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Task-level Imitation Learning using Variance-based
Movement Optimization

Manuel Mühlig, Michael Gienger, Sven Hellbach, Jochen J. Steil, Christian Goerick

Abstract— Recent advances in the field of humanoid robotics
increase the complexity of the tasks that such robots can
perform. This makes it increasingly difficult and inconvenient to
program these tasks manually. Furthermore, humanoid robots,
in contrast to industrial robots, should in the distant future
behave within a social environment. Therefore, it must be
possible to extend the robot’s abilities in an easy and natural
way. To address these requirements, this work investigates the
topic of imitation learning of motor skills. The focus lies on
providing a humanoid robot with the ability to learn new bi-
manual tasks through the observation of object trajectories.
For this, an imitation learning framework is presented, which
allows the robot to learn the important elements of an observed
movement task by application of probabilistic encoding with
Gaussian Mixture Models. The learned information is used
to initialize an attractor-based movement generation algorithm
that optimizes the reproduced movement towards the fulfillment
of additional criteria, such as collision avoidance. Experiments
performed with the humanoid robot ASIMO show that the
proposed system is suitable for transferring information from
a human demonstrator to the robot. These results provide a
good starting point for more complex and interactive learning
tasks.

I. INTRODUCTION

One of the manifold research topics of the Honda Research
Institute Europe is the integration of biologically inspired
learning methods into a humanoid robot. The robot shall be
able to learn autonomously by interacting with its surround-
ing environment. Especially the learning of new movement
skills is an interesting topic and this work investigates the
use of an imitation learning paradigm to acquire those skills
by observing a teacher.

The topic of imitation learning is very broad with respect
to different levels of abstraction. While for example [1],
[2] propose to use imitation learning to learn trajectory
level information about a movement task, also higher-level
approaches like [3] exist that try to learn complex tasks in
form of graph structures of basic movements. Furthermore,
hierarchical approaches such as [4], [5] combine aspects of
several abstraction levels. In this work we focus on learning
trajectory information and to introduce the problems that
need to be solved, the learning of a common bi-manual task
is taken as an example. The robot has to learn to pour a
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beverage from a bottle into a glass by observing a teacher
demonstrating this task. This choice is arbitrary and the
researched methods do not depend on this specific choice
but are general. An overview of the whole imitation learning
process is depicted in figure 1 and explained in detail within
the upcoming sections.

Fig. 1. Structure of the imitation learning process

The first step necessary is to acquire the movement in-
formation from the teacher. Several methods are applicable
for this, such as kinesthetic teaching [6], recording human
postures with marker-based [7], [8] or marker-less vision
systems [9]. Within this work, the movement is acquired
using a marker-less stereo vision system, which is described
in section II. The teacher’s posture is disregarded and learn-
ing as well as movement reproduction are based on object
trajectories only.

As learning performance and generalization capabilities
are major keypoints for interactive learning of movement
tasks, it is unfavorable to learn within the full high-
dimensional configuration space of the robot. A common
approach to avoid this is the application of dimension reduc-
tion techniques, such as the principal component analysis
[10]. However, such methods often project the observed
movement information into rather abstract dimensions that
do not necessarily improve the generalization capabilities.
Hence, this work follows the concept of task spaces to model
the movement. For the pouring task example, the task space
can simply consist of the relative position of bottle and
glass and their orientations. Section III describes that this
does not only avoid the correspondence problem between the
teacher’s and robot’s kinematic structure but also enhances
generalization.



After the pouring task was observed and modelled using
task spaces, it is learned within a representation that allows
the robot to adapt it to new situations. We believe that the
important parts of a movement task are mostly defined by
their invariance over several demonstrations and that this
variance should be directly incorporated into the robot’s
movement generation. This allows the robot to diverge from
variant and therefore less important parts of the movement in
order to fulfill additional criteria, such as collision or joint-
limit avoidance. The authors of [1], [2], [11] already showed
that probabilistic representations, such as Hidden Markov or
Gaussian Mixture Models (GMM), are well suited to encode
the mean and variance information of a movement. Section
IV therefore revisits the necessary temporal normalization
using Dynamic Time Warping and the movement represen-
tation within Gaussian Mixture Models.

