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Potential-based Policies from Constrained Motion
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Michael Gienger, Christian Goerick and Sethu Vijayakumar
(Received 00 Month 200x; final version received 00 Month 200x)

Movement generation that is consistent with observed or demonstrated behaviour is an effi-
cient way to seed movement planning in complex, high dimensional movement systems like
humanoid robots. We present a method for learning potential-based policies from constrained
motion data. In contrast to previous approaches to direct policy learning, our method can
combine observations from a variety of contexts where different constraints are in force, to
learn the underlying unconstrained policy in form of its potential function. This allows us to
generalise and predict behaviour where novel constraints apply. We demonstrate our approach
on systems of varying complexity, including kinematic data from the ASIMO humanoid robot
with 22 degrees of freedom.

1. Introduction

A wide variety of everyday human skills can be framed in terms of performing
some task subject to constraints imposed by the physical environment (Ohta et al
2004; Svinin et al 2005). Examples include opening a door, pulling out a drawer or
stirring soup in a saucepan.

In a more generic setting, constraints may take a much wider variety of forms.
For example, in climbing a ladder, the constraint may be on the centre of mass
or the tilt of the torso of the climber to prevent over-balancing. Alternatively, in
problems that involve control of contacts such as manipulation or grasping of a
solid object, the motion of fingers is constrained during the grasp by the presence
of the object (Sapio et al 2006; Park and Khatib 2006). Also in systems designed
to be highly competent and adaptive, such as humanoid robots (Fig. 1), behaviour
may be subject to a wide variety of constraints (Sentis and Khatib 2006, 2005;
Gienger et al 2005; Sapio et al 2005; Sentis and Khatib 2004), usually non-linear in
actuator space and often discontinuous. Consider the task of running or walking on
uneven terrain: the cyclic movement of the legs of the runner is constrained by the
impact of the feet on the ground in a dynamic, discontinuous and unpredictable
way. A promising approach to providing robots with such skills as running and
opening doors is to take examples of motion from existing demonstrators (e.g.,
from humans) and attempt to learn a control policy that somehow captures the
desired behaviour (Calinon and Billard 2007; Billard et al 2007; Alissandrakis et
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Figure 1. Kinematic model of the ASIMO humanoid robot (Gienger et al 2005). In our experiments 22
upper body degrees of freedom were used (2 × 7 DOF arms, 2 DOF head, 6 DOF torso), with the heel
frame fixed.

al 2007; Grimes et al 2007; Chalodhorn et al 2006; Grimes et al 2006; Takano et
al 2006; Schaal et al 2003; Inamura et al 2004; Ijspeert et al 2003). An important
component of this is the ability to deal with the effect of constraints and the
apparent variability in the observed movement induced by these constraints. For
example, one wishes to learn a policy that allows one not only to open a specific
door of a particular size (e.g. constraining the hand to a curve of a particular
radius), but rather to open many doors of varying sizes (or radii).

The focus in this paper is on modelling control policies subject to a specific class
of constraints on motion, with the aim of finding policies that can generalise over

different constraints. We take a direct policy learning (DPL) approach (Guenter et
al 2007; Chalodhorn et al 2006; Nakanishi et al 2004; Schaal et al 2003; Atkeson
and Schaal 1997; Mussa-Ivaldi 1997) whereby we attempt to learn a continuous
model of the policy from motion data. While DPL has been studied for a variety
of control problems in recent years1, crucially these problems involved policies
that are either directly observable from motion data, i.e. unconstrained policies,
or policies subject to identical constraints in every observation, in which case the
constraints can be absorbed into the policy itself. The difference here is that we
consider observations from policies projected into the nullspace of a set of dynamic,
non-linear constraints, and that these constraints may change between observations,
or even during the course of a single observation.

Our strategy for this is to attempt to consolidate movement observations under
different specific constraints to find the underlying unconstrained policy common to
all. Learning the latter enables generalisation since we can apply new constraints to
predict behaviour in novel scenarios. In general, however, learning (unconstrained)
policies from constrained motion data is a formidable task. This is due to (i) the
non-convexity of observations under different constraints, and; (ii) degeneracy in
the set of possible policies that could have produced the movement under the con-
straint (Howard et al 2008; Howard and Vijayakumar 2007). However, despite these
hard analytical limits, we will show that it is still possible to find a good approxi-
mation of the unconstrained policy given observations under the right conditions.

1For a review on DPL , please see (Billard et al 2007) and references therein.
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We take advantage of recent work in local dimensionality reduction (Verbeek et al
2004) to propose a method that (i) given observations under a sufficiently rich set
of constraints reconstructs the fully unconstrained policy; (ii) given observations
under an impoverished set of constraints learns a policy that generalises well to
constraints of a similar class, and; (iii) given ‘pathological’ constraints will learn
a policy that at worst reproduces behaviour subject to the same constraints. Our
algorithm is fast, robust and scales to complex high-dimensional movement sys-
tems. Furthermore it is able to deal with constraints that are both non-linear and
discontinuous in time and space.

2. Problem Formulation

In this section, we characterise the problem of DPL when constraints are applied
to motion, and we describe the special case of potential-based policies.

2.1. Direct Policy Learning

Following Schaal et al (2003), we consider the learning of autonomous kinematic
policies

ẋ(t) = π(x(t)) , π : IRn 7→ IRn, (1)

where x ∈ IRn is some appropriately1 chosen state-space and ẋ ∈ IRn is the de-
sired change in state. The goal of DPL is to approximate the policy (1) as closely
as possible (Schaal et al 2003). It is usually formulated as a supervised learning
problem where it is assumed that we have observations of ẋ(t), x(t) (often in the
form of trajectories), and from these we wish to learn the mapping π. In previous
work this has been done by fitting parametrised models in the form of dynamical
systems (Ijspeert et al 2003, 2002), non-parametric modelling (Peters and Schaal
2008; Calinon and Billard 2007; D’Souza et al 2001), probabilistic Bayesian ap-
proaches (Grimes et al 2007, 2006) and hidden Markov models (Takano et al 2006;
Inamura et al 2004).

An implicit assumption found in DPL approaches to date is that the data used
for training comes from behavioural observations of some unconstrained or con-

sistently constrained policy (Calinon and Billard 2007). By this it is meant that
the policy is observed either under no constraint (e.g. movements in free space
such as gestures or figure drawing), or under constraints consistent over observa-
tions (e.g. interacting with the same objects or obstacles in each case). However,
in many everyday behaviours, there is variability in the constraints, such as when
opening doors of varying sizes or walking on uneven terrain. This variability in the

constraints cannot be accounted for by standard DPL approaches.

