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Abstract. This paper’s intention is to present a new approach for de-
composing motion trajectories. The proposed algorithm is based on non-
negative matrix factorization, which is applied to a grid like represen-
tation of the trajectories. From a set of training samples a number of
basis primitives is generated. These basis primitives are applied to re-
construct an observed trajectory. Hence, the reconstruction information
can be used for classification. Furthermore, the basis primitives can be
used to predict the observed movement. For the experiments, real move-
ment data is used to evaluate several aspects of the proposed approach.
In particular, the focus of the experiments is set to the prediction task.

Key words: Non-negative Matrix Factorization, Prediction, Movement
Data, Robot, Motion Trajectories

1 Introduction

The understanding and interpretation of trajectories is a crucial component in
dynamic visual scenes with multiple moving items. Nevertheless, this problem
has been approached very sparsely by the research community. Most approaches
for describing motion patterns, like [1], rely on a kinematic model for the ob-
served human motion. This causes the drawback, that those approaches are
difficult to adapt to other objects. Here, we aim at a generic, model-independent
framework for decomposition, classification and prediction. In this paper we fo-
cus on the decomposition and prediction problem, while the classification is not
yet further investigated.

Consider the simple task for a robot of grasping an object which is handed
over by the human interaction partner. To avoid a purely reactive behaviour,
which might lead to ‘mechanical’ movements of the robots, it is necessary to
predict the further movement of the human’s hand.

In [2] an interesting concept for a decomposition task is presented. Like play-
ing a piano a basis alphabet – the different notes – are superimposed to recon-
struct the observation (the piece of music). The much less dimensional descrip-
tion of when each basis primitive is used, can be used for further processing.
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While the so called piano model relies on a set of given basis primitives, our
approach is able to learn these primitives from the training data.

Beside the standard source separation approaches, like PCA and ICA, an-
other promising algorithm exists. It is called non-negative matrix factorization
(NMF) [3]. The system of basis vectors which is generated by the NMF is not
orthogonal. This is very useful for motion trajectories, since a basis primitive
is allowed to share a common part of trajectory with other primitives and to
specialize later.

The next section introduces the standard non-negative matrix factorization
approach and two extension that can be found in the literature. In section 3 the
new approach for decomposing motion trajectories is presented. The experiments
with their conditions and results are presented in section 4, while the paper
concludes in section 5.

2 Non-negative Matrix Factorization

Like other approaches, e. g. PCA and ICA, non-negative matrix factorization
(NMF) [3] is meant to solve the source separation problem. Hence, a set of
training data is decomposed into basis primitives:

V ≈W ·H (1)

Each training data sample is represented as a column vector Vi within matrix V.
Each column of matrix W stands for one of the basis primitives. In matrix H the
element Hj

i determines how the basis primitive Wj is activated to reconstruct
training sample Vi. Since NMF is an iterative approach, the training data V
can only be approximated by the product of W and H. This product will be
referred to as reconstruction R = W ·H later.

Unlike PCA or ICA, NMF aims to a decomposition, which only consists of
non-negative elements. This means that the basis primitives can only be accu-
mulated. There exists no primitive which is able to erase a ’wrong‘ superposition
of other primitives. This leads to a more specific set of basis primitives, which
is a clear advantage for certain applications, like face recognition [4].

For generating the decomposition, optimization based methods are used.
Hence, an energy function E has to be defined:

E(W,H) =
1
2
‖V −W ·H‖2 (2)

By minimizing the energy equation, it is now possible to achieve a reconstruction
using the matrices W and H. This reconstruction is aimed to be as close as
possible to the training data V. No further constraints are given in the standard
formulation of the NMF. As it can be seen in equation 2, the energy function
depends on the two unknown matrices W and H.

Since, both matrices usually have a large number of elements, the optimiza-
tion problem seems to be an extensive task. Fortunately, each training sample
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can be regarded independent from the others:

Vi ≈
∑

j

Hj
i ·Wj (3)

Furthermore, both matrices are adapted in an alternating fashion. This helps
to reduce the number of dimension for the optimization process and allows a
training with fewer examples. The algorithm is depicted in the following de-
scription:
1. Calculate the reconstruction

Ri =
∑

j

Hj
i Wj (4)

2. Update the activities

Hj
i ← Hj

i ¯
VT

i Wj

RT
i Wj

(5)

3. Calculate the reconstruction with the new activities

Ri =
∑

j

Hj
i Wj (6)

4. Update the basis vectors

Wj ←Wj ¯
∑

i Hj
i Vi∑

i Hj
i Ri

(7)

Steps 1 to 4 are iterated until a defined convergence criteria is reached. For the
criteria the energy function can be used in a usual fashion. Where the operation¯
denotes a component-wise multiplication. Beside this analytical description non-
negative matrix factorization can also be formulated with connectionist methods.
This is shown in [5], for example.

