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Abstract

So far, the research on optical flow has mainly concen-
trated on motion estimations using the observation of a
small number of temporal consecutive frames of an image
sequence. The dynamics of the flow field evolution is mostly
neglected. Our main concern is to stress that visual mo-
tion is a dynamic feature of an image input stream and the
more visual data has been observed the more precise and
detailed we can estimate and predict the motion contained
in the visual data. In this paper, we present a probabilistic
dynamical system that is suitable to recurrently infer visual
motion. The assumed flow dynamics fuses spatial smooth-
ness constraints and smoothness constraints along time and
scale. We propose a certain class of transition probability
functions which satisfy a probability mixture model and al-
low for an efficient approximate inference based on Belief
Propagation. We arrive at a compact and general algorithm
for optical flow filtering and realize one instance using fac-
tored Gaussian belief representations.

1. Introduction

Despite many years of progress, visual motion process-
ing inspires a lot of interest in researchers involved in under-
standing the principles of visual perception. Basic aspects
such as measuring optical flow investigating local smooth-
ness constraints have been widely studied. But what is most
striking about motion processing is its temporal dynamics.
This is obvious, because the environment perceived by a vi-
sual observer like a moving video camera or the human eye
is highly dynamic. Moving objects enter and leave the field
of view and also temporal changes of the camera position
and view point induce visual motion. Hence, suitable as-
sumptions about the dynamics of the visual scene and about
the correlations between local flow vectors are beneficial
for the estimation of visual motion. The main problem for
optical flow estimation is to resolve the ambiguities in the
measurement process. It is an ill-posed problem because of
noisy visual data and insufficient models that are assumed

for the relation between visual data and the optical flow. To
be able to model the ambiguities several authors propose
to introduce uncertainty, for example [13]. For this pur-
pose, the velocity of an image location and the images of
a sequence are understood as statistical signals. It allows
to explicitly consider noise in the measurement processes
and to incorporate prior knowledge about the state to be es-
timated. Usually, such priors incorporate smoothness as-
sumptions on the flow field. There are three basic smooth-
ness constraints often found in the literature: Smoothness
between image velocities defined 1) along different points
in image location, 2) different points in time, or 3) different
image scales. The most established method to reduce am-
biguities is the spatial smoothness constraint [8, 9]. This is
often accounted for by smoothness constraints for neighbor-
ing velocities assuming that all pixels within some spatial
neighborhood move similarly. Further improvements are
made using multiscale approaches [11, 4]. This is desirable,
e.g., for being able to represent both large and small veloc-
ities at coarse and fine resolutions with a reasonable effort.
Another important aspect of motion estimation is temporal
continuity. This has motivated several researchers [3, 7, 6]
to recursively estimate the optical flow over time including
a prediction model that defines some temporal relation be-
tween pixel movements. Recently, Markov Random Fields
regained great popularity to impose spatial smoothness pri-
ors on motion measurements [10]. On the contrary side, the
idea to treat optical flow estimation as a dynamical system,
like in Kalman-Filter approaches, received few considera-
tion, lately. Here, we propose to fuse both ideas - spatial
smoothness and smoothness along time and scale - into one
common predictive prior model. This allows the formu-
lation of a probabilistic dynamical system to infer visual
motion via spatiotemporal belief propagation. The main
contribution is the proposal of a certain class of transition
probability functions which satisfy a probability mixture
model and allow for temporal prediction along with spatial
smoothing. For this class of transitions we derive a com-
putationally tractable optical flow filter. We show results in
terms of accuracy, robustness and long range applicability
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Figure 1. A probabilistic directed graphical model for visual mo-
tion estimation. Here, t′ = t + 1 denotes next future timestep and
k′ = k + 1 denotes next finer scale. Observable nodes represent-
ing image data are shaded gray, hidden nodes representing optical
flows are colored white.

for a filter realization with a factored Gaussian belief repre-
sentation.

2. A dynamical system for motion estimation

Having all the different possibilities of motion disam-
biguation in mind, the question is how to unify them in one
general framework for motion estimation. In this section,
we derive a probabilistic solution which is computationally
tractable.