Until then, the task is completely learned in a compact,
probabilistic representation. Section V describes how this
representation can be incorporated into the robot’s motion
generation. The attractor-based optimization scheme by [12]
is extended with a cost function that penalizes differences
between the generated and learned movement and that
continuously weights these differences with the variance
information of the GMM encoding. The result is that the
robot does not only repeat the movement, but also adapts
to new situations or environments. This can be compared
to other approaches such as in [13], where reinforcement
techniques are used to achieve the adaptive behavior.

Finally, in section VI we evaluate the presented imitation
learning scheme within an interactive experiment using the
humanoid robot ASIMO.

The major keypoints of this work in the context of
imitation learning with humanoid robots are:

• The variance information over several task demonstra-
tions is used as an importance measure. This informa-
tion is continuously incorporated into the movement
generation process.

• Task spaces are used to model the observed movement
task. This handles equally dimension reduction, gener-
alization and the correspondence problem.

• The task learning is based on object trajectories only
and no assumptions about the teacher’s or robot’s pos-
tures are made.

• To reproduce a learned movement, an attractor-based
movement optimization scheme is utilized that also
operates on task spaces.

II. DATA ACQUISITION

The focus of this work lies on learning object-related
movements. Due to the concept of task spaces, later de-
scribed in section III, no assumption on the teacher’s posture
needs to be made. The data acquisition can therefore rely
solely on tracking object trajectories instead of full human
postures. Hence, there are no requirements for markers and
the robot’s on-board vision system can be used to track the
objects.

For simplification, a slightly modified version of the color
tracking algorithm presented in [14] is used and it is assumed
that both objects are colored uniformly. The information that
is extracted consists of the absolute position of the objects
and their rotation angle around the gaze vector of the stereo
camera head1.

The actual learning of the movement that is introduced in
section IV depends on a pre-segmentation of the continuous
object trajectories into distinct demonstrations by using mo-
tion stillness as a segment border. If the observed objects are
held still for a defined duration, the current demonstration is
finished and the next one starts when the objects are moving
again.

III. MOVEMENT MODELLING

Before a probabilistic representation of a movement task
can be learned, the observed demonstrations of the teacher
are preprocessed. There are several points that this prepro-
cessing needs to consider. First, the correspondence problem
between teacher and robot needs to be solved. This problem
results from different kinematic structures of both. As an
example, a humanoid robot like ASIMO is smaller than
the teacher and lacks some degrees of freedom. Second,
the movement task should not be learned within the full
configuration space of the humanoid robot. This would lead
to a very high-dimensional representation of the movement
that doesn’t generalize well to novel situations. The approach
in [2] solves these problems by performing the movement
within the robot’s configuration space using kinesthetic
teaching and afterwards applying a principal component
analysis to reduce the data dimensionality.

Within this work, the concept of task spaces is used to
solve the mentioned problems, as it was already proposed
by [15]. The observed movement is projected into a task-
specific space and the correspondence problem is avoided
by solely focussing on the object trajectories without making
any assumption on the teacher’s postures during the demon-
stration. This has several advantages. The actual movement
of the robot is calculated only during the reproduction. It
can therefore take into account new situations, differing
robot kinematic structures and additional constraints, such as
collision avoidance. Furthermore, the concept of task spaces
provides a generalization capability by design.