2.1 Sparse Coding

As it could be seen in equation 2 the energy function is formulated in a very
simple way. This results in a decomposition, which is quite arbitrary with no
further characteristics. This can lead, for example, to redundant information.
Especially, if the number of basis primitives is chosen higher than needed to
decompose the given training data. To compensate this drawback, it is useful
to introduce a constraint which demands a sparse activation matrix, like it was
introduced in [6]. This avoids the fact, that several basis primitives are activated
at the same time, and hence are being superimposed.

E(W,H) =
1
2
‖V −W ·H‖2 + λ

∑
i,j

Hj
i (8)
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The influence of the sparsity constraint can be controlled using parameter λ. In
this paper, we only discuss a special case for the sparsity term. A more detailed
discussion can be found in [6]. The algorithmic description is similar to the one
of the standard NMF. The only thing that has to be considered is that the basis
primitives need to be normalized.

2.2 Transformation Invariance

Beside the sparsety constraint an other extension to NMF has been published
in [7]. The concept of transformation invariance allows to move, rotate and scale
the basis primitves reconstructing the inpur. In this way, each possible trans-
formation doesn’t need to be covered by the basis primitives, but gets handled
by the algorithm. This is achieved by adding a transformation matrix T to the
decomposition formulation:

V ≈ T ·W ·H (9)

However the activation matrix H has to be adapted in a way that each possible
transformation carries its own activation. Hence, the matrix H becomes an acti-
vation tensor Hm, while m is a vector describing the transformation parameters
(rotation, scaling and translation).

Vi ≈
∑

j

∑
m

Hj,m
i ·Tm ·Wj (10)

For each allowed transformation the corresponding activity has to trained indi-
vidually.

3 Decomposing Motion Trajectories

For being able to decompose and to predict the trajectories of the surrounding
dynamic objects, it is necessary to identify them and to follow their movements.
For simplification, a tracker is assumed, which is able to provide such trajectories
in real-time. A possible tracker to be used is presented in [8]. The given trajectory
of the motion is now interpreted as a time series T with values si for time steps
i = 0, 1, . . . , n− 1:

T = (s0, s1, . . . , sn−1) (11)

It could now be possible to present the vector T directly to the NMF approach.
But this could result in an unwanted behavior, while trying to reconstruct the
motion by use of the basis primitives. Imagine, two basis primitives, one rep-
resenting a left turn and another representing a right turn. A superposition of
those basis primitives would result in a straight movement.

The goal is to have a set of basis primitives, which can be concatenated one
after the other. Furthermore, it is necessary for a prediction task to be able to
formulate multiple hypotheses. For achieving these goals, the x-t-trajectory is
transferred into a grid representation, as it is shown in figure 1. Then, each grid
cell (xi, tj) represents a certain state (spatial coordinate) xi at a certain time
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Fig. 1. Motion Trajectories are transferred into a grid representation. A grid cell is set
to 1 if it is in the path of the trajectory and set to zero otherwise. Each dimension
has to be regarded separately. During the prediction phase multiple hypotheses can
be gained by superimposing several basis primitives. This is indicated with the gray
trajectories on the right side of the grid.

V

W H

Fig. 2. Training with Spatio-Temporal NMF. Given is a set of training samples in
matrix V. The described algorithm computes the weights W and the corresponding
activities H. Only the weights are used as basis primitives for further processing.

tj . Since most of the state-of-the-art navigation techniques rely on grid maps
[9], the prediction can be integrated easily. This 2D-grid is now presented as
image-like input to the NMF algorithm using the sparsity constraint as well as
transformation invariance (See section 2.1 and 2.2 respectively). Using the grid
representation of the trajectory, also supports the non-negative character of the
basis components and its activities.