Dynamic Bayesian Network A Dynamic Bayesian Net-
work (DBN) is a directed graphical model of a dynamic
stochastic process. Here, we propose such a network as de-
picted in figure 1 to model the dynamics of visual motion.
The structure of the graphical model in figure 1 is similar
to a Markov Random field. The difference is that the edges
are directed. It tightly couples several Markov chains along
time that are defined for each scale k via Markov chains
along scale defined at each time step t. Note that the DBN
forces an independency structure. The probability that a
node is in one of its states depends directly only on the
states of its parents [14]. We assume a generative model
for the observables Ytk of an image sequence I1:T,1:K with
T images at equidistant points in time t ∈ T at K spatial
resolution scales k ∈ K with t′ = t + Δt and k′ = k + Δk
being the next time step and the next finer scale, respec-
tively. Without loss of generalization we define the time
intervals Δt = 1 and scale intervals Δk = 1 to be unity.
Here, the observable Ytk comprises image data of several
frames within a time interval around t at the same scale k.
For example, Ytk = (Itk, It′k) has to be at least a pair of

images with both images are defined over the same image
range Xk at the same scale k but at consecutive points in
time t and t′. Each image Itk consists of image intensities
Itk
x at each image position x ∈ X k . Similarly, the hidden

state Vtk is a flow field at time slice t and scale k defined
over the image range Xk with velocity vectors vtk

x at each
image position x.

Generative model The probabilistic generative model is
precisely defined by the following probabilities and factor-
ization assumptions: First, an initial prior for the flow field
at time t = 1 and scale k = 1

P (V11) =
∏
x

P (v11
x ) , (1)

defining some preference for the speed and direction of the
velocities in the flow field. Often this is chosen to be a prod-
uct of zero mean Gaussian distributions to prefer slow and
smooth velocities [13]. Second, the specification of the ob-
servation likelihood for the images Ytk given the flow Vtk

for all times t ∈ T and scales k ∈ K

P (Ytk|Vtk) =
∏
x

�(Ytk,vtk
x ) . (2)

This factorisation assumption is somewhat unusual because
we do not assume the image observation to factorize in pixel
observations but assume the observation likelihood to fac-
torize in the velocities only. And third, the specification of
the transition probabilities for the flow fields Vt′k′

at the
new timestep t′ at finer scale k′ given the flow field Vt′k at
the same time t′ but coarser scale k and the flow field Vtk′

from last time t but at the same scale k′. For the first time
slice t = 1 and the coarsest scale k = 1 the transitions are
conditioned only on one flow field V1k or Vt1.

P (V1k′
|V1k) ∝

∏
x

φk(v1k′
x ,V1k) , (3)

P (Vt′1|Vt1) ∝
∏
x

φt(vt′1
x ,Vt1) , (4)

P (Vt′k′ |Vt′k,Vtk′
) ∝

∏
x

φk(vt′k′
x ,Vt′k) ×

φt(vt′k′
x ,Vtk′

) . (5)

These equations explicitly express that the probability dis-
tribution for each flow field factorizes into independent dis-
tributions for each velocity vector. Nevertheless, although
each velocity vector is not dependent on velocity vectors
from the flow field at the same time and scale it heavily
depends on all the velocity vectors from the flow fields at
coarser scale and past time. Further on, the conditional de-
pendence P (vt′k′

x |Vt′k,Vtk′
) can be split in two pairwise

potentials φk, φt. This will allow us to maintain only fac-
tored beliefs during inference, which makes the approach
computationally practicable.
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Figure 2. Pairwise potentials of the scale-time transition.