2.1.1. Example: Finger Extension with Contact Constraints

As an example, consider the learning of a simple policy to extend a jointed finger. In
Fig. 2(a) the finger is unconstrained and the policy simply moves the joints towards

1It should be noted that, as with all DPL approaches, the choice of state-space is problem specific (Schaal
et al 2003) and, when used for imitation learning, depends on the correspondence between demonstrator
and imitator. For example if we wish to learn the policy a human demonstrator uses to wash a window,
and transfer that behaviour to an imitator robot, an appropriate choice of x would be the Cartesian
coordinates of the hand, which would correspond to the end-effector coordinates of the robot. Transfer of
behaviour across non-isomorphic state spaces, for example if the demonstrator and imitator have different
embodiments, is also possible by defining an appropriate state-action metric (Alissandrakis et al 2007).
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(a) (b) (c)

Figure 2. Illustration of two apparently different behaviours from the same policy: (a) unconstrained
movement (b) movement constrained by an obstacle (black box) (c) vector field visualisation of the un-
constrained (red) and constrained (black) policy for two of the finger joints as a function of their angles.

the zero (outstretched) position. On the other hand, in Fig. 2(b), an obstacle lies in
the path of the finger, so that the finger movement is constrained – it is not able to
penetrate the obstacle, so moves along the surface. The vector field representation
of the two behaviours is shown in Fig. 2(c).

Given the task of learning in this scenario, applying traditional DPL approaches
would result in one of two possibilities. The first is that if the observations are
labelled with respect to the constraint (here, the orientation, position and shape of
the obstacle) one could learn a separate policy model for the behaviour in each of
the settings. However this is clearly unsatisfactory, since each model would only be
valid for the specific setting, and we would need increasing numbers of models as we
observed the policy under new constraints (for example different shaped obstacles
at different positions and orientations). The second possibility is that the data is
unlabelled with respect to the constraint. In this case, one might try to perform
regression directly on the observations, that is observations from both vector fields
(cf. Fig. 2(c), black and red vectors). However, this presents the problem that model

averaging would occur across observations under different constraints, resulting in
a poor representation of the movement in terms of the magnitude and direction of
the predictions (see Sec. 2.3.).

We can avoid the need for multiple policy models if we relax our assumptions on
the form (1) of the observed commands, and allow for an additional transformation
of π(x). We thus model both the red and black observations as stemming from the
same policy (‘extend the finger’), and attribute its different appearance to the
transformations as induced by the constraints. With a restriction on the class of
possible transformations, as will be detailed in the next section, we can model the
unconstrained policy even if we only observed constrained movements, and we can
apply new constraints to adapt the policy to novel scenarios.

2.2. Constraint Model

In this paper we consider constraints which act as hard restrictions on movements
available to the policy. Specifically, we consider policies subject to a set of k-
dimensional (k ≤ n) Pfaffian constraints

A(x, t)ẋ = 0. (2)

Under these constraints, the policy is projected into the nullspace of A(x, t):

ẋ(t) = N(x, t)π(x(t)) (3)
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where N(x, t) ≡ (I − A†A) ∈ IRd×d is in general a non-linear, time-varying pro-
jection operator1, A(x, t) ∈ IRk×d is some matrix describing the constraint and
I ∈ IRd×d is the identity matrix. Constraints of the form (2) commonly appear in
scenarios where manipulators interact with solid objects, for example when grasp-
ing a tool or turning a crank or a pedal, that is, contact constraint scenarios (Park
and Khatib 2006; Murray et al 1994; Mattikalli and Khosla 1992). Such constraints
are also common in the control of redundant degrees of freedom in high-dimensional
manipulators (Liégeois 1977; Khatib 1987; Peters et al 2008), where policies such
as (3) are used, for example, to aid joint stabilisation (Peters et al 2008), avoid
joint limits (Chaumette and Marchand 2001), kinematic singularities (Yoshikawa
1985) or obstacles (Choi and Kim 2000; Khatib 1985) under task constraints. As
an example: Setting A to the Jacobian that maps from joint-space to end-effector
position coordinates would allow any motion in the joint space provided that the
end-effector remained stationary. The formalism is generic and extends to a wide
variety of systems; for example Antonelli et al (2005) apply it to team coordination
in mobile robots and Itiki et al (1996) use the formalism to model the dynamics of
jumping.

In general the effect of constraints (2)-(3) is to disallow motion in some sub-
space of the system, specifically the space orthogonal to the image of N(x, t). In
essence these components of motion are projected out of the observed movement.
For example, as illustrated in Fig. 3 (left), a policy π is constrained in two different
ways corresponding to two different projections of the unconstrained movement. In
the first observation ẋ1, the constraint prevents movement in the direction normal
to the vertical plane1. For the second observation ẋ2, the constraint only allows
movement in the horizontal plane.

Figure 3. Illustration of the effect of constraints on the unconstrained policy, the averaging effect of
standard DPL and the degeneracy problem. Left: Two constraints applied to the policy π result in projected
observations ẋ1, ẋ2. Centre: direct regression results in averaging of the two movements 〈ẋ〉 in a way that
cannot explain the observations. Right: Two policies π, π′ that both may be constrained in such a way as
to produce the observation ẋ2.

2.3. Learning from Constrained Motion Data

From the viewpoint of learning, constraints as described in the previous section
present problems for traditional DPL approaches. Specifically there are two issues
that must be dealt with; that of non-convexity of observations and degeneracy

between policies (Howard et al 2008).
The non-convexity problem comes from the fact that between observations, or

even during the course of a single observation, constraints may change. For example
consider Fig. 3 (centre). There the two policy observations under the different
constraints, ẋ1 and ẋ2, appear different depending on the constraint. To the learner,

1Here, A
† denotes the (unweighted) Moore-Penrose pseudoinverse of the matrix A

1It should be noted that in general the orientation of the constraint plane onto which the policy is projected
may vary both with state position and time.
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this means that the data from the two scenarios will appear non-convex, in the sense
that for any given point in the input (x) space multiple outputs (ẋ) may exist. This
causes problems for supervised learning algorithms, for example directly training
on these observations may result in model-averaging. Here, averaging of ẋ1, ẋ2

results in the prediction 〈ẋ〉 that clearly does not match the unconstrained policy
π, either in direction or magnitude (ref. Fig. 3, centre).

The degeneracy problem stems from the fact that for any given set of projected
(constrained) policy observations, there exist multiple candidate policies that could
have produced that movement. This is due to the projection eliminating compo-
nents of the unconstrained policy that are orthogonal to the image of N(x, t) so
that the component of π in this direction is undetermined by the observation. For
example consider the constrained observation ẋ2 in Fig. 3 (right). There motion in
the y direction is restricted, meaning that that component of π is not seen in this
observation. Given only ẋ2 we cannot determine if the policy π or an alternative,
such as π

′ (ref. Fig. 3, right) produced the observation. In effect we are not given
sufficient information about the unconstrained policy to guarantee that it is fully
reconstructed.