Returning to the example of pouring from a bottle into
a glass, an appropriate task space consists of the position
of the bottle relative to the position of the glass and their
orientations. Referring to figure 2, the elements of the task
space are

xtask =
(
xT

diff ϕT
b ϕT

g

)T
. (1)

The relative position xdiff of both objects is defined in the
world frame and not in the coordinate system of one of
the objects. Otherwise, the orientation of one object would
affect the position of the other2. The elements ϕb and ϕg are
vectors containing the angle gathered from the vision system

1The direction is defined through the object’s longest elongation.
2However, there are also tasks that would profit from this behavior.
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Fig. 2. Illustration of the different variables used for modelling the pouring
task with task spaces

and a second component that defines the angle’s plane to be
vertical as it was observed.

If the pouring movement is learned within this task space,
a first generalization is already achieved because the robot
can repeat the movement at differing absolute positions
and therefore adapt to new situations. Note further that
task spaces themselves are no restriction of the movement
capabilities of the robot. Although it is unlikely necessary,
a task space could also comprise the full joint space of the
robot.

IV. MOVEMENT LEARNING

The key aspect of imitation learning is to obtain a gen-
eralized representation of a movement task from several
demonstrations of the teacher. This representation allows
the robot to repeat the observed task, but also adapt it to
a new environment and situation. The basic idea of using
a probabilistic representation for movement tasks is that
important task elements are usually invariant over several
demonstrations. We therefore directly exploit the variant
parts of the movement to allow the robot to fulfill additional
criteria, such as collision avoidance or staying balanced,
while still reproducing the invariant features of the move-
ment. This section describes how such a representation is
learned while section V shows how the variance information
is explicitly used during the robot’s movement generation.

A. Dynamic Time Warping

After the observed demonstrations are projected into ap-
propriate task spaces, there is one further preprocessing step
necessary. To learn meaningful variance information within
the probabilistic representation, temporal normalization of
the trajectories is crucial. Note that the inter-trial variance
between multiple demonstrations is of interest here, not the
variance within a single demonstration. If a human teacher
performs the same task several times, there will always be
non-linear temporal distortions between the demonstrations.
Therefore, a temporal normalization has to be applied in

advance of learning. The authors of [6], [1], [2], [16]
propose different methods, such as the use of left-right
Hidden Markov Models or the Dynamic Time Warping
(DTW) algorithm. For our approach we have chosen the
latter one, because left-right Hidden Markov Models would
introduce an additional unwanted smoothing, depending on
their number of hidden states.

The principle of the Dynamic Time Warping algorithm
[17] is to find a temporal deformation of one signal to
minimize the distance to another signal. The first step is
therefore the definition of the distance measure. In our
case, this distance measure is the Euclidean distance of the
elements of the task space the demonstrations are projected
into. It is additionally weighted to account for the scale of
the individual task space dimensions. Using this distance
measure, a matrix V is filled with the pair-wise distance of
all data samples of one demonstration to all data samples
of another. Scalar vi,j ∈ V then refers to the weighted
Euclidean distance of element i of the first and element j
of the second demonstration. With the following dynamic
programming approach, a path starting from the bottom right
element vn,m to v1,1 is determined that minimizes the sum
of the path’s elements:

dtw(i, j) =



∞ for i = 0 ∨ j = 0 ,

vi,j for i = 1 ∧ j = 1 ,

vi,j + min

 dtw(i− 1, j − 1),
dtw(i− 1, j),
dtw(i, j − 1)

 else .

(2)
Figure 3 illustrates the algorithm with two signals αA and αB

to be normalized. The color coding represents the magnitude
of vi,j and the white line is the path that was found by the
Dynamic Time Warping. With the indices of the path, the
signals can now easily be warped in the time domain in
order to minimize their distance from each other. The gray,
dashed lines are example associations for 3 timesteps.

With Dynamic Time Warping all demonstration are non-
linearly morphed to share the same length. Figure 4 shows
that meaningful inter-trial variance information can only be
extracted by preprocessing with Dynamic Time Warping.
However, one has to obey that individual timing properties
are neglected in favor of the meaningful inter-trial variances.
While this is irrelevant for the tasks considered in this
work, it probably leads to problems with highly dynamic
movements. Hitting a ball with a tennis rack is an example
for this, because the dynamic properties of the movement
directly influence the achievement of the task goal.

