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Abstract. In an animal, a crucial factor concerning the arrival of information at
the sensors and subsequent transmission to the effectors, is how it is distributed.
At the same time, higher animals also employ proprioceptive feedback sothat
the neural circuits have information regarding the state of the organism’sbody.
In order to disseminate what this practically means for the distribution of sensory
information, we have modeled a generic swimming organism (animat) coevolv-
ing its nervous system and body plan morphology. In a simulated aquatic envi-
ronment, we find that animats artificially endowed with proprioceptive feedback
are able to evolve completely decentralized central pattern generators (CPGs).
Without such feedback however, we secondly find that the distribution ofsensory
information from the head of the animat becomes far more important, with ad-
jacent CPG circuits becoming interconnected. Crucially, this demonstratesthat
where proprioceptive mechanisms are lacking, more effective delivery of sensory
input is essential.

1 Introduction
The state of a given animal’s external environment or niche,is presented to the ani-
mal via its sensory system. This generates informational cues regarding for example,
predator or prey items, allowing the animal’s nervous system to invoke either perva-
sive or evasive behaviours. Typically over time, the animalis able to learn and adapt1.
Higher animals also employ proprioceptive mechanisms enabling them to detect the
current state of the locomoting body, serving as a sensory feedback mechanism for the
underlying neural circuit. Previous studies have shown that central pattern generators
(CPGs) responsible for the periodic movement control are all affected and constrained
by such feedback, e.g. [13]. Other studies have highlightedhow feedback can help
undulatory organisms surpass a ‘speed barrier’, [7,8]. Thenecessity of proprioception
in the peristaltic movements of drosophila larvae has also been established, without
which, locomotion is seen to be significantly degraded, [16]. Typically such proprio-
ceptive mechanisms are ‘stretch receptors’ within the animal’s exoskeleton, e.g. [6]. In
order for the animal to respond correctly, all of this sensory information has to reach
the appropriate effectors.

1 Note that in this paper, we have no concept of learning, rather behaviour is considered only in
reactive ‘braitenberg vehicle’ terms, [4].



We pick up on the point of proprioceptive feedback and its influence on sensory
information distribution. We model a segmented three dimensional aquatic organism
with movement mechanisms not dissimilar to the vertebrate lamprey. In an initial ex-
periment, the animat is endowed with a proprioceptive mechanism whilst in the second,
it is not. In both, the animat has an abstract visual system which it may or may not
utilise depending on how the neural circuits become interconnected. The goal is for the
animat to swim forwards towards a predefined target.

Whilst the field of physically realistic locomotion is old (see [9] for a review), the
incorporation of some abstract visual system is novel. Beauregard and Kennedy model a
2D lamprey able to undertake tracking of a moving object, [2]. Indeed, the visual system
that their model utilises provides a basis in our model. Ijspeert models a visual system
in a 3D simulated salamander able to track a moving object both in land and water,
[10]. In Biology, Deliagina et al. have found activity differences in the reticulospinal
neurons, a system within the lamprey transmitting signals from the brain to the spinal
cord, whenever the lamprey turns, [5]. This highlights the functional significance of
effective information distribution from sensors to effectors. The rest of this paper is laid
out as follows. Section 2 gives an overview of the simulationenvironment. Section 2.3
provides experimental details. Section 3 presents our mainfindings. We conclude in
Section 4.

2 Simulation Environment
The simulation environment has been implemented in C++. There are 2 main compo-
nents making up the system: the animat and the evolutionary setup. They are explained
below and an overview of the experimental setup also follows.

2.1 Animat

Geometry The animat is soft-bodied being entirely constructed out ofsprings. These
springs are connected together to form cuboids which are then themselves connected
together to form the overall morphology, Fig. 1a.
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Fig. 1: Animat geometry. The compass system is used to derive water forces.



The water force model An external water force is applied to each face of a given
animat block. The force is derived from the velocity of the face which is taken to be the
average velocity of all four point masses, similar to, e.g. [15]. The force is computed
by initially splitting the velocity vector into its three components (as highlighted in Fig.
1b):

t1 = t̂1 · v t2 = t̂2 · v n = n̂ · v (1)

wheret̂1, t̂2 andn̂ are normalised tangent and vector components of the block face and
v is the velocity of the face. We then compute the three force components as follows:

Ξ(t1) = −γt1sgn(t1)(t1)
2 (2)

Ξ(t2) = −γt2sgn(t2)(t2)
2 (3)

Ξ(n) = −γnsgn(n)n2 (4)

where theγ parameters control the levels of application of each of the three components.
The actual water force,w, that can be applied to each of the four point masses making
up the block face is calculated as follows:

f = Ξ(t1)t̂1 + Ξ(t2)t̂2 + Ξ(n)n̂ (5)

w = fcdA (6)

wherec is a viscosity coefficient,d is drag andA is the area of the block face. Note that
in our model we have setc andd to 1 since it is sufficient to tune theγ parameters.