Despite these restrictions, we wish to do the best we can with the data available.
We adopt a strategy whereby we look for policies that are, as a minimum, consistent
with the constrained observations ẋ. For example, returning to Fig. 3, if we only
observe ẋ2, (that is the policy under a single, specific constraint) the simplest (and
safest) strategy would be to use that same vector as our prediction. In this way
we can at least accurately predict the policy under that constraint (albeit only
under that particular constraint). If we are given further observations under new
constraints we can recover more information about the unconstrained policy π. For
instance, observing ẋ1 eliminates the possibility that π

′ underlies the movements
since it cannot project onto both ẋ1 and ẋ2. Applying this strategy for increasing
numbers of observations, our model will not only generalise over the constraints
seen, but also come closer to the unconstrained policy π.

Finally, it should be noted that if in all observations certain components of
the policy are constrained, then we can never hope to uncover those components.
However, in such cases it is reasonable to assume that, if these components are
always eliminated by the constraints, then they are not relevant for the scenarios
in which movements were recorded.

Despite the problems of learning policies under the constraints outlined recent
studies (Howard et al 2006; Howard and Vijayakumar 2007; Howard et al 2008)
have suggested that for the important special class of potential-based policies it is
possible to efficiently learn the unconstrained policy. We characterise this class of
policies in the next section.

2.4. Potential-based Policies

A potential-based policy is a policy defined through the gradient of a scalar poten-
tial function φ(x)

π(x) = −∇xφ(x). (4)

Such policies can be thought of as greedily optimising the potential function at
every time step (Nakamura 1991) and thus encode attractor landscapes where the
minima of the potential correspond to stable attractor points. An example is given
in Fig. 4 where a potential function with three maxima (repellors) and two minima
(attractors) is shown and the corresponding policy is overlaid (black vectors).
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Figure 4. Potential function with three maxima (repellors) and two minima (attractors). Overlaid are the
corresponding unconstrained policy vectors (black) and a set of constrained policy vectors (red).

A wide variety of behaviours may be represented as potential-based. For exam-
ple, reaching behaviours may be represented by a potential defined in hand space,
with a single minimum at the target. Furthermore decision-based behaviours may
be encoded as potentials (Körding and Wolpert 2004; Körding et al 2004; Chajew-
ska et al 2001, 1998). For example when reaching for an object, a potential may be
defined with two minima, one corresponding to reaching with the right hand, the
other reaching with the left. The decision of which hand to use for reaching would
thus be determined by the start state (e.g. reach with the closest hand) and the
relative offset of the two minima (e.g. right-handedness would imply a lower mini-
mum for that hand). Potential-based policies are also extensively used as nullspace
policies in control of redundant manipulators (Gienger et al 2005; English and Ma-
ciejewski 2000; Chaumette and Marchand 2001; Choi and Kim 2000; Nakamura
1991; Yoshikawa 1985), and for navigation and obstacle avoidance problems in mo-
bile robotics (Ren et al 2006; Conner et al 2003; Rimon and Koditschek 1992).
Furthermore, in reinforcement learning and optimal control (Sutton and Barto
1998; Todorov 2006), policies that are greedy with respect to the value function
can be thought of as potential-based, in the sense that the policy does a gradient
descent on the value function.

2.4.1. Learning from Constrained Potential-based Policies

If the policy under observation is potential-based, an elegant solution to solving
the non-convexity and degeneracy problems is to model the policy’s potential func-

tion (Howard et al 2008; Howard and Vijayakumar 2007) rather than modelling it
directly. This is due to a special property of constrained potential-based policies,
namely that observations of the constrained movements give us information about
the shape of the underlying potential, up to a translation in φ corresponding to
constants of integration for the observations.

In Fig. 4 this is shown for a potential function defined over a two-dimensional
state-space (top and 3-D perspective views). The potential function (colours) and
unconstrained policy (black vectors) is shown, along with the policy subject to a
constraint (red vectors). For the case of potential-based policies the policy vectors
are given by the gradient vector of the potential (as expressed in (4)). This means
that the (unconstrained) policy vectors point in the direction of steepest descent,
with the magnitude equal to the slope in that direction (Fig. 4, black vectors).

Now, if a constraint is applied, the direction and magnitude of the vectors change.
In the example in Fig. 4 the constraint prevents movement in one dimension (x
dimension in Fig. 4, left) so that only motion corresponding the the second dimen-
sion (y dimension in Fig. 4, left) is observed. The vectors now point in the direction
of steepest descent subject to the constraint, with magnitude equal to the slope of
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the potential in that direction, as can be seen from Fig. 4, right. In other words
the projected vectors correspond to the directional derivatives of the potential, in
the direction parallel to the observations.

This lends us the opportunity of modelling the unconstrained policy, by piecing
together information about the slope of the potential in different directions. For
each observation (e.g. ẋ1 in Fig. 3) we get information about the directional deriva-
tive in that direction (i.e. the direction parallel to ẋ1). This means we transform
the problem of combining these n-dimensional vector observations (ref. Fig. 3) to
one of ‘piecing together’ local estimates of the slope of the potential.

A convenient method for doing this is to use line integration to accurately esti-
mate the form of the potential along trajectories (Howard et al 2008; Howard and
Vijayakumar 2007) and then use these local estimates to build a global model of
the potential. We outline a method for doing this in the next section.

3. Learning Nullspace Policies Through Local Model Alignment

In the following we propose a method for modelling the potential from constrained
motion data. Given observations of constrained trajectories, we first model the po-
tential on a trajectory-wise basis using numerical line integration. We then consoli-
date these trajectory-wise models using results from recent work in dimensionality
reduction (Verbeek 2006; Verbeek et al 2004) to ensure consistency. Finally, we use
these consistent models to learn a global model of the potential function, and thus
the policy, for use in control.

3.1. Estimating the potential along single trajectories

As has been described in (Howard et al 2008; Howard and Vijayakumar 2007),
it is possible to model the potential along sampled trajectories using a form of
line integration. Specifically, combining (3) and (4), the (continuous time) state
evolution of the system is given by

ẋ = N(x, t)π(x) = −N(x, t)∇xφ(x) (5)

Let x̄(t) be the solution of (5). If we line-integrate along x̄(t) we have

∫

x̄

(∇xφ)T dx =

∫ tf

t0

(∇xφ)T ẋ dt = −

∫ tf

t0

(∇xφ)TN(x, t)∇xφ(x) dt, (6)

where t0 and tf are the start and finishing instants of x̄(t). We assume that we
have recorded trajectories x(t), ẋ(t) of length T sampled at some sampling rate
1/δt Hz so that for each trajectory we have a tuple of points Xk = xk,1, . . . ,xk,Tδt.
Now, assuming the sampling rate to be sufficiently high, we can make a linear
approximation to (5)

xi+1 ≈ xi + δtNiπi = xi − δtNi∇xφ(xi) (7)

and (6) can be approximated using an appropriate numerical integration scheme.
An example of such a scheme is Euler integration, which involves the first order
approximation