B. Gaussian Mixture Models

After the observation phase (see fig. 1), the data can
be learned within a probabilistic representation. We choose
Gaussian Mixture Models to learn the underlying probability
density function of the observed trajectories xi ∈ X. The di-
mensionality D of the data samples xi equals the number of
task space dimensions and an additional temporal dimension,
which is also learned by the GMM. The probability density
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function p(xi) is estimated using a mixture of K Gaussian
distributions:

p(xi) =
K∑

k=1

πkp(xi|k) (3)

where πk is the a priori probability of Gaussian component
k within the GMM (

∑K
k=1 πk = 1) and p(xi|k) is the

conditional probability density function that can be derived
from the D-dimensional normal distribution N (µk,Σk),
depending on mean vector µk and covariance matrix Σk

of Gaussian k:

p(xi|k) = N (xi;µk,Σk)
= 1√

(2π)D·|Σk|
· e−

1
2 ((xi−µk)T Σ−1

k (xi−µk)) .

(4)
The GMM that models the probability density function of the
input is therefore fully described by πk, µk and Σk denoting
prior, mean vector and covariance matrix of all Gaussian
components k respectively. These parameters can be learned
with a standard Expectation-Maximization algorithm [18].
However, the number of Gaussian components and their
initialization has to be determined first.

1) Estimating Gaussian components: To estimate the op-
timal number of Gaussian components, literature proposes

different approaches. One for example is the use of the
Bayesian Information Criterion3 (BIC) [19] as a tradeoff
between model complexity and representation quality. A typ-
ical heuristic is to steadily increase the number of Gaussian
components, train the Gaussian Mixture Model, and calculate
the BIC value each time. The smallest value in the series of
BIC values refers then to the estimated optimal number of
components.

Because the training of a Gaussian Mixture Model is
considerably cost-intensive and the interactive aspect is key-
point within this work, we modify the common heuristic as
follows. Instead of training a full Gaussian Mixture Model
within each iteration, only a fast K-Means clustering is
applied to X. Then πk, µk and Σk of all components of
the Gaussian Mixture Model are initialized with the cluster
information. The full training of the GMM is then skipped
and the BIC value is calculated as usual using the following
equation:

BIC = −2L+ P ln(N) . (5)

Scalar L denotes the log-likelihood that the GMM represents
all N data samples xi and P equals the number of free
parameters of the model. Both, L and P are calculated using
the following two equations:

L =

∑N
i=1 log

(∑K
k=1 πkp(xi|k)

)
N

, (6)

P =

for π︷ ︸︸ ︷
(K − 1) + K


for µ︷︸︸︷
D +

for Σ︷ ︸︸ ︷
1
2
D(D + 1)

 . (7)

By skipping the time-intensive training of the Gaussian
Mixture Models the estimation of the optimal number of
components gets less accurate but faster. Figure 5 visualizes a
comparison between the common heuristic and our modified
version. Both are applied to test data from the experiment in
section VI and the BIC values for each number of Gaussian
components, ranging from 1 to 30, are calculated. One can
observe that the modified heuristic prefers choosing too
many rather than choosing too few components for the rep-
resentation. This is because the Expectation-Maximization
algorithm is proved to converge while increasing the log-
likelihood and secondly due to the fact that the representation
quality increases with the number of Gaussian components.
This inaccuracy increases the training time of the Gaussian
Mixture Model during the learning phase. However, this is
more than compensated by the speedup of the estimation.
Estimating the number of Gaussian components in the range
of 1 to 30 using our approach is about two orders of
magnitude faster than the common heuristic.

