly redundant or no

At first. th bability of locati f the phenot would then be the constant mapping that maps the whole
Irst, the probabiiity ot focaling any of the phenotypes Ing_enotype space to a single phenotype. There is no genetic

the solution space using random search is estimated, m'd\/ riation that could ever alter the phenotype. In this case,

accomplished by randor.‘nl-y sampling genotypes from 9engy phenotypic adaptation is possible and thus the mapping
type space and determining the corresponding phenotypg ers no evolvability

Then the relative frequency of each phenotype was displaye
as a histogram. Therefore the histogram summarizes the
sizes of theneutral sets of all phenotypes. The shape of V. CONCLUSIONS
the estimated probability distribution reflects the unifidy
of the genotype-phenotype mapping. If the distribution is An evolutionary multi-objective optimization algorithm
flat, all phenotypes are represented by the same numberhgfs been employed to maximize the robustness (local neutral
genotypes and the genotype-phenotype mapping is unifornity) and innovation (local variability) for a class of reciant
redundant. In the case of a highly uneven distribution,e&heBoolean representations. In this way, an explicit and gtant
are phenotypes which cover an excessive amount of the getige trade-off relationship between robustness and intiava
type space and any search would be strongly biased towdi@n be revealed. Such trade-off relationships indicaté tha
these phenotypes. Furthermore, if the genotype-phenotyii&re is no single representation that can reach a maximum
mapping is not surjective, the histogram shows phenotyp@é robustness and innovation at the same time. An optimal
with probability zero. These phenotypes do not lie in théepresentation then depends on the environmental conditio
image of the mapping and can never be reached. It should #iéhe environment is changing rapidly, a representatioth wi
mentioned that there is no natural ordering of the genotyp@shigher innovation ability might be preferred to enhanee th
and therefore the ordering of the genotypes in the histograghrvival probability, whereas in case of a slowing changing
is arbitrary. In this work, genotypes are represented aarpin €nvironment, stronger robustness may provide the system a
vectors of a given length, we thus use the ordering of binaghance to reach a higher fitness.
numbers, starting with the all-zero genotype. Many interesting issues remain to be investigated. On the
In the analysis, we examine the Pareto optimal solutiormne hand, quantitative measures other than the local eutra
when multiple Boolean functions encoding is used, in whiclty and local variability [15] can be considered for measgri
case a most complete Pareto optimal set of mappings hadbustness and innovation. In addition, similar optiniaat
been generated. The histogram representations of uniformand analysis can be extended to more complex, in particular,
of the 48 Pareto-optimal solutions are plotted in Fig. 6lf@). dynamic genotype-phenotype mappings described e.g. by
addition, the entropy of the estimated phenotype distidout random Boolean networks or ordinary differential equation
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Fig. 6. Uniformity of Pareto optimal Boolean rule mappings= 16, m = 8) with respect to mean neutral degree and mean variabilitypaed with
multiple Boolean functions and elementary arityl2ft panel: Histogram representation of uniformity of the 48 Parettiropl models. Each histogram
corresponds to a mapping lying on the Pareto front. Thisssitaindicates the amount of genotype space covered bgrdift phenotypes. The horizontal
axis represents the phenotype space, while the vertical indicates the relative frequency of each phenotype. Tieesvare omitted in the plots. The
histograms are sorted by an ascending mean neutral degrtbe ebrresponding mapping, starting with from the upper tefthe lower right. With an
ascending neutral degree, the number of accessible plpasotdecreaseRight panel: Entropy of the estimated phenotype distribution shown @nlgit.
The Pareto optimal mappings are depicted together with tegresponding entropy with the thick line. The entropyrdases as the degree of neutrality
increases.
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