φ(xi+1) ≈ φ(xi) +
1

δt
(xi+1 − xi)

TNi∇xφ(xi). (8)
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Since the effect of the time constant δt is simply to scale the discretised policy
vectors, we can neglect it by scaling time units such that δt=1. This comes with
the proviso that for implementation on the imitator robot, the learnt policy may
need to be scaled back to ensure that the correct time correspondence is kept. For
steps xi → xi+1 that follow the projected policy (3) we can rearrange (7) with the
scaled time coordinates, and substitute into (8) to yield

φ(xi+1) ≈ φ(xi) − ‖xi+1 − xi‖
2, (9)

where the negative sign reflects our assumption (as expressed in (4)) that attractors

are minima of the potential. We use this approximation to generate estimates φ̂(xi)
of the potential along any given trajectory x1,x2 . . .xN in the following way: We set
φ̂1 = φ̂(x1) to an arbitrary value and then iteratively assign φ̂i+1 := φ̂i−‖xi+1−xi‖

2

for the remaining points in the trajectory.
Note that an arbitrary constant can be added to the potential function without

changing the policy. Therefore, ‘local’ potentials that we estimate along different
trajectories need to be aligned in a way that their function value matches in inter-
secting regions. We’ll turn to this problem in the next section.

3.2. Constructing the global potential function

Let us assume we are given K trajectories Xk = (xk1,xk2 . . .xkNk
) and correspond-

ing point-wise estimates Φ̂k = (φ̂k1, φ̂k2 . . . φ̂kNk
) of the potential, as provided from

the Euler integration just described. In a first step, we fit a function model fk(x) of

the potential to each tuple (Xk, Φ̂k), such that fk(xi) ≈ φ̂ki. Although in principle
any regression method could be applied here, our options are somewhat limited by
the fact that these possibly non-linear models have to be acquired from the few
data points available in each trajectory. To avoid unnecessary complications, we
choose a nearest-neighbour (NN) regression model, i.e.,

fk(x) = Φki∗ , i∗ = arg min
i

‖x − xki‖
2. (10)

Since we wish to combine the models to a global potential function, we need to
define some function for weighting the outputs of the different models. For the NN
algorithm, we choose to use a Gaussian kernel

wk(x) = exp

[

−
1

2σ2
min

i
‖x − xki‖

2

]

. (11)

From these weights we can calculate responsibilities

qk(x) =
wk(x)

∑K
i=1 wi(x)

(12)

and a (naive) global prediction f(x) =
∑K

k=1 qk(x)fk(x) of the potential at x.
However, as already stated, the potential is only defined up to an additive constant,
and most importantly this constant can vary from one local model to another. This
means that we first have to shift the models by adding some offset to their estimates
of the potential, such that all local models are in good agreement about the global
potential at any number of states x.

Fortunately, a similar problem has already been tackled in the literature: In
the field of non-linear dimensionality reduction, Verbeek et al (2004) have shown
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how to align multiple local PCA models into a common low-dimensional space. In
particular, they endowed each local PCA model with an additional affine mapping
gk(z) = Akz+bk, which transformed the coordinates zk of a data point within the
k-th PCA model into the desired global coordinate system. Verbeek et al (2004)
retrieved the parameters of the optimal mappings gk by minimising the objective
function

E =
1

2

M
∑

m=1

K
∑

k=1

K
∑

j=1

qkmqjm‖gkm − gjm‖2, (13)

where gkm denotes the coordinate of the m-th data vector, as mapped through
the k-th PCA model, and qkm is the corresponding responsibility of that model.
The objective can easily be interpreted as the ‘disagreement’ between any two
models, summed up over all data points, and weighted by the responsibilities of
two models each. That is, the disagreement for any combination of m, k and j only
really counts, if the responsibility of both the k-th and the j-th model is sufficiently
high for the particular query point. Notably, E is convex and can be minimised by
solving a generalised eigenvalue problem of moderate dimensions, that is, there are
no local minima, and the solution can be found efficiently.

In analogy to the PCA-alignment method (Verbeek et al 2004), we augment
our local potential models fk(·) by a scalar offset bk and define the corresponding
objective function as

E(b1 . . . bK) =
1

2

M
∑

m=1

K
∑

k=1

K
∑

j=1

qk(xm)qj(xm) ×

((fk(xm) + bk) − (fj(xm) + bj))
2 , (14)

or, in a slightly shorter form,

E(b) =
1

2

∑

m,k,j

qkmqjm (fkm + bk − fjm − bj)
2 . (15)

Here,
∑

m denotes a summation over the complete data set, that is, over all points

from all trajectories (M =
∑K

k=1 Nk). Using the symmetry in j ↔ k and
∑

k qkn =
1, we split (15) into terms that are constant, linear, or quadratic in bk, yielding

E(b) =
∑

m,k

qkmf2
km −

∑

m,j,k

qkmqjmfkmfjm

+2
∑

m,k

qkmfkmbk − 2
∑

m,k

qkmqjmfjmbk

+
∑

m,k

qkmb2
k −

∑

m,k,j

qkmqjmbkbj

= E0 + 2aTb + bTHb. (16)

Here, we introduced E0 as a shortcut for the terms independent of b, the vector a ∈
IRK with elements ak =

∑

m qkmfkm −
∑

m,j qkmqjmfjm, and the Hessian matrix

H ∈ IRK×K with elements hij = δij

∑

m qjm −
∑

m qimqjm. The objective function
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is quadratic in b, so we retrieve the optimal solution by setting the derivatives to
zero, which yields the equation Hb = −a.

However, note that a common shift of all offsets bk does not change the objective
(14), which corresponds to the shift-invariance of the global potential. Therefore,
the vector (1, 1, . . . , 1)T spans the nullspace of H, and we need to use the pseudo-
inverse of H to calculate the optimal offset vector

bopt = −H†a. (17)

Compared to aligning PCA models, the case we handle here is simpler in the sense
that we only need to optimise for scalar offsets bk instead of affine mappings. On the
other hand, our local potential models are non-linear, have to be estimated from
relatively little data, and therefore do not extrapolate well, as will be discussed in
the following section.

3.3. Smoothing parameter selection and outlier detection

Since we restrict ourselves to using simple NN regression for the local potential
models in this paper, the only open parameter of our algorithm is σ2, i.e., the
kernel parameter used for calculating the responsibilities (11). A too large choice
of this parameter will over-smooth the potential, because the NN regression model
basically predicts a locally constant potential, but at the same time trajectories
will have relatively high responsibilities for even far apart points x in state space.

On the other hand, a too small value of σ2 might lead to weakly connected

trajectories: If a particular trajectory does not make any close approach to other
trajectories in the set, the quick drop-off of its responsibility implies that it will
not contribute to the alignment error (based on pairs of significant responsibility),
which in turn implies that its own alignment – the value of its offset – does not
matter much.