2) EM algorithm: After the number of Gaussian com-
ponents is estimated in the previous step, the components
are initialized with the information resulting from the K-
Means clustering of the input data X. Afterwards, the
Gaussian Mixture Model can be trained using a common

3Also referred to as Schwartz Information Criterion.
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Expectation-Maximization algorithm [18]. The goal during
the optimization is to maximize the log-likelihood that the
Gaussian Mixture Model represents the probability density
function of the given input data (see eq. 6). For this, two
steps are iterated until the change of the log-likelihood is
below a certain threshold.

The first step (expectation step) of the algorithm follows
the Bayes theorem to calculate the likelihood of each Gaus-
sian component k given the data set X:

p(k|xi) =
πkp(xi|k)∑K
j=1 πjp(xi|j)

(8)

=
πkN (xi;µk,Σk)∑K
j=1 πjN (xi;µj ,Σj)

,

ek =
N∑

i=1

p(k|xi) . (9)

This is calculated by using the parameters of the previous
optimization step or, in the beginning, of the initialization
with the K-Means clustering.

During the maximization step, the parameters of the GMM
are adapted to maximize the likelihood that the GMM
represents the probability density function of data X:

πk =
ek

N
, (10)

µk =
∑N

i=1 p(k|xi)xi

ek
, (11)

Σk =
∑N

i=1 p(k|xi)(xi − µk)(xi − µk)T

ek
. (12)

The algorithm converges to an estimation of the probability
density function of all observed input values. Due to the ini-
tialization with the K-Means clustering and a good estimation
for the number of components, the EM algorithm reaches a
local minimum relatively fast.

At this point, the observed movement task is learned in
a compact representation that encodes not only the mean
movement itself but also a continuous importance weighting
in form of variance information. The next section explains
how this representation is combined with the motion gener-
ation methods in order to reproduce the learned movement
task.

V. MOVEMENT OPTIMIZATION

The probabilistic movement representation described in
the previous section accounts for the robot’s effector move-
ment. However, it does not yet consider the limits asso-
ciated to joint ranges, self-collisions etc. To handle these
aspects, we incorporate a gradient-based trajectory opti-
mization scheme, which has been presented in [12]. It
operates on an attractor-based trajectory generation [20] that
describes the task space trajectories with attractor dynamics
and projects these trajectories to the joint space movement
with a kinematic whole body control system. The key idea
is to optimize a scalar cost function by finding an optimal
sequence of such task space attractor vectors that determines
the robot’s motion.

For this, we consider an integral scalar cost function over
the overall movement composed of two terms. The first term
subsumes criteria that depend on single time steps, like costs
that depend on the posture of the robot. Specifically, we use
criteria to account for collisions and proximities between
collidable objects throughout the trajectory and joint limit
proximities. The second term subsumes costs for transitions
in joint space and depends on the current and the previous
time steps. It is suited to formulate criteria like the global
length of the trajectory in joint space.

During optimization, we iteratively compute all costs and
analytical gradients of the attractor point locations with
respect to the chosen criteria and update the location of the
attractor points accordingly until convergence. The scheme
has already been applied to reaching and grasping problems,
and finds solutions within a short time, as such being suitable
for interactive scenarios.

We choose the number of attractor points according to the
number of Gaussian components of the Gaussian Mixture
Model that represents the learned movement. While this
is not explicitly necessary, it achieved good results within
the experiments and eliminates another free parameter that
would elsewise need to be chosen manually.

Further, we extend the set of criteria with a similarity
criterion. It penalizes the deviation of the robot’s task space
trajectory from the observed one. The key idea is to apply
an adaptive weighting scheme that weights the similarity
with the variance of the observation. In phases with higher
variance, we assume that the movement doesn’t need to be
tracked precisely. By assigning a low weight to the similarity
criterion, its effect will be reduced, as such giving higher
influence to the other criteria governing the movement. This
results in a movement that tracks the observed trajectory
rather precisely in phases of low variance, while it is charac-
terized by other criteria (joint limit and collision avoidance
etc.) in phases of higher variance.

