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Abstract— Driver assistance functionalities on the market
are getting more and more sophisticated, which will lead to
integrated systems that fuse the data of multiple sensors (e.g.,
camera, Photonic Mixer Device, Radar) and internal system
percepts (e.g., detected objects and their states, detected road).
One important future challenge will be to find smart solutions
in system design that allow an efficient control of said integrated
systems. A promising way for achieving this is to get inspiration
from known signal-processing principles in the human brain.
This paper presents a biologically motivated Advanced Driver
Assistance System (ADAS) that uses the generic principle of
attention as common front-end of all visual processes. Based
on the attention principle an early task-dependent pre-selection
of interesting image regions is done, which decreases scenecom-
plexity. Furthermore, internal information fusion increa ses the
system performance (e.g., the attention is used to improve the
object tracking; road-detection results improve the attention).
Based on streams of a challenging traffic scenario it is shown
how the system builds up and verifies its environment-related
expectations relying on the attention principle. The ADAS is
controlled by a central behavior control module that tunes
submodules and parameters. The behavior control module hasa
simple structure, but still allows for robustly performing various
tasks, since the complexity is distributed over the system in form
of local control loops mimicking human cognition aspects.

Keywords: advanced driver assistance system, system con-
trol, scene decomposition, tracking

I. INTRODUCTION

The goal of realizing Advanced Driver Assistance Systems
(ADAS) can be approached from two directions: either
searching for the best engineering solution or taking the
human as a role model. Today’s ADAS are engineered for
supporting the driver in clearly defined traffic situations like,
e.g., keeping the distance to the forward vehicle. While it
may be argued that the quality of an engineered system in
terms of isolated aspects, e.g., object detection or tracking,
is often sound, the solutions lack necessary flexibility. Small
changes in the task and/or environment often lead to the
necessity of redesigning the whole system in order to add
new features and modules, as well as adapting how they
are linked. In contrast, biological vision systems are highly
flexible and are capable of adapting to severe changes in
the task and/or the environment. Hence, one of our design
goals on our way to achieve an ”all-situation” ADAS is to
implement a biologically motivated, cognitive vision system
as perceptual front-end of an ADAS, which can handle the

wide variety of situations typically encountered when driving
a car. Note that only if an ADAS vision system attends to
the relevantsurrounding traffic and obstacles, it will be fast
enough to assist the driver in real time during all dangerous
situations.

In order to realize such a cognitive vision system we
have developed a robust attention sub-system [1] that can be
modulated in a task-oriented way, i.e., based on the current
context. The attention sub-system is a central component
of the overall vision system, which realizes a temporal
organization of different visual processes. Its architecture
is inspired by findings of human visual system research
(see, e.g., [2]) and organizes its different functionalities in
a similar way. In a first proof of concept, we have shown
that a purely saliency-based attention generation can assist
the driver during a critical situation in a construction site by
performing autonomous braking [3], [4].

Our previous work concentrated mainly on saliency-based
attention (see [1]) and the creation of a generic system,
which allows the dynamic modulation of modules and links
between modules (see [3], [4]). This contribution focuses on
ways to control the designed cognitive system in order to
go beyond classical, reactive driver assistance systems. The
goal is to develop a cognitive system that proactively plans
and builds up expectations of the environment. The expecta-
tions are verified autonomously by adapting internal system
processes. As we will show, a generic system structure is the
key aspect for accomplishing such a proactive ADAS. Low-
complexity system control strategies are sufficient to reach
the targeted system behavior, because the control complexity
is distributed over the system, e.g., in form of local loops.
The realized system is tested on real-world data. A test
stream is accessible in the internet (see [5]).

II. RELATED WORK

Recently, the topic of researching intelligent cars is gaining
interest as documented by the DARPA Urban Challenge [6]
and the European Information Society 2010Intelligent Car
Initiative [7] as well as several European Projects like, e.g.,
Safespot or PReVENT.

