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Abstract
A major research challenge of multi-robot systems is to predict the emerging behaviors from the local interactions of the 

individual  agents.  Biological  systems  can  generate  robust  and  complex  behaviors  through  relatively  simple  local 
interactions  in  a  world  characterized  by rapid  changes,  high  uncertainty,  infinite  richness,  and  limited  availability of 
information. Gene Regulatory Networks (GRNs) play a central role in understanding natural evolution and development of 
biological  organisms  from cells.  In  this  paper,  inspired by biological  organisms,  we propose  a  distributed  GRN-based 
algorithm for a multi-robot construction task. Through this algorithm, multiple robots can self-organize autonomously into 
different predefined shapes, and self-reorganize adaptively under dynamic environments.  This developmental  process is 
evolved using a  multi-objective optimization algorithm to achieve a  shorter  travel  distance and less convergence time. 
Furthermore, a theoretical proof of the system’s convergence is also provided. Various case studies have been conducted in 
the simulation, and the results show the efficiency and convergence of the proposed method.

Keywords: Gene regulatory networks; Multi-cellular systems; Distributed multi-robot systems; Self-organizing systems; 
Multi-objective optimization.

I.

1. Introduction

A major research challenge of self-organizing collective 
systems,  such  as  multi-robot  systems,  is  to  develop  an 
efficient and robust algorithm which allows the systems to 
be self-organized, self-configurable, self-adaptive, and self-
repairable. However, it is well known that it is difficult to 
predict the emerging behaviors from local interactions of 
the individual agents, neither is it trivial to design rules for 
local  interactions  to  generate  a  desired  global  behavior 
(Nolfi and Floreano, 2000).

The challenging issues in multi-robot systems also exist 
in the realization of basic behaviors, such as dynamic task 
allocation,  robot  coordination,  and  team  reasoning,  etc. 
(Yang and Gu, 2004). Furthermore, distributed multi-robot 
systems  are  usually  facing  the  scalability  issue.  The 
computation complexity often grows exponentially with the 
number of robots  (Klavins,  2003). As an emerging field, 
multi-robot  systems  aim at  providing  both  principles  for 
the  construction  of  complex  systems  involving  multiple 

robots  and  mechanisms  for  coordination  of  independent 
robot’s behaviors (Stone and Veloso, 2000).

Recently,  biologically-inspired  systems  have  attracted 
extensive attention to tackle the scalability issue for multi-
agent  systems  while  maintaining  system  robustness  and 
individual  simplicity.  Among  those  systems,  swarm 
intelligence-based  methods  are  one  of  the  most  popular 
paradigms.  Swarm  intelligence  is  an  innovative 
computational  and  behavioral  metaphor  for  solving 
problems in a distributed way inspired by the behaviors of 
social  insects,  such  as  swarming,  flocking,  herding,  and 
shoaling  phenomena  in  vertebrates.  The  social  insect 
colonies  are  able  to  build  sophisticated  structures  and 
regulate  the  activities  of  millions  of  individuals  by 
endowing each individual with simple rules based on local 
perceptions. More and more researchers have applied these 
swarm  intelligence-based  approaches  to  solve  real-world 
problems using multi-robot systems (Dorigo et  al.,  1996; 
Jatmiko et al., 2007; Meng and Gan, 2007; Meng and Gan, 
2008; Pugh and Martinoli, 2007; Werfel, 2004). Since the 
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behaviors of agents in most of these systems are based on 
some predefined heuristics, it is difficult to ensure that the 
system can achieve globally-optimal  behaviors with fixed 
parameters under dynamic environments.

On the other hand, biological organisms have evolved to 
perform  and  survive  in  a  world  characterized  by  rapid 
changes,  high  uncertainty,  infinite  richness,  and  limited 
availability of information (Pfeifer et al.,  2007). Complex 
biological  organisms  are  constructed  through  natural 
evolution  from  simple  cells.  Gene  Regulatory  Networks 
(GRNs) play  a  central  role  in  understanding  natural 
evolution and development (Alon, 2006). GRNs are models 
of genes, and the interactions of gene products. Each GRN 
is a collection of DNA segments in a cell which interact 
with  each  other  indirectly  through  their  RNA,  protein 
product,  and  other  chemicals  in  the  cell,  therefore 
governing  the  rates  at  which  genes  in  the  network  are 
transcribed into mRNA.

It is very challenging to gain a thorough understanding 
of  complex  patterns  of  behavior  from  the  interactions 
between genes in a regulatory network. A large number of 
different  GRN  models  have  been  proposed,  such  as 
directed  graphs,  Bayesian  networks,  Boolean  networks, 
neural  networks,  ordinary  and  partial  differential 
equations, and rule-based formalisms (de Jong, 2002; Endy 
and Brent, 2001; Hasty et al., 2001; McAdams and Arkin, 
1998; Smolen et al., 2000). 

As far as we know, very little work has been conducted 
on  multi-robot  systems  using  GRNs  or  cellular 
mechanisms.  Shen  et  al.  (2004) proposed  a  digital 
hormone  model  (DHM)  as  a  bio-inspired  distributed 
control  method  for  robot  swarms  and  self-organization. 
Essentially, they applied Turing’s reaction-diffusion model 
(Turing,  1952) to  describe  the  interactions  between  the 
hormones.  The  DHM  integrated  dynamic  network, 
topological  stochastic  action  selection,  and  distributed 
control  by  hormone  reaction-diffusion.  More  recently, 
Taylor (2004) proposed a gene regulatory network inspired 
real-time controller for a group of underwater robots. Then 
a  genetic  algorithm  (GA)  was  applied  to  evolve  the 
controller for a simple clustering task.