A. Gaussian Mixture Regression

Other approaches apply the Gaussian Mixture Regression
to generate the movement previously acquired in the learning
process. However, the represented movement does not neces-
sarily account for the limitations (e.g., joint-limits, collisions)
of the robot. We therefore use it to initialize an optimization



problem that respects the similarity of the generated and
learned movement as one optimization criterion.

Using this regression technique, the mean and variance
information of each dimension of the task space is calculated
for a given timestep. The mean values then refer to the
learned movement and the variance information can be inter-
preted as an importance measure for parts of the movement.
This importance weighting is later directly incorporated into
the similarity criterion of the optimization process.

Gaussian Mixture Regression is based on the theorem of
Gaussian conditioning and the linear combination of Gaus-
sian probability distributions. For the movement reproduction
the task space trajectories are needed. Therefore, the tempo-
ral dimension can be seen as an input, while the remaining
spatial dimensions are the output. Under this assumption, the
means and covariance matrices of the Gaussian components
can be split into a temporal (denoted by subscript t) and a
spatial (denoted by subscript s) part:

µk = (µt,k,µT
s,k)T , (13)

Σk =
(

σtt,k σT
ts,k

σst,k Σss,k

)
. (14)

Given the temporal input xt, the conditional expectation x̂s,k

and the estimated covariance matrix Σ̂s,k for each Gaussian
component k can be calculated using the equations of the
Gaussian conditioning theorem:

x̂s,k = µs,k + σst,k(σtt,k)−1 · (xt − µt,k) , (15)

Σ̂s,k = Σss,k − σst,k(σtt,k)−1 · σT
ts,k . (16)

These conditional expectations and covariance matrices are
then mixed according to the probabilities βk that input xt is
modelled by Gaussian k:

x̂s =
K∑

k=1

βkx̂s,k , (17)

Σ̂s =
K∑

k=1

β2
kΣ̂s,k (18)

with

βk =
πkp(xt|k)∑K
i=1 πip(xt|i)

=
πkN (xt;µt,k, σtt,k)∑K
i=1 πiN (xt;µt,i, σtt,i)

.

(19)
Evaluating these equations for consecutive values of xt

results in an estimation for the means of all task space dimen-
sions over time and their associated covariance matrices. For
simplification, we introduce two new symbols. The symbol
µ̂t stands for the value x̂s at timestep t. The elements of σ̂t

refer to the diagonal of Σ̂s at timestep t.

B. Similarity criterion

The attractor points that are defined in the task space of the
learned movement, are then initialized with the mean values
that were calculated with the Gaussian Mixture Regression.
Without optimization this leads to a movement that does not
fully match the learned one and, more importantly, that al-
lows self-collisions. Therefore, an optimization, according to
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Fig. 6. Function that maps the variance to a weighting factor

the scheme mentioned in the beginning of this section, needs
to be performed. To achieve similarity between the learned
and the reproduced movement, this scheme is extended with
the similarity criterion:

cim = (xt − µ̂t)
T Wt(xt − µ̂t) . (20)

For each timestep t, this cost function penalizes a deviation
of the state of the task space xt from the learned mean values
µ̂t weighted with the time-dependent diagonal matrix Wt

that is calculated using the estimated variances σ̂t:

wi,i =

{
wmax

i − wmax
i

σmax
i
· σ̂t,i for 0 ≤ σ̂t,i < σmax

i

0 for σ̂t,i ≥ σmax
i

. (21)

Variables with superscript max are constants that can be
used to shape the mapping between the variance and the
weighting factor (see fig. 6) in order to account for the
scale of the individual task space dimensions. The gradient
of the similarity criterion that is used during the trajectory
optimization is

∂cim

∂xt
= 2(xt − µ̂t)

T Wt . (22)

With this cost function, the variance information is directly
included in the optimization process, continuously over all
dimensions of the task space and all timesteps. The robot is
allowed to diverge from variant and therefore unimportant
parts of the movement in order to minimize other cost
functions (e.g., collision costs or joint-limit costs).