A general class of flow field transitions To further spec-
ify the generative model we have to define the formulas for
the prior (1), the observation likelihood (2), and the transi-
tions (5). A concrete example is given in the next section
3. For the flow field transitions in equation (5) we propose
a certain class of transition probability functions which sat-
isfy a probability mixture model. Equation (5) consists of
two pairwise potentials. The first potential φt(vt′k′

x ,Vtk′
)

assumes that the flow field at every spatial scale k trans-
forms from t → t′ according to itself. The second potential
φk(vt′k′

x ,Vt′k) realizes a refinement from coarser to finer
scale k → k′ at every time t′. A sketch of the information
flow is shown in figure 2. To motivate the temporal tran-
sition factor φt(vt′k′

x ,Vtk′
) we assume that the direction

and speed of a flow vector vt′k′
x at position x at time t′ is

functionally related to a previous flow vector vtk′
x′ at some

corresponding position x′ at time t,

vt′k′
x ∼ ft(vt′k′

x ,vtk′
x′ ; θt) . (6)

Now, asking what the corresponding position x′ in the pre-
vious image was, we assume that we can infer it from the
flow field itself as follows

x′ ∼ fxt(x′,x − vt′k′
x ; θxt) . (7)

In principle ft and fxt can be any arbitrary functions that
define the relation between spatiotemporally neighboring
velocities. The free parameters θt and θxt allow for adapta-
tion of the temporal and spatial relations, respectively. Note
that here we use vt′k′

x to retrieve the previous correspond-
ing point x′. This is a suitable approximation as long as the
similarity vt′k′

x ≈ vtk′
x′ is not heavily violated. Combining

both factors (6) and (7) and integrating x′ leads to the first
pairwise potential

φt(vt′k′
x ,Vtk′

) =
∑
x′

fxt(x′,x−vt′k′
x ; θxt)ft(vt′k′

x ,vtk′
x′ ; θt) .

(8)
Equivalent to (6) for the scale transition factor
φk(v1k′

x ,V1k) we assume that the origin of a flow
vector vt′k′

x at position x at finer scale k′ corresponds to a
flow vector vt′k

x′′ from coarser scale k at some corresponding
position x′′,

vt′k′
x ∼ fk(vt′k′

x ,vt′k
x′′ ; θk) . (9)

Since it is uncertain how strong a position x′′ at coarser
scale k influences the velocity estimate at position x at finer
scale k′, we assume that we can infer it from the neighbor-
hood similar to (7)

x′′ ∼ fxk(x′′,x; θxk) . (10)

The considerations for the scale transition are analogous to
the ones for the temporal transition. Again, combining both
factors (9) and (10) and integrating x′′ we get the second
pairwise potential

φk(vt′k′
x ,Vt′k) =

∑
x′′

fxk(x′′,x; θxk)fk(vt′k′
x ,vt′k

x′′ ; θk) ,

(11)
that imposes a spatial smoothness constraint on the flow
field via spatial weighting of motion estimations from
coarser scale. The combination of both potentials (8) and
(11) results in the complete conditional flow field transition
probability as given in (5). The transition factors (8) and
(11) allow us to unroll two different kinds of spatial con-
straints along the temporal and the scale axes (see figure 2)
while adapting the free parameters for scale and time tran-
sition differently. This is done by splitting not only the tran-
sition in two pairwise potentials, one for the temporal- and
one for the scale-transition, but also every potential in it-
self in two factors, one for the transition noise and the other
one for an additional spatial constraint. In this way, the cou-
pling of the potentials (8) and (11) realizes a combination of
(A) scale-time prediction and (B) an integration of motion
information neighboring in time, in space, and in scale.

Inference The overall data likelihood
P (Y1:T,1:K ,V1:T,1:K) is assumed to factorize as de-
fined by the directed graph shown in figure 1

P (Y1:T,1:K ,V1:T,1:K) =
T∏

t=1

K∏
k=1

P (Ytk|Vtk)P (V11)×

T−1∏
t=1

P (Vt′1|Vt1)
K−1∏
k=1

P (V1k′|V1k)P (Vt′k′|Vt′k,Vtk′
) .