In this paper, we propose a distributed  gene regulatory 
network-based  algorithm  for  a  multi-robot  system  in  a 
construction  task.  Through  this  algorithm,  robots  in  a 
multi-robot system can organize themselves autonomously 
into different predefined shapes, and reorganize themselves 
adaptively under  dynamic  environments.  In  evolving  the 
robot  construction  behaviors,  two  objectives  need  to  be 
optimized.  One  is  the  travel  distance  from  the  initial 
position  to  the  destination  point  on  the  shape,  which  is 
represented by robot trajectories.  The second objective is 
the  time  for  the  robots  to  converge  to  the  final  evenly 
distributed shape. In other words, we want to minimize the 
system convergence time as well as the travel distance to 
the final construction form. Since these two objectives are 
conflicting with each other, we use Non-dominated Sorting 
Genetic  Algorithm-II  (NSGA-II)  (Deb  et  al.,  2002),  a 
popular  multi-objective optimization (MOO) algorithm to 
obtain  a  number  of  Pareto-optimal  solutions.  Our 

simulation results show that the proposed cellular model is 
able to generate  a  fast  convergence to the  desired shape 
with a short travel distance.

The major advantages of our proposed method compared 
to the above two methods (Shen et al. 2004; Taylor, 2004) 
are: (1) The system’s global information, such as the shape 
function,  can  be  embedded  into  the  GRN  dynamics 
directly;  (2)  The  dynamics  of  the  GRN  model  can 
automatically  drive  the  robots  to  their  target  positions 
while avoiding collision between the robots and obstacles 
inside the environment; (3) An MOO algorithm is applied 
so that  we can achieve multiple Pareto-optimal  solutions 
that  trade  off  between  a  shorter  travel  distance  of  each 
robot to the shape and the overall convergence time of the 
system. From these solutions, we are able to pick out one 
that  best  suits  our  need.  (4)  A  theoretical  proof  of  the 
system’s  convergence  is  provided  with  the  parameter 
constraints  to  ensure  that  the  multi-robot  system  can 
converge to the predefined shape.

The  remainder  of  the  paper  is  organized  as  follows. 
Section II introduces the proposed cellular mechanisms for 
multi-robot controller using a gene regulatory network. A 
theoretical proof of the system convergence is provided in 
Section  III.  The  evolutionary  algorithm  is  presented  in 
Section IV to achieve the Pareto-optimal solutions which 
can  trade  off  the  robots’  travel  distance  and  system 
convergence  time.  To  evaluate  the  proposed  method, 
several  case studies of a  multi-robot  system for  different 
construction tasks are presented in Section V. Conclusion 
and future work are discussed in Section VI. 

2.  Cellular Mechanisms for Multi-Robot Construction 

2. 1 Biological Background

When a  protein-coding  gene is  expressed,  information 
stored  in  an  organism’s  genome  is  transcribed  and 
translated  into  proteins. Some  of  these  proteins  are 
transcription  factors  that  can  regulate  the  expression  of 
their  own  or other  genes.  Thus,  these proteins are under 
regulatory  control,  resulting  in  complex  networks  of 
interacting genes. These gene regulatory networks control 
a  number  of  important  cellular  processes  including 
responding  to  the  environment,  regulating  the  cell  cycle 
and guiding the development of an organism.

Ordinary differential equations (ODEs) have been used 
to model the reaction kinetics of regulatory systems with a 
long history. Biological processes are highly complex, and 
usually  simplification assumptions  are  needed  for  most 
mathematical models of GRNs. The first assumption is that 
the control of gene expression resides in the regulation of 
gene transcription. The second is that genes are expressed 
and  proteins  are  produced  at  a  continuous  rate  (Geard, 
2004). The major advantage of  ODE models lie in their 
detailed representation of regulatory interactions that  can 
provide  a  more  accurate  representation  of  the  physical 
system under investigation.  Furthermore,  a  large number 
of dynamical system theories can provide tools for model 
analysis.  In  this  section,  we will  introduce  a  single-cell 
GRN model, then a multi-cell GRN model.



2.1.1 A Single-Cell GRN Model

In  a  simplified,  single-cell,  non-spatial,  biological 
model, a cell consists of one genome and several types of 
proteins.  A  genome  may  consist  of  several  genes  that 
interact with each other  through their  produced proteins. 
Each gene has a regulatory region and a structural region. 
The regulatory region specifies the proteins that inhibit or 
activate its expression, while the structural region describes 
the proteins that are produced when the gene is expressed. 
Here,  when  a  gene  is  expressed,  it  means  that  its 
expression value is over a certain threshold. Fig. 1 provides 
an example GRN with 2 genes, where the product of gene 
1 regulates the expression of gene 2,  and the product of 
gene 2 regulates the expression of gene 1.