Neural system The neural system is based on a continuous time recurrent neural net-
work. The membrane potential,uj , of a neuron is modelled as follows, [3]:

duj

dt
=

1

τj

(

−uj +

C
∑

i=1

wjiai + Ij

)

(7)

whereτj is a time constant,w is a vector of presynaptic connection weights andIj

is an external input current. The valueai is a presynaptic neuron’s membrane activity
computed as follows:

ai =

{

tanh(ui − βi) |ui| > 0

0 otherwise
(8)

Note that given Eq. 8, the function is only employed if the neuron’s membrane potential
is not 0. We have this restriction in order to ensure that neurons need some initial input,
for example, from a sensor, before they can generate any kindof dynamic. Without it,
a neuron would always potentially have an activity, becausethe bias value,βj , would
allow for this. The weight values are computed from the interneuronal Euclidean dis-
tance as in [11,12]. Connectivity also comes about as a function of distance according
to the sigmoid,

σ(λ, s, dij) =
2

2 + exp((λ/s) ∗ dij)
(9)

whereλ is an evolved parameter,s is a scaling parameter set to 4.5 anddij is the
Euclidean distance between neuronsi andj. A connection is established if the function
produces a value >0.5.



Motor system Each motor is an excitatory neuron. Being position-fixed, itis also
considered part of the body plan. Each animat block has 4 motors, 1 associated with
each face of the block. A given motor actuates a vertical spring-pair of the block face,
see Fig. 1c. The amount of force applied to each spring is proportional to the membrane
potential of the associated motor neuron.

Sensory system The animat has a very rudimentary sensory system consistingof 4
sensory neurons that remain position-fixed at the head of theanimat (one at the top-
middle of each block face). Current is injected only into theclosest sensor from the
target and is inversely proportional to the angle of the target from the given sensor.
Whilst there are no turning constraints required in our laterexperiments, this setup
paves the way for future experimentation. The input currentinjected into the closest
sensory cell is thus:Is = exp(φ+0.01).The value 0.01 ensures that there will be some
input current, even when the target angle,φ, is 0. Note that this sensory mechanism is
partially based on the exponentiated bearing-based tracking model employed in [2].

Proprioceptive feedback mechanism The proprioceptive mechanism is based on
a notion of stretch receptor activity, for example, that found in the leech, [6]. Also, as
with the sensory system outlined above, the proprioceptivemechanism is exponentiated
taking the amount of side spring distension as input (difference in length of spring from
resting length). This input current,IM , is then fed directly into the associated motor
neuron computed asIM = exp(∆d) where∆d is the level of spring distension.

2.2 Evolved Components

A mixed real-valued and Boolean evolutionary algorithm having discrete recombina-
tion, self-adaptive mutation (see [1]) and tournament selection with an elitist strategy
is used to evolve a genotype consisting of three main components: the body-plan, the
neural architecture, and the neural properties.

Body-plan In the simulation, we consider the number of body segments, the length
of each segment and the symmetry of the active motor configuration (refer to [11] for
details of this latter aspect) to all be parts of the body-plan morphology. Note also
that when the length of a segment changes, the neural distribution’s spread within that
segment commensurately changes.

Neural architecture Inside of each body plan segment, there are 6 interneurons, the
polar coordinate positions of which are randomly initialised and subsequently evolved.
Secondly, a set ofλ values tuning the connectivity function as given in Eq. 9 arealso
evolved depending on the type of connectivity:λII , λIE , λSE , λAA where I=interneuron,
E=effector neuron, S=sensory neuron; AA indicates connections between interneurons
in adjacent segments.

Neural properties These include the neuron time-constants, thresholds and whether
or not a neuron is inhibitory. A weight value between a neuronpair is derived according
to the distance between them, as in [11,12].

2.3 Experimental overview

Our experiments address how sensory information should be distributed when we con-
sider proprioceptive mechanisms, especially in view of connectivity patterns that might



emerge between different neural circuits. We have therefore conducted two sets of
30 experiments for statistical significance with each individual experiment being al-
lowed to run for 500 generations. In the first setup, the animat is endowed with pro-
prioceptive feedback. In the second, it is not. In both, the animat is required to swim
forwards in order to reach a pre-defined target. The fitness function is simplyf1 =
20.0 − dtarget,animat, see Fig. 2.

Fig. 2: A sequence of overlaid screenshots at behavioural iterations 1, 245 and 384 (a total of
400 are permitted) for an evolved animat. The animat’s task is to swim towards the cube in the
direction indicated by the lower arrow.