VI. EXPERIMENT

The experiment presented in this section is the pouring
task example that is discussed throughout this paper. The
robot is required to imitate a pouring motion of approxi-
mately 4-5 seconds length. Figure 7 shows the experimental
setup and the enclosed video contains the whole imitation
learning scenario.

The teacher stands in front of ASIMO and demonstrates
the task five times. As mentioned in section II, the distinct
demonstrations are separated by holding the objects still
for about one second. After the task was observed by the
robot, the movement information is projected into the task
space, which consists of the relative object positions and
orientations, such as already described in section III. The
information is then temporally aligned using the Dynamic
Time Warping algorithm and learned within a Gaussian



Fig. 8. Imitation of the pouring task without (top row) and with collision costs (center row). Note how the movement is optimized in order to avoid the
self-collision in the middle of movement while the pouring task is still being performed. The bottom row shows the real performance of ASIMO after
the movement optimization

Fig. 7. Setup for the interactive imitation learning experiment

Mixture Model. The learning takes about two seconds and
additional 10 seconds are needed for the subsequent attractor-
based movement optimization. Afterwards, the robot is able
to directly reproduce the learned movement task. The cost
terms that are included in the optimization penalize col-
lisions, proximities to joint-limits and deviations from the
learned movement.

Figure 8 shows snapshots of the robot’s performance of
the pouring task. The top row shows the resulting trajectory
if the cost term that penalizes self-collisions is left out
during the optimization process. For the center row this
term is included. One can observe that in order to avoid
self-collisions between the right arm and the upper body,
the robot’s movement diverges from the optimal imitation
trajectory. Figure 9 illustrates this in more detail for the
relative position of both hands in direction of the Z axis.
With an increasing weight of the collision costs, the robot
diverges even more from the actual learned movement.
However, this behavior is limited to the high variant part
between timestep 0.5s to 1.5s. This shows that the variance
is explicitly exploited during the movement optimization in



order to diverge from less important rather than critical parts
of the learned movement. Further, it can be seen that the
robot performs the task in a more dynamic way than the
teacher showed it. The glass hand actively moves towards
the bottle. This is a wanted behavior that results from the
chosen task space that comprises relative positions.
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Fig. 9. The variant parts of the learned movement are tracked less
accurately if the weight of the collision criterion increases. Less variant and
therefore important parts of the learned movement task are still fulfilled
correctly

VII. CONCLUSION

We have presented a framework that allows a humanoid
robot to learn new movement tasks through imitation. Unlike
other imitation learning approaches, we employ task spaces
in order to avoid the correspondence problem, reduce the
dimensionality of the training data and to achieve a first
generalization. The movement task is defined through object
trajectories, which are observed using a marker-less stereo
vision system. Statistical information coming from multiple
task demonstrations is learned within Gaussian Mixture
Models.

For the reproduction of the movement task, a previously
introduced attractor-based movement optimization scheme is
utilized. This scheme is extended with a new cost term that
rates the similarity between the produced movement and the
learned one. This similarity criterion directly incorporates
the variance information from the learned representation.
This enables the robot to adapt to new situations and to
diverge from the learned movement in phases of high vari-
ance, while still fulfilling less variant and therefore more
important parts of the movement. Besides similarity, this
behavior therefore concurrently regards other criteria, such
as collision avoidance. We have presented an interactive
experiment with the humanoid robot ASIMO that confirms
this behavior.

The presented work provides a good starting point for
our future research in direction of imitation learning. Major
points will include the automatic determination of task
spaces, based not only on statistical information, but also on

interactive guidance and insights from parent-infant research.
Further, the interactive aspect is of great interest. The whole
imitation learning process should become a spontaneous
interaction rather than a fixed dialog.
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