For a single cell,  the expression of a gene with auto-
regulation  can  be described by the  following  differential 
equations (Jin and Sendhoff, 2008a):

( )i
g i g i

dg
g f p

dt
γ α= − +                          (1)

i
p i P i

dp
p g

dt
γ α= − +                                (2)

where  ig  is  the  expression  level  (measured  by  the 

concentration of its mRNA product) of gene i and ip  is the 

concentration of protein i. gγ  and Pγ  are the decay rate of 

mRNA  and  protein  concentration,  respectively.  gα  and 

pα  are  the  synthesis  rate  of  mRNA  and  protein 

concentration,  respectively.  ( )f x  is  a  sigmoid  function, 
which can be defined as follows in case of auto-repression: 

                        ( )
n n

f x
x

β
θ

=
+

                                     (3)

where β is the activation coefficient, θ  is the threshold, n

is known as the Hill coefficient.

2.1.2 A Multi-cellular GRN Model

In a multi-cellular  organism, it  is necessary to model 
the  intercellular  communications. In  addition  to  the 
internal  dynamics  of  the  cell,  we  should  also  consider 
external factors such as morphogen gradients, transcription 
factors diffused from other cells, and physical interactions 
between cells into the GRN model. Turing (1952) proposed 
one of the earliest models for pattern formation, where a 
pair of coupled reaction-diffusion equations was proposed 
to describe a system consisting of two morphogens. As two 
morphogens diffuse across a  spatial  field  and  react  with 
each  other,  a  variety  of  patterns  emerge  depending  on 
parameter values. The gradients of protein concentrations 
across  cells  are  a  critical  feature  in  embryonic 
development. The  reaction-diffusion  equations  have been 
widely  used  in  mathematical  biology  to  study  pattern 
formation in development (Gierer, 1981; Kauffman, 1993; 
Maini et al., 1997). 

Salazar-Ciudad  et  al.  (2000) proposed a  GRN model 
with reaction-diffusion mechanism as follows: 

2( , ) ,    1 ,1
ij

j i i ij j ij

dx
f x D x i n j m

dt
γ=−+ x u  

(4)

where  ijx  is the concentration of gene product  j in cell  i. 

The first term specifies the production of  ijx ,  the second 

term  is  its  degradation,  and  the  last  term  specifies  the 

diffusion  component  at  diffusion  rate  jD .  jf  is  a 

nonlinear  update  function  of  gene  product  j,  which  is 

usually defined as a sigmoid function as 
1

( )
1 x

f x
e

=
+

.  u  

is  the  vector  of  external  input  signals.  iγ  is  the 
degradation  rate  of  product  i.  n is  the  number  of  gene 
products, and m is the number of cells. 

2.2. A Distributed GRN-Based Algorithm for Multi-
Robot Construction

The  objective  of  multi-robot  construction  is  to  deploy 
multiple robots uniformly on a predefined two-dimensional 
(2D) shape, for example: a circle, a square, or any kind of 
arbitrary shapes,  through  a  distributed  control  approach. 
Each robot only knows its local information without any 
global observer. 

Analogous  to  biological  systems,  in  our  GRN-based 
control model, it is assumed that each robot corresponds to 
a  single  cell.  Within  each  cell’s  genome,  there  are  two 
genes, one for x-position and the other for y-position in a 
2D environment. Each gene can produce a certain protein. 
Each protein can provide the following three functions: (1) 
To regulate the expression of the gene that produces it (i.e. 
auto-regulation);  (2)  To be able to diffuse proteins  to its 
neighbors to avoid collision with other robots; (3) To adjust 
the robot’s behaviors.

Inspired by Equations (1)-(4), the system dynamics of 
the GRN for multi-robot construction are defined as:

,
, ,

,
, ,
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i y
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= − +
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where ,i xg and ,i yg are  the  expression  level  of  the  genes 

for x-position and y-position of ith robot, respectively. ,i xp  

and ,i yp are the concentration of the ith robot’s proteins 

produced by the x-position and y-position genes, 
respectively. 

In order to embed the predefined 2D shape, which is 
the global  information,  into the regulatory dynamics,  we 
define ( )if z as the following sigmoid functions: 
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where  ,i xz and  ,i yz are the gradients along x-axis and y-

axis, respectively, of a predesigned function h at the robot’s 
current gene expression level, which are defined as:

, ,
, ,

,     i x i y
i x i y

h h
z z

g g
= =                           (8)

where  the  predesigned  function  h is  the  function  of  the 
desired  shape  where  robots  are  supposed  to  be deployed 
uniformly. We can also treat function  h as the predefined 
gradient for cell migration. To facilitate the generation of 
the desired dynamics,  we defined  h as  the square of the 
desired shape function. For example, if we want to deploy 
the  robots  onto  a  unit  circle,  the  shape  function  can  be 
defined as 

2 2
, , , ,( , ) 1 0i x i y i x i ys g g g g= + − = .                      (9)

Then function h can be defined as 
2 2 2
, ,( 1)i x i yh g g= + − .                                 (10)

    iD  is defined as  the protein diffusion which aims at 
keeping  the  robot  away from its  neighbors.  The  size  of 
neighborhood  varies  according  to  different  shapes  and 
different number of robots. In case of a circular shape, the 

neighborhood size can be defined as
2 r

N

π
,  where  r is the 

radius of the circle,  and  N is the total  number of robots 
which are expected to deploy on the circle. 