3 Results
In Fig. 3, we can see that animats endowed with the proprioceptive mechanism per-
formed significantly better than those that were not. We can secondly observe, that
a higher number of connections were required in those animats without the proprio-
ceptive mechanism. A higher number of connections equates to connections forming
between neurons in adjacent neural circuits and some connections for the sensory neu-
rons located in the head of the animat. Representative neural architectures depicting two
such animats are given in Fig. 4. Finally, we relate such architectural distribution to to-
tal wire length and total number of neuronal oscillations observing that for the animats
without proprioceptive feedback, there is a marked increase in total wire length, see the
left panel of Fig. 5. This is to be expected since the neural circuits in adjacent segments
become connected resulting in more wire. We secondly find that animats without pro-
prioceptive mechanisms generate a higher number of neuronal oscillations, refer to the
right panel of Fig. 5.

Although it would appear that proprioception as it exists inour model benefits the
animat behaviour, it is difficult to know with any certainty whether the feedback mech-
anism is truly serving to modulate the neuronal dynamics as would be the case in true
proprioception, or, whether it is just triggering the network to reach a particular attrac-
tor state. In order to test this, we have performed a final set of experiments taking the
30 best proprioceptive individuals and replacing the feedback mechanism with varying
levels of noise. As mentioned in the model description (subsection 2.1), this feedback
mechanism works by injecting into an associated motor neuron, an input current that
is proportional to the level of spring distension. Replacing it with a uniform noise sim-
ply substitutes the input current for a float value generatedfrom the range [-n,n]. The
smallest level of noise chosen was [-0.2,0.2], whilst the largest was [-2,2]. If the feed-
back is only serving to trigger the network then we can expectthe animat to be robust
to arbitrary value. The results are presented in Fig. 6. We can see that up to a noise



range of [-1.2,1.2] the performance is slightly degraded but all performances up to this
point are approximately equal, whilst a noise range greateror equal to [-1.4,1.4] sees a
degradation in animat performance.
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Fig. 3: Comparison of fitness medians and connectivity count medians for proprioceptive and
non-proprioceptive variants

4 Conclusion
Since proprioceptive animats performed better, we can conclude that proprioception
advances the animat’s ability to locomote forwards. Furthermore, given the results in
which we removed the true proprioception and replaced it with noise, it is likely that
up to a point, the feedback is serving as a trigger mechanism since the undulatory be-
haviour is seen to be robust with a slight performance degradation (from [-0.2,0.2] to
[-1.2,1.2]). However if the noise is advanced to too great a level (from [-1.4,1.4] to
[-2.0,2.0]), performance is seen to be degraded indicatingtwo things. Firstly, that the
system is not robust to high levels of noise, and secondly, that correct proprioceptive
feedback has a fitness enhancing if not modulating effect on the neural dynamics since
in actual fact, any level noise is seen to degrade the performance.

Interestingly, when the animat is endowed with a feedback mechanism, the neural
architecture evolves to become completely decentralised with regards to the individual
neural circuits. This is a response to evolutionary pressure since connections could have
evolved between the neural circuits if there had been any selective advantage. A fully
decentralized architecture inferably necessitates a reduction in interference between the
neural circuits thus ensuring correct oscillatory dynamics. Indeed, by artificially adding
interconnections, the performance of such an animat is degraded (results not shown).
Therefore in some cases, centralized control, or at least some interconnectivity between
individual CPG ‘modules’, can be detrimental.

Thirdly, since in the non-proprioceptive variant there were no feedback mecha-
nisms, the neurons could not directly rely on body-shape information. In the propri-
oceptive case however, the actual body was allowed to becomepart of the dynamic
coupling existing between the behaving body and underlyingneural system. Therefore,
with regard to the number of neuronal oscillations in Fig. 5,we can plausibly specu-
late that in the proprioceptive case, much of the oscillatory dynamic could be offloaded



(a) Proprioceptive (b) Non-proprioceptive

Fig. 4: Representative architectures to have evolved for each setup. For the proprioceptive indi-
vidual, the architecture is seen to be decentralized, with no connections between the individual
neural circuits. By contrast, such connections do exist in the non-proprioceptive individual.
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Fig. 5: Box plots of best wire lengths and neural oscillations, highlighting firstly a larger wire
length for the non-proprioceptive individuals; secondly, a larger number of neuronal oscillations
for the non-proprioceptive individuals.

Fig. 6: A boxplot showing how differing amounts of uniform noise used toreplace the proprio-
ceptive feedback mechanism, affects fitness. The ‘0-NP’ and ‘0-P’ cases left of the vertical line
are the non-proprioceptive and proprioceptive plots without any suchnoise whilst those to the
right are the proprioceptive individuals with noise replacing the feedback.



to the oscillating body and that this enabled a reduction in the number of neuronal
oscillations or ‘computational effort’ of the neural system. This is a nice example of
morphological computation, [14].

There are a number of major extensions that we envisage. The first involves analy-
sis of the different body plan components, for example body plan segment length and
number of body-plan segments, in terms of how they effect theperformance of the ani-
mat. Work has begun on this. The second major undertaking will incorporate an energy
measure as we did for a model of a radially symmetric organismin [12]. Finally, we
might incorporate a developmental process into the model sothat it more realistically
reflects biological systems.
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