The same reasoning applies to groups of trajectories that are close to each other,
but have little connection to the rest of the set. For the remainder of the paper, we
will refer to such trajectories as ‘outliers’, since like in classical statistics we need
to remove these from the training set: If their influence on the overall alignment
is negligible, their own alignment can be poor, and this becomes a problem when
using the output of the optimisation (17) to learn a global model of the potential.
To avoid interference, we only include trajectories if we are sure that their offset is
consistent with the rest of the data1.

Fortunately, outliers in this sense can be detected automatically by looking for
small eigenvalues of H: In the same way as adding the same offset to all trajectories
leads to a zero eigenvalue, further very small eigenvalues and the corresponding
eigenvectors indicate indifference towards a shift of some subset of trajectories
versus the rest of the set. In practice, we look for eigenvalues λ < 10−8, and
use a recursive bi-partitioning algorithm in a way that is very similar to spectral
clustering (Kannan et al 2004). We then discard all trajectories apart from those
in the largest ‘connected’ group. Please refer to Appendix B for details of this step.

Finally, with these considerations in mind, we select the smoothing parameter
σ2 to match the scale of typical distances in the data sets. In all of the experiments

1It should be noted that these trajectories are not outliers in the sense of containing corrupt data and
could in fact be used for further training of the model. For example one could take a hierarchical approach,
where groups of strongly connected trajectories are aligned first to form models consisting of groups of
trajectories with good alignment. We can then recursively repeat the process, aligning these larger (but
more weakly connected) groups until all of the data has been included.
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presented in this paper we used the same heuristic selection. In particular, we first
calculated the distances between any two trajectories k, j ∈ {1 . . .K} in the set as
the distances between their closest points

dkj = min
{

‖xkn − xjm‖2 | n, m ∈ {1 . . . N}
}

, (18)

and also the distances to the closest trajectory

dmin
k = min {dkj | j 6= k} . (19)

We then consider three choices for σ2, which we refer to as ‘narrow’, ‘wide’ and
‘medium’:

σ2
nar = median

{

dmin
k | k ∈ {1 . . . K}

}

(20)

σ2
wid = median

{

djk | j, k ∈ {1 . . .K}, j 6= k
}

(21)

σ2
med =

√

σ2
narσ

2
wid. (22)

In Section 4.1. we give a comparison of the learning performance for each of these
choices of σ2 for policies of varying complexity.

3.4. Learning the global model

After calculating optimal offsets bopt and cleaning the data set from outliers, we
can learn a global model f(x) of the potential using any regression algorithm.
Here, we choose Locally Weighted Projection Regression (LWPR) (Vijayakumar
et al 2005) because it has been demonstrated to perform well in cases where the
data lies on low-dimensional manifolds in a high-dimensional space, which matches
our problem of learning the potential from a set of trajectories. As the training
data for LWPR, we use all non-outlier trajectories and their estimated potentials
as given by the Euler integration plus their optimal offset, that is, the input-output
tuples

{

(xkn, φ̂kn + bopt
k ) | k ∈ K, n ∈ {1 . . . Nk}

}

, (23)

where K denotes the set of indices of non-outlier trajectories. Once we have learnt
the model f(x) of the potential, we can take derivatives to estimate the uncon-
strained policy π̂(x) = −∇xf(x). For convenience, the complete procedure is sum-
marised in Algorithm 1.

4. Experiments

To explore the performance of our algorithm, we performed experiments on data
from autonomous kinematic control policies (Schaal et al 2003) applied1 to different
plants, including the whole body motion controller (WBM) of the humanoid robot
ASIMO (Gienger et al 2005). In this section, we first discuss results from an arti-
ficial toy problem controlled according to the same generic framework to illustrate

1Since the goal of the experiments was to validate the proposed approach, we used policies known in closed
form as a ground truth. In the follow-up paper we apply our method to human motion capture data.
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Algorithm 1 PolicyAlign

1: Estimate Xk, Φ̂k, {k = 1 . . .K} using Euler integration. Calculate σ2.

2: Alignment:

• Calculate prediction and responsibility of each local model fk on each data
point xm, m = 1 . . .M :

fkm = fk(xm); qkm = wk(xm)/
∑

i wi(xm)

• Construct H,a with elements
hij = δij

∑

m qjm −
∑

m qimqjm; ak =
∑

m qkmfkm −
∑

m,j qkmqjmfjm

• Find optimal offsets bopt = −H†a

3: Discard outliers (H eigenvalues, λ < 10−8).

4: Train global model on data tuples (xkn, φ̂kn + bopt
k )

the key concepts. We then discuss an example scenario in which the algorithm is
used to enable ASIMO to learn a realistic bi-manual grasping task from observa-
tions from a constrained demonstrator. We then give a brief discussion on how our
algorithm scales to policies in very high dimensional systems such as for 22 DOF
of the ASIMO WBM controller (Gienger et al 2005). Finally, we report the perfor-
mance of the algorithm when learning from data containing a set of pathological
constraints.

4.1. Toy Example

The toy example consists of a two-dimensional system with a policy defined by a
quadratic potential, subject to discontinuously switching constraints. Specifically,
the potential is given by

φ(x) = (x − xc)
TW(x − xc) (24)

where W is some square weighting matrix which we set to 0.05I and xc is a
vector defining the location of the attractor point, here chosen to be xc = 0.
Data was collected by recording trajectories generated by the policy from a start
state distribution X0. During the trajectories the policy was subjected to random
constraints

A(x, t) = (α1, α2) ≡ α (25)

where the α1,2 were drawn from a normal distribution, αi = N(0, 1). The con-
straints mean that motion is constrained in the direction orthogonal to the vector
α in state space. To increase the complexity of the problem, the constraints were
randomly switched during trajectories by re-sampling α twice at regular intervals
during the trajectory. This switches the direction in which motion is constrained
as can be seen by sharp turns in the trajectories.

Figure 5 shows an example of our algorithm at work for a set of K = 40 trajec-
tories of length N = 40 for the toy system. The raw data as a set of trajectories
through the two-dimensional state space is shown in panel (a), whereas panel (b)
additionally depicts the local potential models as estimated from the Euler inte-
gration prior to alignment. Each local model has an arbitrary offset against the
true potential so there are inconsistencies between the predictions from each local
model. Figure 5(c) shows the trajectories after alignment, already revealing the
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Figure 5. Top: (a) Toy data (trajectories (2-D) and contour of true potential. Estimated potential along
the trajectories before (b) and after (c) alignment. Trajectories detected as difficult to align ‘outliers’ are
shown by light crosses. Bottom: Learnt (d) and true (e) potential function after training on the aligned
trajectories.

structure of the parabola.
At this point, the outlier detection scheme has identified three trajectories as be-

ing weakly connected to the remaining set. In Fig. 5(a) we can see that the outliers
are indeed the only trajectories that do not have any intersection with neighbouring
trajectories. At the ‘narrow’ length scale determined by the smoothing parameter
(20), they are hard to align properly, and need to be discarded before learning the
global model. Finally, Fig. 5(d) shows the global model f(x) of the potential that
was trained on the aligned trajectories, which is clearly a good approximation of
the true parabolic potential shown in Fig. 5(e).