When  a  robot  detects  its  neighbor,  it  will  receive the 
protein emitted from that neighbor so that it can keep itself 
away from that neighbor to avoid collision. After summing 
up all the neighbors’ diffused protein, we have

, , , ,
1 1

,    
i iN N

j j
i x i x i y i y

j j
D D D D

= =
= =                     (11)

where Ni denotes the number of its neighbors, and ,
j

i xD and 

,
j

i yD are protein concentrations diffused from robot  j  into 

robot i, which is defined as

, ,
,

2 2
, , , ,

( )

( ) ( )
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i x j x i y j y

g g
D
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−
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,

2 2
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i y j yj
i y

i x j x i y j y

g g
D

g g g g

−
=
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where  the  directions  of  ,
j

i xD and  ,
j

i yD are  defined  to  be 

from robot j to robot i along x-axis and y-axis, respectively. 
Initially, the robots are located randomly in a 2D space. 

By following the dynamics defined in  Equations (5) and 
(6), eventually multiple robots can be deployed uniformly 
on the predefined shape automatically. In other words, the 
system can be stabilized to an equilibrium state defined by 
the shape. Essentially, the shape information is the global 

information,  which  can  be  elegantly  embedded  into  the 
dynamics of each individual robot through function ( )if z .

From  Equations  (5)  and  (6),  we  can  see  that  other 
robots’ impact  on a particular  robot is exercised through 
the  diffusion  of  proteins,  which  is  implemented  by iD . 

Each robot itself has two state vectors: gene expression ig  

and protein concentration ip . These two variables regulate 
each other via positive or negative feedback. Through these 
coherent links, we can achieve the goal of deploying robots 
to form a certain shape. In general, each robot always has 
to  balance  two  forces:  one  force  is  to  approach  the 
predefined shape as provided inside the gene expression, 
and the other one is to avoid collision with each other as 
implemented via protein diffusion.

3. Theoretical Analysis of System’s Convergence

In  this  section,  a  theoretical  proof  of  the  system’s 
convergence  to  the  predefined  shape  using  the  proposed 
GRN-based algorithm is provided. Considering Equations 
(5) and (6),  the protein diffusion among the neighboring 
robots may counteract with each other. For simplicity, we 
can  neglect  the dynamics of the protein  diffusion  in  the 
proof of the system convergence.  Therefore, Equations (5) 
and (6) can be rewritten as follows:

x
x x

y
y y

dg
a z m p

dt
dg

a z m p
dt

= − +

= − +
                        (14)

x
x x

y
y y

dp
c p k f ( z )

dt
dp

c p k f ( z )
dt

= − +

= − +
                       (15)

Here,  we remove the subscript  i since every robot shares 
the same dynamics.  

Before proving the system convergence, we would like to 
propose and prove the following Lemma first.

Lemma 1: For the activation function defined in Equation 
(7), | ( ) | | |f x x  holds for all x .

Proof: Since ( )f x is a sigmoid function with the analytical 

form  
1

( )
1

x

x

e
f x

e

−

−
−=
+

,  we  can  draw  the  following 

conclusions:  (1) | ( ) | 1f x ; and (2) '0 ( ) 1f x< < .  Refer to 

the  Appendix  for  the  detailed  proofs  of  the  these  two 
conclusions.
     When 0x = , ( ) 0f x x= = . When 0x , according to 

the integration median theory, we can get '( ) ( )f x f xε= . 

Therefore, from '0 ( ) 1f x< < , we can have '| ( ) | 1f ε < , so 
'| ( ) | | ( ) | | |f x f x xε= < .   Thus,  we  have | ( ) | | |f x x  and 

| ( ) | | |f x x= only if 0x = .



Theorem 1: The state vectors   and x yg g  in Equation (5) 

will converge to the target shape defined by Equation (9), 

and  the  state  vectors   and x yp p  in  Equation  (6)  will 

converge  to  zero  provided  that  m k a c  and 
, , , 0k c a m > .

Proof: 
     According to Lyapunov Theory, we can claim that the 
system  defined  by  Equations  (14)  and  (15)  will  be 
convergent  if  we  can  find  a  Lyapunov  function 

( , , , )x y x yV g g p p  that satisfies the following conditions: 

1. ( , , , )x y x yV g g p p is positive definite;

2. ( , , , )x y x yV g g p p is negative definite.

There are four parameters,  a, m, c, and  k in the GRN-
based  dynamics  model.  First,  all  parameters  must  be 
positive.  Then  we  construct  a  parameterized  energy 
function of the system dynamics in the following form:

2 21 1

2 2x y x y x y x yV( g ,g , p , p ,s ) h( g ,g ) s p s p= + +  (16)

Now we follow the steps of Lyapunov theory to prove the 
system’s convergence. 

(1) 0V( s ) .

(2) yx
x y

dpdpdV dh
s p s p

dt dt dt dt
= + +

y yx x
x y

x y

dg dpdg dph h
s p s p

g dt g dt dt dt
= + + +  (consider 

Equations (14) and (15))

x y
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= − + + − +
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x

h
z

g
=  and y
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(from Lemma 1, we can get | ( ) | | |f z z )
2 2
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Let 
2

a c
s

k
= , we can get 

2 2

2

x x y y
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dV
( a z c s p ) ( a z c s p )

dt
a c m
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kk

− − − −

+ − + +

So if 
2

0
a c m

kk
− + ,

which  can  be  rewritten  as m k a c  we  can  ensure 

0
dV

dt
. 