While applying an algorithm for basis decomposition to motion trajectories it
seems to be clear that the motion primitives can undergo certain transformations
to be combined to the whole trajectory. For example, the same basis primitive
standing for a straight move can be concatenated with an other one standing
for a left turn. Hence, the turning left primitive has to be moved to the end of
the straight line. Hence, transformation invariance is needed while decomposing
motion data. For our purposes, we concentrate on translation. This makes it
possible to simplify the calculations and to achieve real time performance.

The sparse coding constraint helps to avoid trivial solutions. Since the input
can be compared with a binary image, one possible solution would be a basis
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1. Normalize the basis vectors according to

Wj =
Wj

‖Wj‖
(12)

2. Calculate the reconstruction

Ri =
X

j

X
m

Hj,m
i TmWj (13)

3. Update the activities

Hj,m
i ← Hj,m

i ¯ VT
i TmWj

RT
i TmWj

(14)

4. Calculate the reconstruction with the new activities

Ri =
X

j

X
m

Hj,m
i TmWj (15)

5. Update the basis vectors

Wj ←Wj ¯
P

i

P
m Hj,m

i VT
i Tm + WjW

T
j

P
i

P
m Hj,m

i RT
i TmP

i

P
m Hj,m

i RT
i Tm + WjW

T
j

P
i

P
m Hj,m

i VT
i Tm

(16)

Fig. 3. Algorithmic description of the Spatio-temporal NMF.

component with single grid cell filled. The trajectory is then simply copied into
the activities.

3.1 Training Phase

The goal of the training phase is to gain a set of basis primitives which allow to
decompose an observed and yet unknown trajectory (see Fig. 2). As it is discussed
in section 3, the training samples are transferred into a grid representation.
These grid representations are taken as input for the NMF approach and are
therefor represented in matrix V. On this matrix V the standard NMF approach,
extended by sparsity constraint and by translation invariance, is applied. The
algorithm is depicted in Fig. 3.

Beside the computed basis primitives, the NMF algorithm also provides the
information how each of the training samples can be decomposed by these basis
primitives. This information is not used in the application phase.

3.2 Application Phase

As it is indicated in Fig. 4, from the training phase a set of motion primitives
is given. During the application phase, we assume that the motion of a dynamic
object (e. g. a person) is tracked continuously. For getting the input for the
NMF algorithm, a sliding window approach is taken. A certain frame in time
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V W

H

R P

Fig. 4. The basis primitives W, which were computed during the training, are used
to reconstruct (matrix R) the observed trajectory V. This results in a set of activities
– one for each basis primitive – which describe on which position in space and time a
certain primitive is used. Beside the reconstruction of the observed trajectory (shown
in Fig. 4), it is furthermore possible to predict a number of time steps into the future.
Hence, the matrix R is extended by the prediction horizon P.

is transferred into the already discussed grid like representation. For this grid
the activation of the basis primitives is determined by trying to reconstruct the
input. For the computation the algorithm is identical to the one depicted in Fig.
3 beside that step 2 and 3 can be skipped.

The standard approach to NMF implies that each new observation at the
next time step demands a new random initialization for the optimization prob-
lem. Since, an increasing column number in the grid representation stand for
an increase in time, the trajectory is shifted to the left while moving further in
time. Because the solution of the NMF is unambiguous, the shift can also be ob-
served in the activities after the convergence. To reduce the number of iterations
until convergence, the shifted activities from the previous time step are used as
initialization for the current one.

To fulfill the main goal discussed in this paper – the prediction of the observed
trajectory into the future – the proposed algorithm has to be extended. Since,
the algorithm contains the transformation invariance constraint, the computed
basis primitives can be translated to an arbitrary position on the grid. This
means they can also be moved in a way that they exceed the borders of the grid
and are therefor clipped. Up to now, the size of reconstruction was chosen to
be the same size as the input grid. To be able to solve the prediction task, we
simply extend the reconstruction grid to the right – or into the future (see Fig.
4). So the previously clipped information is available for prediction.