Regarding vision systems developed for ADAS, there have
been few attempts to incorporate aspects of the human
visual system into complete systems. In terms of complete



vision systems, one of the most prominent examples is a
system developed in the group of E. Dickmanns [8]. It
uses several active cameras mimicking the active nature
of gaze control in the human visual system. However, the
processing framework is not closely related to the human
visual system. Without a tunable attention system and with
top-down aspects that are limited to a number of object-
specific features for classification, no dynamic preselection
of image regions is performed. A more biologically inspired
approach has been presented by Färber [9]. This publication
as well as the German Transregional Collaborative Research
Centre ”Cognitive Automobiles” [10] address mainly human
inspired behavior planning, whereas our current work focuses
more on task-dependent perception aspects and their control.

More specifically, in the center of our work is a computa-
tional model of the human attention system that determines
the ”how” and ”when” of scene decomposition and inter-
pretation. Attention is a principle that was found to play an
important role in the human vision processing as a mediator
between the world and our actual perception [11]. Somewhat
simplified, the attention map shows high activation at image
positions that are visually conspicuous, i.e., that pop out
(bottom-up attention) or that are important for the current
system task (top-down attention). Derived from the first com-
putational attention model [12], which showed only bottom-
up aspects, some more recent models have been developed
that also incorporate top-down information (see, e.g., [1],
[13], [14], [15]). Please refer to [1] for a comprehensive
comparison between multiple the state-of-the-art attention
systems and our computational attention model.

A vision system approach in the vehicle domain that also
includes an attention system and that hence is somewhat
related to the here presented ADAS is described in [16].
Published after our work (see, e.g., [17]), the approach
allows for a simple bottom-up attention-based decomposition
of road scenes but without incorporating object or prior
knowledge. Additionally, the overall system organizationis
not biologically motivated and therefore not as flexible as
the here proposed system.

To our knowledge, in the car domain no biologically
motivated large scale systems exists that allows proactive
planning and the verification of expectations followed by an
appropriate tuning of system processes.

III. SYSTEM DESCRIPTION

The proposed overall architecture concept for robust
attention-based scene analysis is depicted in Fig. 1. It consists
of five major parts: ”what” pathway, ”where” pathway, a
part executing ”static domain specific tasks”, a part allowing
”environmental interaction”, and a ”system control module”.

The distinction between ”what” and ”where” processing
path is somewhat similar to the human visual system where
the dorsal and ventral pathway are typically associated with
these two functions (see, e.g., [2]). Among other things,
the ”where” pathway in the human brain is believed to
perform the localization and tracking of a small number
of objects. In contrast, the ”what” pathway considers the

detailed analysis of a single spot in the image. Nevertheless,
an ADAS also requires context information in form of the
road and its shape, generated by the static domain specific
part. Furthermore, for assisting the driver, the system re-
quires interfaces for allowing environmental interaction(i.e.,
triggering actuators). The system control module relies on
numerous internal system percepts as input and numerous
system parameters for controlling the system states and
behavior. In order to allow an understanding of the proposed
system control strategies a rough system description is given
(for more details on these system modules refer to [4]).

A. The ”what” pathway

Starting in the ”what” pathway the 400x300 pixel color
input image is analyzed by calculating the saliency map
S total. The saliency mapS total results from a weighted linear
combination ofN = 130 biologically inspired input feature
mapsFi (see Eq. (1)). More specifically, we filter the image
using among others, Difference of Gaussian (DoG) and
Gabor filter kernels that model the characteristics of neural
receptive fields, measured in the mammal brain. Furthermore,
we use the RGBY color space [13] as attention feature that
models the processing of photoreceptors on the retina.

The top-down (TD) attention can be tuned (i.e., parame-
terized) task-dependently to search for specific objects. This
is done by applying a TD weight setwTD

i that is computed
and adapted online, based on Eq. (2), where the threshold
φ = KconjMax(Fi) with Kconj = (0, 1] (see Fig. 3a
for a visualization). The weightswTD

i dynamically boost
feature maps that are important for our current task or
object class in focus and suppress the rest. The bottom-up
(BU) weightswBU

i are set object-unspecifically in order to
detect unexpected potentially dangerous scene elements. The
parameterλ ∈ [0, 1] (see Eq. (1)) determines the relative
importance of TD and BU search in the current system
state. For more details on the attention system please refer
to [1]. It is important to note that the TD weights (calculated
using Eq. (2)) are dependent on the features present in the
background (rest) of the current image, since the background
information is used to differentiate the searched object from
the rest of the image [13]. In plain words, the system
takes the current scene characteristics (i.e., its features) into
account in order to determine the optimal TD weight set,
which shows a maximum performance in the current frame.