Since both conditions of the Lyapunov function  V have 
been satisfied, we can claim that the system is convergent. 
Now we need to analyze whether the system will converge 
to the target  shape. As we know that  the system will  be 

stabilized at the points that satisfy 0
dV

dt
= .  

If  0
dV

dt
= ,  all  the  ‘less  than  ( )’  conditions  should 

satisfy  the  ‘equal  (=)’  condition,  which  means  that 
| ( ) | | |f z z  must  be  | ( ) | | |f z z= .  From  Lemma  1,  the 

condition | ( ) | | |f z z= holds only when 0z = . Therefore, if 

0
dV

dt
= ,  we have  0xz =  and  0yz =  which  means that 

0
x y

h h

g g
= = .  Since  we  define  h function  as 

2( , ) ( , )x y x yh g g s g g= ,  here  ( , )x ys g g is  the  shape 

function.  0
x y

h h

g g
= =  means  ( , ) 0x ys g g = .Therefore, 

we can say that when 0
dV

dt
= , the system will converge to 

the target shape.
After  verifying  the  system  convergence,  we  further 

consider the uniform distribution problem. From Lyapunov 
theory, we can only ensure that robots can finally converge 
to  the  target  shape.  The  uniform  distribution  is 
implemented by pre-specifying the protein diffusion range. 

Generally, we define the protein diffusion range to be 
L

N
, 

where  L is  the length  of the desired curve and  N is  the 
number of robots in the system.

4. The Evolutionary Algorithm

In  addition  to  achieving  convergence,  the  system 
performance can  be further  evaluated with  the  following 
two objectives: the total traveling distance of all the agents 
and  the  system  convergence  time.  This  is  an  MOO 
problem, where the objective function is no longer a scalar 



value, but a vector. As a consequence, a number of Pareto-
optimal solutions should be achieved instead of one single 
solution.  Pareto-optimality  is  an  important  concept  in 
multi-objective optimization and learning (Deb, 2001; Jin 
and  Sendhoff,  2008b).  Let  us  formally  introduce  the 
following  basic  concepts.  Consider  the  following  m-
objective minimization problem (Jin and Sendhoff, 2008b):
min ( )F X

          1 2{ ( ), ( ),..., ( ),}mF f X f X f X= .
Definition 1: A solution  X is said to  dominate a solution 

Y if  1, 2,..., ,j m∀ = ( ) ( )j jf X f Y ,  and  there  exists 

{1,2,... }k m  such that ( ) ( )k kf X f Y< . 

Definition 2: Solution  X is called  Pareto-optimal if it  is 
not dominated by any other feasible solutions.

Definition 3:  Pareto front:  There often exists more than 
one Pareto-optimal solution if the objectives are conflicting 
with  each  other.  The  image  in  the  objective  space 
composed of the Pareto-optimal solutions is known as the 
Pareto front.

In  this  paper,  NSGA-II  (Deb et  al.,  2002) has  been 
adopted  for  evolution,  which  is  a  popular  and  efficient 
evolutionary  algorithm  for  solving  multi-objective 
optimization  problems.  In  our  work,  simulated  binary 
crossover (SBX) (Deb and Agrawal, 1995) and polynomial 
mutation  (Deb and Goyal,  1996) have been employed to 
generate  offspring.  After  the  offspring  population  is 
generated,  the  elitist  crowded  non-dominated  sorting  is 
used for selecting parents for the next generation. 

Different  from  single  objective  optimization 
algorithms,  where  often  only  one  optimal  solution  is 
achieved,  NSGA-II  produces  a  set  of  Pareto-optimal 
solutions,  i.e.  in  our  case,  the solutions  that  balance the 
convergence time and travel distance of the robots to the 
target  shape.  We  will  analyze  the  solutions  when 
discussing the simulation results using NSGA-II. 

5. Experiments and Results

To  evaluate  the  reliability  and  the  efficiency  of  the 
proposed  method,  several  case  studies  for  multi-robot 
construction  are  performed.  We  implement  all  the  case 
studies using MATLAB. It  is assumed that  a  4 x 4 grid 
map is used in our simulation. Therefore, the unit of travel 
distance is the meter and the unit of convergence time is 
the second.  

5.1 Multi-Objective Optimization of the GRN

Experimental  setup.  Five parameters in  Equation (5) and 
(6), i.e.,  a, m, c, k, and  b, need to be optimized using the 
NSGA-II. The goal of the optimization is to minimize the 
robots’  travel  distance  and  the  convergence  time,  while 
assuring the system’s stability. 

For the simulation, we set the number of robots to be 8, 
and  the  population  size  for  NSGA-II  to  be  100.  The 
parameters  of  the  NSGA-II  were  set  as  follows,  as 
recommended  by  Deb  et  al  (1995).  The  crossover 
probability was set to 0.9 and the distribution index for the 

SBX crossover was 20. Mutation probability was set to be 
inversely  proportional  to  the  number  of  the  decision 
variables,  which  was  5  in  our  case,  therefore,  the 
probability was set to be 0.2 and the distribution index for 
mutation was set to be 20. The simulation was run for 50 
generations, which is small but sufficient for this relatively 
small optimization problem. Initially, five parameters k, c,  
b,  a, and  m were  assigned  to  random numbers  ranging 
from 1 to 100. 

Here, we defined the shape as a unit circle centered at 
(0,  0).  The robot  system consisted  of 8  robots  randomly 
distributed in the environment. During the deployment, the 
robots should approach to the unit  circle and meanwhile 
avoid colliding with each other.