For a more thorough evaluation, we repeated this experiment on 100 data sets
and evaluated1

• the nMSE of the aligned potential, which measures the difference between φ̂kn+bk

and the true potential φ,

• the nMSE of the learnt potential, measuring the difference between f(·) and φ(·),

• the normalised unconstrained policy error (nUPE), quantifying the difference
between π̂=∇f and π=∇φ,

• the normalised constrained policy error (nCPE), which is the discrepancy be-
tween Nπ̂ and Nπ, and finally

• the percentage of trajectories discarded as outliers

on a subsample of the data held out for testing. We did so for our three different
choices of σ2 given in (20-22). We also repeated the experiment using a sinusoidal

1A detailed explanation of the error measures used can be found in Appendix A.
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potential function

φs(x) = 0.1 sin(x1) cos(x2) (26)

with the same amount of data, as well as while using K = 100 trajectories of length
N = 100 for each data set.

Table 1 summarises the results. Firstly, we can see that the ‘wide’ choice for σ2

leads to large error values which are due to over-smoothing. Using the narrow σ2,
we retrieve very small errors at the cost of discarding quite a lot of trajectories1,
and the medium choice seems to strike a reasonable balance especially with respect
to the nUPE and nCPE statistics. Further to this, the left panel of Fig. 6 depicts
how the nUPE and nCPE evolve with increasing size of the training set, showing
a smooth decline (please note the log. scale).

Secondly, when comparing the results for the parabolic and sinusoidal potentials,
we can see that the latter, more complex potential (with multiple sinks) requires
much more data. With only 40 trajectories and 40 points each, most of the data
sets are too disrupted to learn a reasonable potential model. While at the narrow
length scale (4th row), on average more than half of the data set is discarded, even
the medium length scale (5th row) over-smooths the subtleties of the underlying
potential.

Finally, the nCPE is always much lower than the nUPE, which follows naturally
when training on data containing those very movement constraints. Still, with a
reasonable amount of data, even the unconstrained policy can be modelled with
remarkable accuracy.

As a final test, we also performed experiments to assess the noise robustness of
the proposed approach. For this we again used data from the quadratic potential
and but this time contaminated the observed states xn with Gaussian noise, the
scale of which we varied to match up to 20% of the scale of the data. The resulting
nUPE roughly follows the noise level, as is plotted in Fig. 6 (right).
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Figure 6. Learning performance on the quadratic potential (24) with varying data set sizes and noise
levels. Left: Potential nMSE, nCPE and nUPE versus data set size as a percentage of the full K = 40
trajectories of length N = 40. Right: Potential nMSE, nCPE and nUPE for increasing noise levels in the
observed xn.

1Please note that we also discard the outliers for evaluating the error statistics – we can hardly expect to
observe good performance in regions where the learnt model f(x) has seen no data.
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Table 1. Error and outlier statistics (mean±std.dev. over 100 data sets) for the experiment on 2-D toy data.

For brevity, we did not include the figures for the alignment nMSE. These were only marginally different from

the potential nMSE.

Setup σ2 Potential nMSE nUPE nCPE Disc. (%)

Parabola narrow 0.0052 ± 0.0024 0.0486 ± 0.0211 0.0235 ± 0.0092 17.55 ± 15.96

K = 40 medium 0.0195 ± 0.0203 0.0859 ± 0.0486 0.0224 ± 0.0074 0.48 ± 1.11

N = 40 wide 0.3143 ± 0.1045 0.5758 ± 0.2726 0.1135 ± 0.0371 0 ± 0

Sinusoidal narrow 0.0026 ± 0.0019 0.1275 ± 0.1125 0.0535 ± 0.0353 50.18 ± 14.37

K = 40 medium 0.0522 ± 0.0645 0.1399 ± 0.0422 0.0376 ± 0.0097 1.03 ± 3.99

N = 40 wide 0.5670 ± 0.1363 0.8373 ± 0.2188 0.2464 ± 0.0638 0 ± 0

Sinusoidal narrow 0.0014 ± 0.0004 0.0657 ± 0.0142 0.0308 ± 0.0065 25.46 ± 11.42

K = 100 medium 0.0019 ± 0.0017 0.0628 ± 0.0089 0.0284 ± 0.0044 1.25 ± 3.33

N = 100 wide 0.2137 ± 0.1000 0.4262 ± 0.1367 0.1554 ± 0.0483 0 ± 0

Figure 7. Example constrained reaching movement demonstrated by the expert policy. Starting with
hands at the sides, the teacher robot reaches between the barriers to grasp the ball.

4.2. Grasping a Ball

The two goals of our second set of experiments were (i) to characterise how well
the algorithm scaled to more complex, realistic constraints and policies and (ii)
to assess how well the learnt policies generalised over different constraints. For
this we set up a demo scenario in which a set of trajectories demonstrating the
task of reaching for a ball on a table were given. Furthermore, it was assumed
that trajectories were recorded under different contexts where different constraints
applied. The goal was then to uncover a policy that both accurately reproduced
the demonstrated behaviour and furthermore generalised to novel contexts with
unseen constraints.

For this, we set up an ‘expert’ demonstrator from which observations were
recorded. For ease of comparison with the 2-D system, the expert’s policy was
defined by the same quadratic potential (24) this time with the target point xc

corresponding to a grasping position, with the two hands positioned on either side
of the ball. The state-space of the policy was defined as the Cartesian position of
the two hands, corresponding to 6 DOFs1 (hereafter, the ‘task space’). In order to
realise the task space policy motion, joint-space control was performed using a the
ASIMO WBM controller (see Gienger et al (2005) for details).

The policy was constrained by placing a barrier on the table between the robot
and the ball with a gap in it. The constraints acted on each of the hands so that
motion in the direction normal to the barrier surface was prevented if a hand came
too close (cf. (Sugiura et al 2007)). The constraints were such that the robot had to

13 DOFs per hand × 2 hands.
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reach through the gap in order to get the ball. Such state-dependent constraints are
both nonlinear in the state space and have discontinuously switching dimensionality
when either one or both of the hands approach or recede from the barrier.

Data was collected by recording K =100 trajectories of length 2s at 50 Hz, (i.e.
N = 100 points per trajectory). Start states were sampled from a Gaussian dis-
tribution over joint configurations q ∼ N(q0, 0.1I) (where q0 corresponds to the
default standing position) and using forward kinematics to calculate the corre-
sponding hand positions. The joint vector q was clipped where necessary to avoid
joint limits and self collisions, and to ensure the start postures looked natural.