4 Evaluation

Taking a closer look at the introducing example scenario reveals that a robust
identification and tracking of the single body parts is needed. To be compare-
able and to avoid errors from the tracking system influencing the test results
movement data from the Perception Action Cognition Lab at the University of
Glasgow [10] is used. A number of 30 persons is recorded performing different
actions in different moods. The movement data has a resolution of 60 time steps
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Fig. 5. Basis primitives gained by Spatio-Temporal NMF. The value for each grid cell
is coded in gray scale from white (low) to black (high). A certain value stands for the
influence of this grid cell. Hence, light gray parts can be superimposed well, while dark
gray to black parts tend to be unambiguous.
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Fig. 6. Box whiskers plot showing the characteristics of the energy function (see eqn. 2
for 15 iteration steps. For the upper (blue) plot the activities are initialized randomly
after each shift of the input data. For the lower (red) curve the activities from the
previous computations are shifted and used as initialization.

per second, so that an average prediction of about 50 steps means a prediction
of 0.83 seconds into the future. Since most trackers work with a lower resolution,
a prediction further into the future is still possible.

In the next sections, two aspects of the proposed algorithm is investigated in
detail. First, it is shown that activity shifting brings a great benefit towards real
time performance. Afterwards the focus is set to the quality of the prediction
part.

For the experiments, the size of the basis primitives was chosen to be 50×50
grid cells (for an example see Fig. 5). The input grid size during the training
phase was set to 500 × 50 for each of the trajectories and to 100 × 50 during
application phase.

4.1 Activity shifting

In section 3.2 is has been discussed, that the information from the previous time
step can be used as initialization for the current. Figure 6 shows the energy
function, which is defined in equation 2 for both ways of initialization. It is
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Fig. 7. (a) The mean correlation SGT (see eqn. 17) between the ground truth trajec-
tory and the prediction is plotted for each time step of the prediction horizon. A fit
value of 1.0 stands for a perfect prediction over the whole prediction horizon. As it
is expected the accuracy of the prediction decreases for a longer prediction period.
(b) The plot shows the prediction accuracy for predictions along a sample trajectory.
The 36 predictions were performed at each tenth time step of the chosen trajectory. A
fit value of 1.0 stands for a perfect prediction over the whole prediction horizon. The
constant and dotted lines (red) indicate mean and variance respectively.

plotted only for a number of iteration steps, since the effect can be observed
early. For the upper (blue) plot the initialization is done completely randomly.
For the lower (red) curve the activities from the previous computations are
shifted and used as initialization. It can clearly be seen that the convergence is
faster by a number of about 10 steps in average.

4.2 Prediction

For evaluating the quality of the prediction, the prediction is compared with grid
representation of the actual trajectory G. For each occupied grid cell the value
of the normalized prediction is added. The sum is divided by the length of the
trajectory:

SGT =
1
|T |

∑
t∈T

PT
t ·Gt∑

i G
i
t

(17)

The normalization of the prediction is done separately for each time slice (column
in the grid).

The basis primitives can at most be shifted by their width out of the recon-
struction grid R. So the theoretically maximum size of the prediction horizon
equals the width of the basis primitives. Practically this maximum can not be
reached, because the basis primitives need a reliable basis in the part where the
input is known. Nevertheless, we have chosen to use the theoretical maximum
as basis for the evaluation.

The results are depicted in Fig 7. The first plot (Fig. 7(a)) shows the ex-
pected decrease of the average prediction quality over the prediction horizon.
Nevertheless, the decrease is not to steep and no sudden collapses can be ob-
served. For Fig. 7(b) an example trajectory has been selected for the reasons
of clearness. The plot is intended to show how the algorithm behaves in prac-
tical applications. The predictions were performed at each tenth time step of
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the chosen trajectory. A fit value of 1.0 stands for a perfect prediction over the
maximum prediction horizon, with only a single hypothesis for the prediction.
The value decreases significantly with multiple hypotheses being present.

5 Conclusion and Outlook

This paper presented a new approach for decomposing motion trajectories us-
ing non-negative matrix factorization. To solve this problem, sparsity constraint
and transformation invariance have been combined. The trajectories were then
presented in a grid representation. It could be demonstrated, that the concept
of activity shifting clearly decreases the number of iterations needed until con-
vergence. Furthermore it could be seen, that the proposed algorithm is able to
predict the motion into the future. At the moment, the prediction is only for-
mulated to get a possibilistic information. It would be interesting to extend the
concept, to provide a probabilistic description. It was mentioned that is possible
to use the resulting activities as input for a classifier. Further tests are needed
to evaluate the feasibility of this idea.
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