(12)



What we are usually interested in is the probability for some
flow field given all the data aquired so far. For the forward-
backward filtered (offline) case [2] where all future and past
data of a sequence is accessable this would be the probabil-
ity P (Vtk|Y1:T,1:K). For the forward filtered (online) case
[2] where only the past data is accessable the probability
P (Vtk|Y1:t,1:K) would be interesting. To infer these prob-
abilities, Bayes’ rule and marginalization has to be applied.
For the offline case this reads

P (Vtk|Y1:T,1:K) =
∑

V1:T,1:K

\Vtk

P (Y1:T,1:K,V1:T,1:K)
P (Y1:T,1:K)

, (13)

where we used \ as the notation for excluding Vtk from the
set of optical flow fields V1:T,1:K . The online case neglects
future observations and simplifies to

P (Vtk|Y1:t,1:K) =
∑

V1:t,1:K

\Vtk

P (Y1:t,1:K ,V1:t,1:K)
P (Y1:t,1:K)

. (14)

Either for the online or offline case, the direct computation
of the marginals using equation (13) or (14) would take ex-
ponential time [14]. One solution to this problem is Belief
Propagation which is an efficient approximate inference al-
gorithm especially applicable if the graph has a lot of loops
and many hidden nodes like it is the case for our graphical
model for dynamic motion estimation (see figure 1).

Approximate inference using Belief Propagation
Here, we propose an approximate inference algorithm based
on Belief Propagation (BP) and restrict ourselves to the
online case (14) since its extension to the offline case is
straightforward [2]. The marginal probabilities that are now
computed only approximately are called beliefs and here we
use α’s as the notation for forward filtered beliefs

α(vtk
x ) ≈ P (vtk

x |Y1:t,1:K) . (15)

Let us start with the inference of the flow field at first time
slice t = 1 and coarsest scale k = 1 just having access to
the observable Y11. Applying Bayes’ rule we get

α(v11
x ) = P (v11

x |Y11) =
�(Y11,v11

x )P (v11
x )

P (Y11)
. (16)

This is the initial belief that has to be propagated along time
and scale. To derive an approximate forward filter suitable
for online applications we propose the following message
passing scheme [14] that realizes a recurrent update of the
beliefs. Let us assume, we isolate one time slice at time t
and neglect all past and future beliefs, then we would have
to propagate the messages mk→k′ from coarse to fine and
the messages mk′→k from fine to coarse to compute a be-
lief over the scale Markov chain. Similarly, if we isolate

one scale k for all time slices and neglect all coarser and
finer beliefs, then we would have to propagate the messages
mt→t′ from the past to the future and the messages mt′→t

from the future to the past to compute a belief over the tem-
poral Markov chain. For the realization of a forward scale-
time filter, we combine the forward passing of temporal
messages mt→t′ and the computation of the likelihood mes-
sages mY →v = �(Yt′k′

,vt′k′
x ) at all scales k. As a simplifi-

cation we restrict ourselves to propagating messages only in
one direction k → k′ and neglect passing back the message
mk′→k. The consequence of this is that not all the V-nodes
at time t have seen all the data Y1:t,1:K but only all past data
up to the current scale Y1:t,1:k. This reduces computational
costs but the flow field on the finest scale Vt,K is now the
only node that sees all the data Y1:t,1:K . Nevertheless, we
also tested passing back the messages mk′→k which only
slightly improved the accuracy but increased computational
costs.

More precisely, the factored observation likelihood and
the transition probability we introduced in (2) and (5) ensure
that the forward propagated joint belief

P (Vt,1:K |Y1:t,1:K) =
∏
x

P (vt,1:K
x |Y1:t,1:K) (17)

will remain factored. Similar to BP in a Markov Random
Field, we assume independency for all neighboring nodes
in the Markov blanket. This means the belief over Vtk and
Vtk′

at time t is assumed to be factored which implies that
also the belief over Vt′k and Vtk′

factorizes.