The constraints were varied by randomly changing the width of the gap for each
trajectory. The gap widths were sampled from a Gaussian distribution dgap ∼
N(µgap, σgap) where µgap = 0.25m, σgap = 0.1m and the diameter of the ball was
0.15m. Fig. 7 shows the experimental set-up.

We used our algorithm to perform learning on 50 such data sets using the ‘narrow’
choice of smoothing parameter σ2. For comparison, we also repeated the experiment
on the same data, using a naive approach that learnt π̃naive : x → ẋ ∈ IRn 7→ IRn by
training directly on the tuples (xi, ẋi), i = 1, . . .K×N and used LWPR to learn the
global model. This is in contrast to the proposed alignment scheme where we learn
the 1-dimensional potential function and use the gradient of the learnt function as
the policy prediction.

For this task, our algorithm achieved a very low alignment error of 6.95± 0.09×
10−4, with 0.48± 0.84% of the trajectories discarded, resulting in an nMSE in the
learnt potential of 7.85± 0.56× 10−4 (mean±s.d. over 50 data sets). In Table 2 we
give the errors in predicting the policy subject to (i) the training data constraints
(nCPE), (ii) no constraints (nUPE), and (iii) a novel constraint, unseen in the
training data. For the latter, a barrier was placed centrally between the robot and
the ball, so that the robot had to reach around the barrier to grasp the ball.

The remarkably low alignment error can be attributed to the fact that in most
of the observations the grasping task was achieved successfully despite the con-
straints forcing the hands to take alternative routes to the ball. This meant many
of the trajectories closely approached the minimum of the potential, making the
alignment easier around this point. This is further indicated by the low percentage
of trajectories discarded.

The key result, however, can be seen by examining the policy errors (ref. Table 2).
Comparing the two approaches, both achieve a similar nCPE, with the naive ap-
proach in fact performing slightly better. This indicates that the two methods both
do equally well in modelling the constrained movement observations to approxi-
mately the same level of accuracy.

However, when comparing the errors for the unconstrained policy, and the policy
subject to the unseen constraint, a different picture emerges. Using the model
learnt by the alignment approach, the unconstrained policy predictions, and the
predictions under the unseen constraint, maintain a similar level of error to that of
the constrained policy. However, in stark contrast to this, the naive approach fares
very poorly, with a large jump in error when predicting the policy under the new
barrier constraint and when predicting the unconstrained behaviour.

The difference in the two approaches is highlighted if we compare trajectories
generated by the two policies. In Fig. 8 we show example trajectories for the un-
constrained reaching movement produced by the expert (black), and the policies
learnt by (i) the naive approach (green), and (ii) the alignment approach (red).
In the former the hands take a curved path to the ball, reproducing the average
behaviour of the demonstrated (constrained) trajectories – the naive method is
unable to extract the underlying task (policy) from the observed paths around the
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obstacles. Consequently, it cannot generalise and find its way around the unseen
barrier. In contrast, the policy learnt with the alignment approach better predicts
the unconstrained policy, enabling it to take a direct route to the ball that closely
matches that of the expert.

Figure 8. Unconstrained reaching movement for the expert policy (black), the policy learnt with the naive
approach (green) and that learnt with the policy alignment algorithm (red).

Table 2. Constrained policy nMSE for unseen constraints on the ball-grasping task. Values are mean±s.d. over

50 data sets.

Constraint Naive PolicyAlign

Training 0.1298 ± 0.0113 0.1691 ± 0.0289

Unseen Barrier 0.5108 ± 0.0327 0.2104 ± 0.0357

Unconstrained 0.8766 ± 0.0589 0.2277 ± 0.0386

4.3. Learning from high-dimensional ASIMO data

In our next set of experiments we tested the scalability of our approach for learning
in very high dimensions. For this we again used the quadratic potential (24) where
now the state vector x corresponded to the 22-dimensional joint configuration of
the upper body of the ASIMO humanoid robot (ref. Fig. 1). In this experiment,
the policy was constrained such that in each trajectory one of the hands of the
robot was constrained to lie in a plane of random orientation. Such constraints
occur in a variety of behaviours where contact must be maintained with a surface,
for example when writing on a whiteboard or when wiping a window (Park and
Khatib 2006).

We ran the experiment on 50 data sets of K =100 trajectories of length N =100,
with start states selected using the same process as described in the preceding sec-
tion. Using the narrow setting of the smoothing parameter the algorithm achieved
an alignment error of 1.6 ± 0.3 × 10−3 with just 0.02 ± 0.14% of the trajectories
discarded. Learning on this data with LWPR, we achieved an nMSE in the learnt
potential of 1.5±0.4×10−3, nCPE of 0.065±0.014 and nUPE of 0.157±0.047. We
consider this to be remarkably good performance given the high dimensionality of
the input space and the relatively small size of the data set.

4.4. Pathological Constraints

In our final set of experiments we briefly characterise the performance of the algo-
rithm subject to pathological constraints in the data. As an illustrative example,
we simulated a constrained planar three-link arm, with revolute joints and unit
link lengths.
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The experimental set up was as follows. Data was collected from the arm moving
according to the quadratic potential (24) (with xc = 0 and W = 0.05I) from a
random distribution of start states. The movement of the arm was restricted by
constraining the end-effector to move along a line. Mathematically the constraint
matrix was

A(x, t) = n̂TJhand(x) (27)

where n̂ is a unit vector normal to the hand-space plane and Jhand(x) is the hand
Jacobian. The constraint was varied by altering the orientation of the plane by
drawing n̂ from a uniform random distribution Un̂ at the start of each trajectory.

We ran experiments on 50 such data sets each containing K = 100 trajectories
of length N = 100. For this learning problem, the algorithm achieved nUPE of
0.3524±0.1626 and nCPE of 0.0455±0.0276. The nMSE in the learnt potential was
0.1739±0.1424 with 10.28±8.25% trajectories discarded. In comparison the naive
approach to learning achieved nUPE of 0.8008±0.0274 and nCPE of 0.0105±0.0023.

The reason for the comparatively high nUPE here becomes clear if we analyse
the effect of the constraints on the movement of the arm (see Fig. 9). In Fig. 9(a)
the training data trajectories are plotted over the three joints of the arm. It can
be seen that the trajectories do not reach the point attractor at x = 0, but rather
move to a line in joint space (shown in black). This ‘line attractor’ represents the
minimum of the potential that can be reached without breaking the constraints. No
trajectories travel in the direction parallel to this line. Furthermore, away from this
line there are few points where trajectories come close to one another or intersect.
The effect of this is that the algorithm gets little or no information about how the
potential changes in the direction parallel to the line.