Since  our  final  goal  of  the  multi-robot  system  is  to 
evenly  distribute  the  robots  on  a  predefined  shape,  the 
distance between the final positions of the robots and the 
target shape, termed position error hereafter, should be as 
small as possible. Therefore, we defined a threshold for the 
average position  error  as  a  constraint  of the  bi-objective 
problem when using the NSGA-II method. 

In  the following experiments,  we set  the threshold for 
the  average  position  error  for  the  circular  shape  to  be 

1

r N
, where r is the radius of the circle, and N is the total 

number of robots to be deployed on the circle. 

Experimental results.  We have performed 35 independent 
runs for optimizing the parameters using the NSGA-II. We 
found that the differences in the Pareto sets from the runs 
are  minor  and  therefore,  we  presented  here  the  Pareto 
optimal solutions from one typical run. In the optimization, 
both the total travel distance and the system’s convergence 
time are minimized, subject to the constraint of the average 
position error. The non-dominated solutions from the last 
generation (50th) of the evolutionary run are shown in Fig. 
2. The robot trajectories of three solutions picked out from 
the Pareto-front solutions in Fig. 2 are shown in Fig. 3(a) 
through (c), respectively. The corresponding values of the 
parameter setup for these three solutions are listed in Table 
1.  

From Fig. 3, it can be seen that there is no significant 
difference between three solutions from the travel distance 
point of view. The major difference lies in the convergence 
time, where the solution (c) has the shortest convergence 
time. From Fig. 2, we can see that if we want to minimize 
the  total  traveling  distance,  we  have  to  sacrifice  the 
system’s  convergence  time,  and  vice  versa.  This  makes 
good sense from the control theory point of view that there 
is  a  trade-off  between  the  system’s  response  time  and 
convergence time. Fig. 2 will be helpful for users to design 
the system parameters based on their specific requirements. 
For  example,  if  the  user  concerns  more  about  the 
convergence  time,  she  or  he  may  prefer  Pareto-optimal 
solutions close to (c). If the user has more concerns on total 
traveling distance to save energy, she or he may choose the 
Pareto-optimal solutions close to (a). 

Analysis. To understand the inherent  correlation between 
the  system’s  parameters,  i.e., , , , ,k c b a m ,  and  two 
performance  objectives,  i.e.  total  travel  distance  and 



system’s convergence time, canonical correlation analysis 
method (Mardia et  al.,  1979) is  adopted here.  Canonical 
correlation  analysis  (Becker et  al.  1988)  aims  to  find  a 
certain  linear  combination  that  can  maximize  the 
correlation of a vector X and another vector Y. In our case, 
vector  X can  be  defined  as  a  linear  combination  of 
parameters,  , , , ,k c b a m , and vector  Y can be defined as a 
linear combination of the performance indices,  i.e., travel  
distance and convergence time.

After  calculation,  we get that  the coefficient  of input 
space  X  is  xcoef =  [-0.0017045001,  0.0005503515, 
0.0008908889,  -0.0169773006,  0.0081786459]  and  the 
coefficient  of  output  space  Y is 

[ 0.77476111, 0.07554193]ycoef = − − .  It means that  X  is 

a  linear  combination  of  xcoef best  influences  Y a  linear 

combination of ycoef . The correlation between  xcoef X

and  ycoef Y is  0.9990042. Fig. 4 shows the relationship 

between input  xcoef X and output ycoef Y . From Fig.4, 

we can see that  xcoef X  (i.e., the linear combination of 

, , , ,k c b a m ) and  ycoef Y (i.e.,  the linear  combination of 
dist and time) is nearly linearly correlated.

Another  way to  analyze the  relationship  between the 
parameters of the system and the system’s performance is 
to  use  a  combination  of  parameters  of  the  dynamical 
system based on the convergence proof in Equations (14) 

and  (15).  Since  ( ) | | | |
dV ac km f

p
dt k g

−= − ,  if  we 

increase the value of (ac-km)/k , the absolute value of 
dV

dt
will  increase  accordingly.  In  this  case,  the  robots  will 
travel  faster,  but  the  travel  distance  will  become longer, 
though the convergence time will be shorter. By contrast, a 
decrease in  the value of  (ac-km)/k will  lead to a  shorter 
travel  distance  and  a  longer  convergence  time.  Figs.  5 
shows all the Pareto-optimal solutions with respect to (ac-
km)/k, and the relationship between the total travel distance 
and  (ac-km)/k,  and  the  relationship  between  the 
convergence time and  (ac-km)/k are shown in Fig. 6 and 
Fig. 7, respectively. These results confirm the correlation 
relationship revealed from the theoretical analysis.

The  evolutionary  optimization  has  been  performed 
when the number of robots is set to 8 and the predefined 
shape is a circle. In the following, we are going to present 
the  results  of  a  few case  studies  to  check  the  system’s 
performance  when  the  number  of  robots  is  changed  or 
when the desired shape is  changed. In  addition,  we also 
demonstrate system’s self-organization and self-adaptation 
ability in case new robots join after deployment, and when 
obstacles are present on the desired shape, or even when 
the obstacles are moving in the environment. Without loss 
of generality, we pick out solution (c), which is optimized 
for  minimizing  the  convergence  time,  from  the  Pareto-
optimal  solutions  (refer  to  Fig.  2)  for  the  following 
experiments. 