Now, we compute the maximum on the current saliency
map Stotal and get the focus of attention (FoA, i.e., the
currently most interesting image region) by generic region-
growing-based segmentation onStotal. In the following,
with the FoA a restricted part of the image is classified
using a state-of-the-art object classifier that is based on
neural nets [18]. This procedure (attention generation, FoA
segmentation and classification) models the saccadic eye
movements of mammals, where a complex scene is scanned
and decomposed by sequential focusing of objects in the
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Fig. 1. Biologically motivated system structure for active, attention-based scene analysis.

central 2-3◦ foveal retina area of the visual field.

S total = λ
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∑
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wTD
i Fi + (1 − λ)
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∑
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wTD
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∀
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∀
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< 1

(2)

with m{RoI,rest},i =

∑

∀x,y∈{RoI,rest}
Fi(x, y)

size region{RoI,rest}

and Fi(x, y) =

{

Fi(x, y) ∀(x, y), Fi(x, y) ≥ φ

0 else

Internal information fusion processes improve the perfor-
mance of system modules. For example, the detected road
(see Section III-C) is fused as context information into the
attention system. More specifically, the road is suppressedin
all feature mapsFi before fusing them in the overall saliency
S total. This procedure makes the saliency mapS total sparse
and improves the TD weight quality. Additionally, TD-links
are used for the modulation of the attention based on detected
car-like openings in the found drivable road segment (see
module ”static domain-specific tasks” path in Fig. 1). This
car-like openings are detected by searching for car-sized
openings in the road segment (see [4] for details).

B. The ”where” pathway

The next step is the fusion between the newly detected
object and the already known ones. The result will be further
processed in the ”where” pathway and stored in the short
term memory (STM). The objects in the STM are then
suppressed in the current saliency map to enable the system
to focus on new objects. The principle of suppressing known
objects was proved to exist in the human vision system and
is termed inhibition of return (IoR), [19].

All known objects are tracked using a 2D tracker that is
based on normalized cross correlation (NCC). The tracker
gets its anchor (i.e., the 2D pixel position where the
correlation-based search for an object will be started in the
new image ) from a Kalman filter based prediction on the 3D
representation taking the ego motion of the camera vehicle
and tracked object into account (see [4] for details).

A comparison between the current Kalman fused 3D ob-
ject position and the predicted object position (derived from
the measured vehicle ego motion) allows the classification
of detected objects as static/dynamic (see [4] for details).

For all dynamic (i.e., moving) and therefore potentially
dangerous objects in the scene an additional attention-based
tracker support is realized, in order to solve a typical problem
appearance-based trackers suffer from (i.e., a tracker type
that relies on the comparison of image patches). Said trackers
depend strongly on the quality of the object template (i.e.,
the image patch the tracker has to relocalize in the current
image). In Fig. 2a the functional description of a NCC
tracker is visualized. Here, the template is fix, which leads
to a decreasing tracking performance. The object gets lost



quickly. This is caused by the fact that in the vehicle domain
the appearance of tracked objects quickly changes (due to
changes in illumination, view angle, or varying scale), which
makes an adaptation of the template necessary. A typical
approach for template adaptation is shown in Fig. 2b, where
the template is reset based on the previous tracking result.
Using this procedure incremental errors of the tracker are
accumulated. The detected region drifts away from the object
and gets finally lost. More advanced approaches for template
adaptation exist that adapt the initial template by model-
based image transformations in order to compensate the scale
variance and change of view angle (see, e.g., [20]). Said
methods perform robustly, but require specific and complex
algorithms. In the here presented system, a novel approach
for template adaptation is proposed that relies on already
system-immanent approaches. As visualized in Fig. 2c based
on the previous template and Eq. (2) a TD weight set and a
TD saliency map is computed for the previous image frame.
The maximum of this map marks the new position of the
object template used for tracking in the current frame. In
other words, the initial template position is derived from
the typical feature characteristics present in the previous
template. As opposed to Fig. 2b, the template adaptation and
object redetection is organized separately, thereby preventing
the accumulation of incremental errors.
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Fig. 2. Functional description of appearance based tracking approaches
(with Normalized Cross Correlation NCC, image I, and template T): (a)
Fixed template, (b) Continuous template adaptation based on the previous
tracking result, (c) Continuous template adaptation basedon saliency
maximum (TD weight set computed using the previous template).