This is confirmed by comparing how the nUPE and nCPE change as we move
along the line attractor, and radially outward from it. In Fig. 9 we show the po-
tential nMSE, nUPE and nCPE on data contained within different regions of the
state space.

Firstly, we evaluated the error on data points contained between two planes
normal to the line attractor at distance d from the point attractor x = 0 (Fig 9(b),
dashed lines), and plotted it with increasing d (Fig 9(d)). We can see that close to
x = 0, the potential nMSE and nUPE start low but increase rapidly for large d.
On the other hand the nCPE stays approximately constant over the entire set.

Secondly, we looked at how the errors change as we move radially outward. For
this we evaluated errors on data contained within a cylinder of radius r centred
on the line attractor (Fig 9(c), dashed lines). Fig 9(e) shows the change in error
with increasing radius r. Again the nCPE remains constant. This time, however,
the potential nMSE and nUPE are high even at small r. This indicates that the
points at the two ends of the line are contributing most of the error.

Clearly in this example, the adverse constraints in the training data prevent
our algorithm from fully reconstructing the unconstrained policy. The constraints
prevent motion parallel to the line attractor so we cannot recover the form of
the potential along that direction. However, the good performance in terms of the
nCPE indicates that, at the very least, the algorithm is able to reconstruct the
policy under the same constraints despite these adverse conditions.

5. Conclusion

We have proposed a novel approach to direct learning of potential-based policies
from constrained motion data. Our method is fast and data-efficient, and it scales
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Figure 9. (a) Trajectories in state-space for the three link arm subject to random planar constraints on the
hand. (b) and (c) show projections onto the first two joints of the arm, and also indicate the line attractor
(solid black line). We sampled the nMSE at increasing distances along the line (b) and radially outward
from it (c). Plots (d) and (e) depict the cumulative nMSE of the potential φ, policy π, and constrained
policy (Nπ) as a function of the distance measures from (b) and (c), respectively.

to complex constraints in high-dimensional movement systems. The core ingredient
is an algorithm for aligning local models of the potential, which leads to a convex
optimisation problem.

Under the analytical limitations of what can be learnt in this setting, our method
performs remarkably well: Ultimately, the ability to learn the nullspace potential
depends on the constraints. Given a pathological set of constraints, one can never
hope to recover the potential. However, using our method, motion data under
different constraints can be combined to learn a potential that is consistent with
the observations. With a reasonably rich set of constraints, we can recover the
unconstrained policy with high accuracy, and we can generalise to predict behaviour
under different constraints.

For future research, we plan to work on a more principled selection of the smooth-
ing parameter σ2, which probably will include varying that parameter across the
state space. Another possibility is to align the trajectories by hierarchical grouping,
fitting more complex models to the growing groups.
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Appendix A. Error Measures

In order to measure the performance of our algorithm we define the following two
metrics. Firstly, the normalised unconstrained policy error (nUPE) is

Eupe[π̃] =
1

Nσ2
π

N
∑

n=1

||π(xn) − π̃(xn)||2 (A1)

where N is the number of data points, π(xn) and π̃(xn) are the (unconstrained)
true and learnt policy predictions at the points xn and σ2

π
is the variance in the true

policy over those points. The nUPE measures the difference between samples of
the (unconstrained) true and learnt policies, normalised by the variance. Since the
primary goal of our algorithm is to find a good approximation of the unconstrained
policy, a low nUPE indicates good performance. Note also that the nUPE also gives
an indication of how well the learnt policy will generalise over different constraints,
since if the learnt policy closely matches the true unconstrained policy, then it will
also closely match the true policy under any arbitrary projection (constraint).

The second measure we define is the normalised constrained policy error (nCPE)

Ecpe[π̃] =
1

Nσ2
π

N
∑

n=1

||Nn (π(xn) − π̃(xn)) ||2 (A2)

where Nn denotes the constraint (projection) matrix for the n-th point. The nCPE
measures the difference between the true and learnt policies under the projections
Nn. The significance of the nCPE is that it allows one to measure the accuracy
of the learnt policy under a specific set of constraints (i.e. those encoded by the
projections Nn). For example, if we chose Nn as the set of projections correspond-
ing to the constraints in force in the training data, then we can assess how well
our model will perform under those same constraints. Alternatively, if we chose Nn

corresponding to a set of novel, unseen constraints we we can directly measure how
well the policy generalises to predict under those new constraints.

While not directly of interest in terms of controller performance, the normalised
error in the learnt potential can provide information about the algorithm as a
whole. It is given by

Epot[f ] =
1

Nσ2
φ

N
∑

n=1

(

f(xn) − φ(xn) − µ
)2

, µ =
1

N

N
∑

n=1

(

f(xn) − φ(xn)
)

, (A3)

where σ2
φ denotes the variance of the true potential. Please note that we subtract

the mean difference µ between the two quantities to remove the irrelevant global
offset of the potentials. While the potential error also depends on the accuracy of
the regression method (LWPR), it is mostly determined by which offsets bk we pick
for the training trajectories. We can measure this part by the normalised alignment

error

Ealign[b] =
1

Nσ2
φ

N
∑

n=1

(

φ̂(xn) − φ(xn) − ν
)2

, ν =
1

N

N
∑

n=1

(

φ̂(xn) − φ(xn)
)

, (A4)

where the notation φ̂(xn) is understood to already include the proper offset, that

is, φ̂(xn) = φ̂kn′ + bk if the test point xn was held out from the k-th trajectory we
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Figure B1. Illustration of our recursive outlier detection scheme. At any stage, we look for non-trivial
small eigenvalues of the alignment Hessian, and if those exist, we split the trajectories into 2 independent
groups (red and blue). From left to right: 1) top-level partitioning 2) splitting up the red group from step
1, 3) splitting the red group from step 2, 4) splitting the red group from step 3. The largest connected
group consists of the blue trajectories from step 3, which we use for training the global model.

trained the model on.

Appendix B. Recursive Bi-partitioning for Outlier Detection

In the following, we describe our mechanism for detecting trajectories (or groups
thereof) that we need to discard from the training set before learning a global
model of the potential. To this end, similarly to spectral clustering, we look at the
eigenvectors belonging to all small eigenvalues of the Hessian H (16). Let

V = (v1v2 . . .vn)T where λivi = Hvi , λi < 10−8. (B1)

That is, if H was calculated from 100 trajectories and has n = 7 small eigenvalues,
V would be a 7 × 100 matrix. We then cluster the columns of V into two centres
c1, c2 ∈ IRn. Since each column of V represents a trajectory, we effectively partition
the training data into two groups whose relative potential offset has negligible
influence on the alignment objective function (16). For both groups, we repeat the
process using corresponding sub-matrices of H. That is, we recursively split up our
trajectories into groups until there is only one zero eigenvalue left in each group
(corresponding to v = 1, the constant shift of all trajectories in that group). The
process is visualised in Fig. B1.
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