5.2 Case Study 1: Change in the Number of Robots

Here, we aim to deploy a number of initially randomly 
distributed robots to a unit circle centered at (0, 0).. During 

the deployment, the robots should approach the unit circle 
while  avoiding  colliding  with  one another.  Three  setups 
have been used to evaluate the proposed algorithms, where 
the  number  of robots  is  5,  10 and  20,  respectively.  The 
trajectories of the robots of the three setups are shown in 
Fig.  8(a),  8(b),  and  8(c),  respectively.  We performed 35 
independent  runs  for  each  setup  and  the  results  of  the 
system’s performance for each setup are listed in Table 2. 

From Fig. 8 and Table 2,  we can see that for all these 
three  setups,  randomly  initiated  robots  can  ultimately 
deployed on the desired shape uniformly with our proposed 
method.  Although  we  use  the  Pareto-optimal  solution 
obtained  from  the  8-robot  setup,  the  simulation  results 
demonstrate that system’s performance in terms of both the 
total  travel  distance and convergence time is  satisfactory 
when the number of robots is changed. It means that the 
Pareto-optimal solution obtained from NSGA-II method is 
scalable to the number of  robots. Furthermore, from Table 
2,  it can be seen that the position errors are very small in 
all setups. 

5.3 Case Study 2: Change in the Target Shape

In  this  case,  we plan  to  deploy a  number  of  initially 
randomly  distributed  robots  to  a  unit  square.  The  unit 
square is defined as follows: lower-left point at (-0.5,-0.5) 
and the upper-right point at (0.5, 0.5). It is a little bit tricky 
to define the shape function s to be a unit square instead of 
a unit circle. We first set up a circle of a radius of 1/ 2
centered at (0, 0), which can be defined as: 

                 2 2
1 , , , ,

1
( , ) 0

2i x i y i x i ys g g g g= + − =

and  2
1 1 , ,( ( , ))i x i yf s g g= . With help of this function, we 

can  deploy the  robots  on  the  specified  circle.  Then  we 
define 2 ( , )s x y as follows:
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2
2 2 , ,( ( , ))i x i yf s g g=                              (18)

With the help of this function, the robots will be able to 
converge to the defined unit square.

We conducted  two experiments  to  deploy the  robots 
onto the unit square, where the number of robots is 8 and 
12,  respectively. Fig.  10  shows the  simulation  results  of 
deploying 8 robots to a unit square.. The simulation results 
for 12 robots are similar. The convergence time for 8-robot 
case is 0.84 and the total travel distance is 29.03. It can be 
seen  from  Fig.  10  that  robots  can  automatically  deploy 



themselves evenly on the square. This case study indicates 
that the proposed GRN-based control method can be used 
to control multiple robots to deploy on different shapes as 
long as the shape function can be defined analytically.  

5.4. Case Study 3: Self-Reorganization

From the previous two case studies, we can see that the 
proposed GRN-based control algorithm can automatically 
drive multiple robots to a  predefined shape. In  this case 
study, we intend to evaluate the system’s capability of self-
reorganization.  More specifically,  we want  to investigate 
whether the robots can self-organize themselves when new 
robots join the team.

Fig. 11 provides the trajectories of the robots during the 
initial  shape  formation  as  well  as  those during  the  self-
reorganization  to  incorporate  the  newcomers.  Fig.  11 
demonstrates  that  the  robots  are  able  to  self-reorganize 
themselves when newcomers join the team even after the 
deployment is already complete.
 

5.5. Case Study 4: Self-Adaptation to a Static Obstacle

Another interesting test for our algorithm is whether our 
algorithm  can  self-adapt  to  the  environment  containing 
static obstacles on the predefined shape., For this purpose, 
an obstacle is set on the perimeter of the desired shape. We 
then study if  the robots can circumvent  the obstacle and 
continue  to  form  the  desired  shape  using  the  proposed 
method.

  Fig. 12 shows the simulation results of three different 
multi-robot systems, i.e., where the number of robots is set 
to 5, 8, and 10, respectively, and one obstacle is located on 
the perimeter  of the target shape. Again,  35 independent 
runs are conducted for the three cases, and the results are 
listed in Table 3.  Here, the obstacle is modeled as a static 
robot. The obstacle can emit protein to neighboring robots 
so  that  it  can  influence  neighboring  robots’  behaviors. 
However, it does not receive protein diffusion and it cannot 
move.

From Fig. 12, we can see that the multi-robot systems 
can adapt themselves to the environment change. They are 
supposed to form a circle, since there is an obstacle, they 
can circumvent the obstacle and form a circle on the rest of 
the  perimeter.   From  Table  3,  it  can  be  seen  that  the 
position errors of the robots are very small in all cases.

5.6. Case Study 5: Self-Adaptation to Moving Obstacles

In this case study, we aim to test whether the proposed 
algorithm for  multi-robot systems can be self-adaptive to 
moving  obstacles  in  the  environment,  i.e.,  whether  the 
robots  can  move  to  the  target  shape  while  avoiding 
collisions with moving obstacles in the environment. 