Coming back to the system description, in case the NCC
tracker is able to re-detect the object in 2D pixel coordinates,
the 3D position in the representation is updated using four
different depth cues for the transformation of 2D pixels into
3D world coordinates. More specifically, our system uses
stereo data, radar data, depth from object knowledge, and
depth from bird’s eye view (as described in detail in [3],
[4]).

From a representational point of view, the ”where” path-

set calculation

Region of interest
(RoI) for TD weight

Background (rest)

Fig. 3. Visualization of the object training region (RoI) for TD weight
calculation against the background (rest).

way of our system consists on the one hand of the STM, that
stores all properties of sensed objects in a 3D representation
and on the other hand of a long term memory (LTM)
that stores the generic properties of object classes. The
LTM is filled offline with typical patches and corresponding
aggregated feature map activationsmRoI,i for all supported
object classes (see Eq. (2)). For evaluation purposes we use
cars, reflection posts, and signal boards as LTM content,
although our system is not restricted to these object classes
(see [1]). It is important to note that multiple LTM object
classes are searched at the same time, which requires several
”what” pathways running in parallel (see Fig. 1). In the
default case, a specific ”what” pathway searches for a generic
LTM object class. This is done by computing the geometric
mean of all TD weight sets of the LTM object class that
were calculated based on Eq. (2). These weights tune the
TD attention in the ”what” pathway.

As described above, in case the tracker has re-detected the
object in the current frame the 3D representation is updated.
In case the tracker looses the object, the system interruptsthe
processing in the specific ”what” pathway and searches for
the lost STM object in the following frames. This is realized
by calculating a TD weight set that is specific to the lost STM
object using Eq. (2). The objectOf found by the STM search
is then compared to the searched objectOs by means of the
distance measureδ(Of , Os) that is based on the Bhattacharya
coefficient (a measure for determining the similarity between
two histograms) calculated on the histograms of allN object
feature mapsHOf

i andHOs

i (see Eq. (3)).

δ(Of , Os) =

N
∑

i=1

√

1 − γ(H
Of

i , HOs

i ) (3)

γ(H
Of

i , HOs

i ) =
∑

∀x,y

√

H
Of

i (x, y)HOs

i (x, y)

C. Static domain specific tasks

The third major part of our system handles the domain
specific tasks related to marked and unmarked lane detection.
The marked lane detection is based on a standard Hough
transform whose input signal is generated by our generic
attention system. The TD attention weights used here boost
white and yellow structures on a darker background (so
called on-off contrast), to which the biological motivated
DoG filter (see Section III-A) is selective. The yellow on-off



structures are weighted stronger than the white to allow the
handling of lane markings in construction sites.

The state-of-the-art unmarked lane detection evaluates a
street training region in front of the car and two non-street
training regions at the side of the road. The features in the
street training region (stereo, edge density, color hue, color
saturation) are used to detect the drivable road based on
dynamic probability distributions for all cues (see [21] for
more details). A temporal integration procedure between the
current and past detected road segments based on the bird’s
eye view is applied. The procedure is used to increase the
completeness of the detected road by decreasing the number
of false negative road pixels (refer to [22] for a compre-
hensive description of the temporal integration procedure).
In the final step, a fusion between the detected marked
and unmarked road segments is used to derive the currently
drivable lanes.

D. Environmental interaction

The system can interact with the world via an actuator
control module. Currently our ADAS implementation uses a
3 phase danger handling scheme depending on the distance
and relative speed of a recognized obstacle. When an obstacle
is detected in front at a rapidly decreasing distance, a visual
and acoustic warning is issued and the brakes are prepared. In
the second phase the brakes are engaged with a deceleration
of 0.25 g followed by hard braking of 0.6 g in the third
phase.