P (Vt′k,Vtk′
|Y1:t′,1:k′

\ Yt′k′
) = (18)

P (Vt′k|Y1:t′,1:k)P (Vtk′
|Y1:t,1:k′

) =
∏
x

α(vt′k
x )α(vtk′

x ) ,

where we used \ as the notation for excluding Yt′k′
from

the set of measurements Y1:t′,1:k′
. The two-dimensional

forward filter propagates the belief over Vt′k and Vtk′
from

(18) via multiplying with the scale-time transition (5) and
marginalizing over Vt′k and Vtk′

. The result is multiplied
with the new observation likelihood (2) and normalized by
P (Yt′k′

) to get the updated belief as shown in equations
(19)-(22).

As can be seen, the complete scale-time forward filter
can now be defined by the computation of updated beliefs
α as the product of incoming messages,

α(vtk
x ) ∝ mY →v(vtk

x ) mk→k′ (vtk
x ) mt→t′(vtk

x ) . (23)

Inserting the proposed class of temporal transitions (8) into
(22) leads to the derivation of the temporal message equa-
tion

mt→t′(vt′k′
x ) =

∑
Vtk′

φt(vt′k′
x ,Vtk′

)
∏
x

α(vtk′
x ) , (24)



P (vt′k′
x |Y1:t′,1:k′

) = 1
P (Yt′k′ ) �(Yt′k′

,vt′k′
x )

∑
Vt′k

∑
Vtk′

P (vt′k′
x |Vt′k,Vtk′

)P (Vt′k,Vtk′
|Y1:t′,1:k′

\ Yt′k′
) , (19)

α(vt′k′
x ) ∝ mY →v(vt′k′

x )
∑
Vt′k

∑
Vtk′

︷ ︸︸ ︷
φk(vt′k′

x ,Vt′k)φt(vt′k′
x ,Vtk′

)
︷ ︸︸ ︷∏
x

α(vt′k
x )α(vtk′

x ) , (20)

∝ mY →v(vt′k′
x )

∑
Vt′k

φk(vt′k′
x ,Vt′k)

∏
x

α(vt′k
x )

︸ ︷︷ ︸

∑
Vtk′

φt(vt′k′
x ,Vtk′

)
∏
x

α(vtk′
x )

︸ ︷︷ ︸
, (21)

∝ mY →v(vt′k′
x ) × mk→k′ (vt′k′

x ) × mt→t′(vt′k′
x ) . (22)

=
∑
Vtk′

∑
x′

fxt(x′,x− vt′k′
x ; θxt) ×

ft(vt′k′
x ,vtk′

x′ ; θt)
∏
x

α(vtk′
x ) , (25)

=
∑
vtk′
x

∑
x′

fxt(x′,x− vt′k′
x ; θxt) × (26)

ft(vt′k′
x ,vtk′

x′ ; θt)α(vtk′
x )

∑
Vtk′

\vtk′
x′

∏
z�=x′

α(vtk′
z )

︸ ︷︷ ︸
1

,

=
∑
x′

fxt(x′,x − vt′k′
x ; θxt) ×

∑
vtk′
x

ft(vt′k′
x ,vtk′

x′ ; θt)α(vtk′
x′ ) . (27)

Note that the summation
∑

Vtk′ is summing over all pos-
sible flow fields, i.e.

∑
Vtk′ represents Xk summations∑

vtk′
1,1

∑
vtk′

1,2

∑
vtk′

2,1
· · · over each local flow field vector.

We separated these into a summation
∑

vtk′
x′

over the flow

field vector at x′ and a summation
∑

Vtk′\vtk′
x′

over all other

flow field vectors at x �= x′. Then, we use the equivalence∑
Vtk′\vtk′

x′

∏
z�=x′ α(vtk′

z ) =
∏

z�=x′
∑

vtk′
z

α(vtk′
z ) = 1.

Similarly, we arrive at the scale message if we insert the
scale transition (11) into (22)

mk→k′ (vt′k′
x ) ∝

∑
x′

fxk(x′,x; θxk) × (28)

∑
vt′k
x

fk(vt′k′
x ,vt′k

x′ ; θk)α(vt′k
x′ ) .