Fig.  13 is  a  set  of  snapshots  of  robots’  adaptive 
behaviors,  where the robots aim to move to a  unit  circle 
while avoiding two moving obstacles.  In  the experiment, 
obstacle 1 moves from bottom-left to top-right and obstacle 
2 moves from bottom-right  to top-left.  In  Fig.  13(a),  the 
robots are already distributed on a circle and two obstacles 
are approaching the robots. In Fig. 13(b), obstacle 2 moves 
faster  than  obstacle  2,  and  obstacle  2  is  approaching 
toward  the  robots.  We can  see that  some robots start  to 

avoid  obstacle  2.  In  Fig.  13(c),  robots  try  to  avoid  both 
obstacles.  In Fig.  13(d), obstacle 2 moves away from the 
robots,  while  the  robots  try  to  avoid  obstacle  1.  In  Fig. 
13(e), the robots try to avoid obstacle 1, when obstacle 2 
has left the simulation environment. In Fig. 13(f), obstacle 
1 moves away from the robots. Although only two obstacles 
are implemented in our experiment here, similar behaviors 
are expected for multiple moving obstacles as well.      

6. Conclusion and Future Work

 In this paper, we have presented a novel GRN-inspired 
distributed  control  approach  to  multi-robot  construction. 
Compared to other multi-robot control methods, the major 
merits  of  the  proposed  method  are:  (1)  embedding  the 
global  shape  information  into  the  regulatory  dynamics 
through a sigmoid function; (2) truly distributed behaviors 
of each robot balanced by two different forces: one force to 
approach to the predefined shape and  the other  to avoid 
collision with other robots. The local interaction among the 
robots  is  represented  by  the  diffusion  terms  in  the 
regulation  dynamics  inspired  from  multi-cellular 
mechanisms of living organisms. 

In  the future,  we will  continue our research on GRN-
inspired  multi-robot  controllers. We  will  investigate 
arbitrary shape construction by evolving a GRN model. We 
will also investigate the system’s robustness when one or 
more robots fail. 

It  is always an interesting question to ask whether we 
can gain additional  insights into biological  systems from 
what we have learned in a successful biologically-inspired 
engineering  system.  In  our  multi-robot  system,  we have 
shown that the global shape information of the robots can 
be  gracefully  embedded  into  a  gene  regulatory  network 
model,  and  the  regulatory  dynamics  can  ensure  the 
convergence  of  the  robots  into  the  desired  shape  in  the 
presence  of  uncertainties.  This  finding  may  help  us  in 
computational modeling of pattern formation (Schnabel et 
al, 2006) in the early development of biological organisms, 
in  particular  regarding  the  role  of  planar  cell  polarity 
signaling and sensory feedback of ciliated cells (Simon and 
Mlodzik, 2008; Singla and Reiter, 2006). 
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Fig. 1. Illustration of a GRN of a single cell with 2 genes.
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Fig. 2. The Pareto-optimal solutions using NSGA-II. The three solutions depicted in Fig. 3(a) through (c) are marked by the respective 
letters.
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Fig. 3. The trajectories of 8 robots from initial positions (denoted by “*”) to the final positions (denoted by “o”) with different parameter 
solutions picked from the Pareto-front solutions marked in Fig. 2. a) Solution (a) has a long convergence time but a short travel distance, 
b) Solution (b) exhibits a medium convergence time, a relatively longer travel distance, c) Solution has a longer total travel distance but a 
much shorter convergence time.
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Fig.  4.  The  relationship  between  input  parameter  space  xcoef X  and  output  performance  space ycoef Y ,  where  each  circle 

represents one correlation solution. 
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Fig.5. All the Pareto-optimal solutions plotted with respect to the parameter combination ( ) /ac km k− . 
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Fig.6. The total travel distance versus the parameter combination of ( ) /ac km k− derived from theoretical analysis.
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Fig.7. The convergence time versus the parameter combination of ( ) /ac km k− derived from the theoretical analysis. 
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Fig. 8. Different groups of robots deployed uniformly on circles. Note that a unit circle is used for (a) and (b), and a circle with radius 2 
is used for (c). 
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Fig.10. 8 robots are deployed uniformly on a unit square. The convergence time is 0.84 and the total travel distance is 29.03. 
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                     (a) 4 robots with 1 newcomer;                  (b) 4 robots with 2 newcomers;                       (c) 8 robots with 4 newcomers.

Fig. 11: Trajectories of multi-robots during self-organization with newcomers.  The initial positions of the robots are plotted as ‘*’, the 
intermediate states where the first batch of robots are located are denoted as ‘o’, and the final states of all the robots are denoted as ‘+’, 
the dash lines denote the initial deployment trajectories of the first batch of robots and the solid lines the trajectories of all the robots 
after incorporating newcomers.
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            (a) 5 robots with one obstacle;                             (b) 8 robots with one obstacle;                     (c) 10 robots with one obstacle.

Fig. 12. Trajectories of the robots in the self-adaptation test cases. The big red circle represents one obstacle in the environment. The 
initial positions of the robots are denoted as ‘o’, and the final states of robots are denoted as ‘*’. 
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Fig. 13. A set of snapshots showing the behaviors of 8 robots adapting to two moving obstacles. (a) Obstacle 1 and obstacle 2 are moving 
towards the robots; (b) Robots adapt themselves to avoid obstacle 2; (c) Robots are avoiding both obstacles; (d) Robots are avoiding 
obstacle 1, while obstacle 2 is leaving away from the simulation environment; (e) Robots are adapting to avoid obstacle 1 while obstacle 
2 disappears; (f) Obstacle 1 moves away. 
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