E. System control

The control module realizes a functional mapping of an in-
put feature space of measured internal system-state variables
and an output-parameter space for the modulation of the
system behavior. In the following, the specific features and
parameters are named, the current system uses for control.

Measurement of internal system-state variables (input fea-
ture space):

• (i0) No condition,
• (i1) Car-like road opening,
• (i2) NCC tracker confidence (marking a lost object),
• (i3) STM object leaving/entering the image,
• (i4) Object position, object velocity.
• (i5) Object position uncertainty,
• (i6) Dynamic/static object.
Control parameters to influence/modulate system behavior

(output-parameter space):
• (o1) Actuator control (autonomous braking, acoustic

warning, belt strengthener),
• (o2) LTM search (for cars, signal boards, ...),
• (o3) Trigger STM search (lost objects, saliency tracking

support),
• (o4) STM decay rate (number of objects in STM),
• (o5) BU-TD combination weightλ,
• (o6) Spatial prior (position, sharpness).
In the following, instances of the functional mapping are

listed that control the multiple parallel ”what” pathways,the
actuators, as well as the STM data. The functional mapping

between input and output is visualized by the symbol⇒.
The task represented by each instance is set in parentheses
at the end.

• 1. (i0) ⇒ (o2) LTM search for cars, (o5) λ = 0.5 (search
for cars),

• 2. (i2) NCC tracker confidence for a car below threshold
⇒ (o2) Interrupt LTM search, (o3) redetect lost object
using TD attention, (o6) Set spatial prior, (o5) λ = 1
(redetect lost cars),

• 3. (i0) ⇒ (o2) LTM search for signal boards, (o5) λ =
0.5 (search for signal boards),

• 4. (i2) NCC tracker confidence for a signal board below
threshold⇒ (o2) Interrupt LTM search, (o3) redetect
lost object using TD attention, (o6) Set spatial prior,
(o5) λ = 1 (redetect lost signal boards),

• 5. (i4) Potential collision⇒ (o1) Trigger danger han-
dling (collision mitigation),

• 6. (i6) Dynamic object leaving the field of view⇒ (o5)
λ = 0, (scene exploration, search dynamic objects),

• 7. (i6) Dynamic object reentering the field of view⇒
(o5) λ = 1, (o4) Number of STM objects = 1, (o6)
Set spatial prior, (o3) Saliency tracker support (track
dynamic object),

• 8. (i1) Car-like road opening detected⇒ (o6) Set
spatial prior in (o2) for cars (analyze conspicuous image
region).

IV. RESULTS

In Section IV-A we will evaluate different individual
system modules that play the most important role in our cog-
nitive ADAS architecture. In Section IV-B the overall system
properties will be assessed. Based on a complex inner-city
scenario it is shown how the system proactively plans and
verifies expectations in order to allow a safe interaction with
the environment (corresponding to the control instances 6
and 7 in Section III-E).

A. Evaluation of system modules

The results presented in [1] support the generic nature
of the TD-tunable attention subsystem during object search.
Following this concept, the task-specific tunable attention
system can be used for scene decomposition and analysis,
as it is shown exemplarily on two typical German highway
scenes in Fig. 4. Moreover, we see the attention system as
a common tunable front-end for the various other system
tasks, e.g., as lane marking detection (see Section III-C).
In the following the lane marking detection is qualitatively
and quantitatively evaluated. Figure 5a shows a typical inner-
city scenario with a lot of shadows, on which we tested
the attention-based marked lane detection. For detecting
the lane markings the bird’s eye view is computed (see
Fig. 5b). Lane marking-like contrasts (bright image regions
on a darker background) are boosted by a DoG filter. Then
a clothoid model-based approach for detecting the markings
is used (see, e.g., [23], [24], [25] for related clothoid based
approaches). Figure 5c depicts the DoG filter results without
the described on-off/off-on separation. Since lane markings



(a) (b) (c)

(d) (e) (f)