Finally, the three equations (23), (27), and (28) define a
tightly coupled scale-time forward filter for visual motion
estimation. It realizes a probabilistic recurrent estimation
of a set of flow fields Vt,1:K with different resolutions k
swept along the time dimension t. The following pseudo-
code shows the compact form of the derived scale-time filter

Algorithm 1 Pseudo-code for the scale-time filter

Initialize the priors α(v0,1:K
x )

for t′ = 1 to T do
for k′ = 1 to K do

for x = 1 to Xk′
do

Compute the messages
mY →v(vt′k′

x )
mt→t′(vt′k′

x ) according to equation (27)
mk→k′ (vt′k′

x ) according to equation (28)
Update the beliefs
α(vt′k′

x ) according to equation (23)
end for

end for
end for

suitable for an algorithmic implementation. What remains
to be done, is the specification of the observation likelihood
(2) and the potentials of the transition probability (8) and
(11).

3. The Gaussian filter realisation

Now, we define the observation likelihood and the tran-
sitions in such a way that we are left with a purely Gaus-
sian belief representation. This results in a filter similar to
an extended Kalman Filter only propagating means and co-
variances along scale and time.

Gaussian observation likelihood We follow a similar
argumentation as Simoncelli et al. [12] to obtain the �(vtk

x )-
factors (2) of the observation likelihood. However, our
likelihood results from a generative model assuming that
a scalar field patch of temporal derivatives Itk

t,x ∈ R
Xk×1

centered around x is generated by the velocity vtk
x ∈ R

2×1

at position x and the gradient field patch (∇Itk
x )T ∈ R

Xk×2

centered around the same position x. While introducing this
model based on patches around position x instead of only
the pixel at position x itself we imply that the optical flow is
locally constant in a sense similar to the Lucas-Kanade con-
straint [9]. Additionally, we assume i.i.d. additive Gaussian



noise st, Sv on the temporal derivatives and the flow field,
respectively.

�(vtk
x ) = N (−Itk

t,x|(∇Itk
x )T vtk

x ,Σtk
�,x) , (29)

Σtk
�,x =

⎛
⎜⎜⎜⎝

. . . . . . 0
... σtk

�,xx′
...

0 . . .
. . .

⎞
⎟⎟⎟⎠ , (30)

σtk
�,xx′ =

(∇Itk
x′ )T Sv∇Itk

x′ + st

f�(x′,x, t, k)
. (31)

In notation (29), the patches can be regarded as vectors
and the covariance matrix Σtk

�,x is a diagonal with entries
σtk

�,xx′ that depend on the position x′ relative to the center
x, the time t, the scale k, the flow field covariance Sv and
the variance on the temporal derivatives st. Here, f� takes
into account the spatial uncertainty of the velocity measure-
ment and can implement any kind of spatial weighting. The
likelihood formulation defines multivariate Gaussian dis-
tributions for vectors that describe image patches centered
around image locations. Allowing for uncertainties Σtk

�,x

that are adaptive in location x, scale k and time t we are able
to tune the local motion measurements dynamically e.g. de-
pendent on the underlying structure of the intensity patterns.

Mixture of Gaussians transition For the temporal con-
traint (6) we now chose a Gaussian

vt′k′
x ∼ N (vt′k′

x |vtk′
x′ , σt) , (32)

which says that the change in time of the flow field is white
with undirectional transition noise between Vtk′

and Vt′k′
.

For the spatial interaction (7) an inhomogeneous anisotropic
Gaussian is assumed

x′ ∼ N (x′|x − vt′k′
x ,Σtk

t,x) . (33)

to be able to steer the orientation and to adapt the strength
of the uncertainty in spatial identification Σtk

t,x between cor-
responding positions in time. Combining both factors (32)
and (33) and integrating x′ we get a Mixture of Gaussians
(MoG) as the first pairwise potential (8)