Fig. 4. Attention-based scene decomposition: (a) Highway scene, (b)
TD attention tuned to lane markings, (c) TD attention tuned to cars, (d)
Construction site (e) TD attention tuned to signal boards (f) TD attention
tuned to cars

have a typical on-off contrast (white markings on a darker
street), the on-off DoG filter results should be used, since
these contain less false-positive activations (Fig. 5d). For
example, in [26] the pre-filtered road image still contains the
lane marking unspecific off-on contrasts (e.g., shadows on
the road). Such off-on contrasts are filtered out in our marked
street detection approach to improve the road detection per-
formance. For a quantitative evaluation of the influence of the
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Fig. 5. Exemplarily performance gain of on-off DoG separation as pre-
processing step of a lane marking detection system: (a) Shady input image,
(b) Bird’s eye view, (c) DoG result without on-off/off-on separation, (d)
DoG result with on-off contrasts only (off-on contrasts arefiltered out).

described on-off DoG separation the lane marking detection
system gets a DoG edge image without on-off/off-on (please
refer to Fig. 5c) and with on-off separation (as shown in
Fig. 5d). The gathered results are summarized in Tab. I.
The evaluation shows the improvement in accuracy of the
detected offset (i.e., horizontal position of lane markings) and
radius of the road based on manually labeled ground truth
data consisting of 330 highway frames (see Fig. 6). In the
following, the performance gain of the described attention-

Type of input data Mean relative error in Mean relative error in
preprocessing offset MREO= radius MRER=

1/N
P GToffset−offset

GToffset
1/N

P GTradius−radius
GTradius

Without DoG 4.46 80.87
on-off separation
With DoG 4.35 72.22
on-off separation

TABLE I

MEAN RELATIVE ERROR OF OFFSET AND RADIUS OF THE DETECTED

LANE MARKING .

Marker offsets: −1.80m 1.75m 5.10m
Road radius: >3000m left turn
Marker offsets: −1.90m 1.50m 5.09m

Road radius: >3000m left turn Road radius: 2378m left turn
Marker offsets: −1.90m 1.50m 4.90m

Fig. 6. Three sample images of the used evaluation scene withvisualized
lane marking detection results.

based-tracker-support is given based on the scenario shown
in Fig. 7. In the scenario, a bicycle is tracked over 100
frames. For evaluation we use the measures defined in the
Equ. (4), (5), (6), as well as the center accuracy. The
Equ. define different ground-truth-based measures that are
used here to assess the position and size of a tracked area
in the image that contains an object. The measures are
motivated from [27] (with pixels being True Positive (TP),
False Negative (FN), False Positive (FP)).

Completeness =
TP

TP+ FN
(4)

Correctness =
TP

TP+ FP
(5)

Quality =
TP

TP+ FP+ FN
(6)

On a descriptive level Completeness states, based on given
ground-truth data, how much of the real object region is
covered by the tracked and hence relocalized region. Cor-
rectness states how much of the relocalized region actually
belongs to the object to allow a better assessment of large
regions that show a high Completeness. Quality combines
both measures, since between Completeness and Correctness
a trade-off is possible. Based on this, the Quality measure
should be used for a comparison, since it weights the FP
and FN pixels equally. For a more detailed analysis, the
Completeness and Correctness state what exactly caused a
difference in Quality. The center accuracy describes the mean
absolute position error of the middle axis of the object region
in pixels. The necessary ground-truth data was produced by
accurate manual annotation of the bicycle region. As Tab. II
shows, the applied saliency-enhanced tracking is superior
to a classical NCC-based approach. Furthermore, a spatial
prior that depends on the Kalman object position uncertainty
improves the tracking result.

B. Evaluation of overall system performance

In order to qualitatively evaluate the presented control
aspects, results in form of 4 sample frames of a test stream



Evaluation NCC- Saliency- Saliency-
measure based enhanced enhanced

tracking tracking without tracking with
spatial prior spatial prior

Completeness 0.23 0.60 0.73
Correctness 0.31 0.23 0.37
Quality 0.16 0.20 0.30
Center accuracy 22.05 20.5 4.6

TABLE II

EVALUATION OF OBJECT TRACKING ROBUSTNESS(BICYCLE STREAM).

are presented that show a complex real-world scenario (see
Fig. 7). The test stream is accessible in the internet (see
[5]). After a description of the visualized internal system
percepts based on Fig. 7a, a detailed description of the
gathered results is given. In the top row in Fig. 7a (from
left to right) the object-unspecific bottom-up saliency, the
top-down attention tuned to the tracked bicycle, and their
combination (here withλ = 1 and a sharp spatial prior for
the attention-based tracking support) is shown. In the bottom
row left in Fig. 7a the input image including a visualization
of the detected road area is shown. In the bottom row in
the middle, the input image including the predicted vehicle
trajectory (the longer the green region, the faster the camera
vehicles moves), the detected dynamic object including its
predicted trajectory (the red region codes a negative relative
velocity: the longer the red region, the faster the dynamic
object moves), and the area covered by the radar sensor (in
magenta) is visualized. The bottom right image shows an
environmental representation that visualizes the task-relevant
dynamic object. An aura around the object codes the position
uncertainty of the detected object.

In the scenario, while exploring the scene (withλ=0, no
spatial prior set, and the STM holding up to 5 objects)
the camera ego-vehicle detects a dynamic, i.e., moving,
object based on the procedure described in Section III-B
(see Fig. 7a). The object is tracked (the parameterλ is set
to 1 allowing an attention-based tracking support, a spatial
prior is set that depends on the object position uncertainty,
as described in Section III-B). The ego-vehicle overtakes the
bicycle,giving a blind spot warning. Based on the presented
internal 3D representation the bicycle position is predicted
linearily even while it is outside the field of view of the
camera (see Fig. 7b, the growing position uncertainty is
visualized by the growing object aura in the bird’s eye view
representation). Without any dynamic object in the field of
view, λ is set to 0 again, the spatial prior is reset, and the
object decay rate is reset to allow the tracking of up to 5
objects. All these adaptations support an object-independent
scene exploration. Now, the ego-camera vehicle stops to
turn right. The ADAS ”remembers” the bicycle and gives
a blind spot warning. The ego-vehicle waits for the bicycle
to reappear. In order to allow a fast redetection, the top-
down attention is tuned to the bicycle, setting a spatial prior
with low sharpness. This allows its instantaneous redetection
(see Fig. 7c). The object position is updated lowering the
position uncertainty. The system tracks the object relyingon

the attention-based-tracker-support (see Fig. 7d). Summing
up, the system at runtime builds up and verifies expectations
of the environment, thereby autonomously tuning internal
parameters and processes that improve and accelerate the
system reaction. The processing described above relates to
one ”what” pathway (see Fig. 1), which concentrates on
the detection, tracking, and prediction of one dynamic and
hence potentially dangerous object. As visualized in Fig. 1,
multiple ”what” pathways run in parallel. For example,
further ”what” pathways handle the detection of cars, signal
boards, and other traffic-relevant objects using the previously
described LTM search (see Section III-B) that relies on
object-specifically tuned saliency maps. The control of these
pathways is realized by the functional mapping described in
Section III-E. For each of these ”what” pathways the object-
specific LTM search can be interrupted by a STM search in
case an object was lost during tracking (see [4]).

V. SUMMARY AND OUTLOOK

In this contribution, we presented an integrated, advanced
driver assistance system that relies on human-like cognitive
processing principles. The system uses a biologically mo-
tivated attention system as flexible and generic front-end
for all visual processing. Based on top-down links modu-
lating the attention task-dependently, the used internal 3D
representation, a state-of-the-art object classifier, anda road
recognition system, we realized a highly flexible and robust
system architecture. As shown, simple control strategies are
sufficient for the realized biologically inspired system toal-
low a safe system reaction in various scenarios. We currently
port the described extensions from Matlab to C in order to
integrate them in our existing online system [3] for evaluating
them on our prototype vehicle. After the successful test of the
low complexity control approach, in the next step, learningof
the functional mapping between the measured input feature
space and the output control parameter space will be in
our focus. Also measuring and mimicking the reactions
of an experienced driver is envisioned in the future. The
introduced system contains first approaches towards such an
efficient cognitive control concept. The central assumption,
as proposed in this contribution, is that a robust (and as
envisioned also learning) system requires a generic system
structure with a high number of degrees of freedom for
controlling the system reaction and measuring the system
state.
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