φt(vt′k′
x ,Vtk′

) =
∑
x′

N (x′|x − vt′k′
x ,Σtk

t,x) ×

N (vt′k′
x |vtk′

x′ , σt) , (34)

with the Gaussian spatial coherence constraint being the
mixing coefficients. Equivalent to (32) for the scale tran-
sition factor (11) we chose a Gaussian

vt′k′
x ∼ N (vt′k′

x |vt′k
x′′ , σk) , (35)

assuming white transition noise σk. The influence of neigh-
boring velocity states from coarser scale is also modelled as
an adaptive Gaussian kernel similar to (33)

x′′ ∼ N (x′′|x,Σtk
k,x) . (36)

Again, combining both factors (35) and (36) and integrating
x′′ we get a MoG as the second pairwise potential

φk(vt′k′
x ,Vt′k) =

∑
x′′

N (x′′|x,Σtk
k,x)N (vt′k′

x |vt′k
x′′ , σk) ,

(37)
that imposes a spatial smoothness constraint on the flow
field via adaptive spatial weighting of motion estimations
from coarser scale. The combination of both potentials (8)
and (11) results in the complete conditional flow field tran-
sition probability as given in (5).

Approximate inference To arrive at a Gaussian belief
we introduce a last approximative restriction. We want ev-
ery factor of the posterior probability (23) to be Gaussian
distributed

α(vtk
x ) ∝ mY →v(vtk

x ) mt→t′(vtk
x ) mk→k′ (vtk

x )
:≈ N (vtk

x |μtk
x ,Σtk

x ) . (38)

We fulfill this constraint by making all single messages
Gaussian distributed. This already holds for the observation
likelihood mY →v(vtk

x ). A more accurate technique (fol-
lowing assumed density filtering) would be to first compute
the new belief α exactly as a MoG and then collapse it to
a single Gaussian. However, this would mean extra costs.
Here, we do not investigate the tradeoff between computa-
tional cost and accuracy for different collapsing methods.
Inserting Gaussian distributed beliefs α into the propaga-
tion equations (27), (28) leads to two different MoGs for
the resulting messages

mt→t′(vt′k′
x ) =

∑
x′

p̂t′k′
x′ N (vt′k′

x |μ̂t′k′
x′ , Σ̂t′k′

x′ )

≈ N (vt′k′
x |ωt′k′

x ,Ωt′k′
x ) , (39)

with

p̂t′k′
x′ = N (x − x′|μtk′

x′ , Σ̌tk′
x′ ) , (40)

μ̂t′k′
x′ = (σt + Σtk′

x′ )Λ̌tk′
x′ (x − x′) + Σtk

t,xΛ̌
tk′
x′ μtk′

x′ , (41)

Σ̂t′k′
x′ = Σtk

t,xΛ̌
tk′
x′ (σt + Σtk′

x′ ) , (42)

Σ̌tk′
x′ =

[
Λ̌tk′

x′

]−1

= σt + Σtk
t,x + Σtk′

x′ , (43)

and

mk→k′ (vt′k′
x ) =

∑
x′′

pt′k′
x′′ N (vt′k′

x |μt′k
x′′ ,Σ

t′k′

x′′ )

≈ N (vt′k′
x |πt′k′

x ,Πt′k′
x ) , (44)

with

pt′k′
x′′ = N (x′′|x,Σtk

k,x) , Σ
t′k′

x′′ = σk + Σt′k
x′′ . (45)

In order to satisfy the Gaussian constraint formulated in
(38) the MoG’s are collapsed into single Gaussians (39),



(44) again. This is derived by minimizing the Kullback-
Leibler Divergence between the given MoG’s and the as-
sumed Gaussians for the means ωtk

x , πtk
x and the covari-

ances Ωtk
x ,Πtk

x which results in closed-form solutions for
these parameters. The final predictive belief α(vtk

x ) follows
from the product of these Gaussians

α(vtk
x ) = �(vtk

x ) N (vtk
x |μ̃tk

x , Σ̃tk
x ) , (46)

Σ̃tk
x = Πtk

x

[
Πtk

x + Ωtk
x

]−1
Ωtk

x , (47)

μ̃tk
x = Ωtk

x

[
Πtk

x + Ωtk
x

]−1
πtk

x +

Πtk
x

[
Πtk

x + Ωtk
x

]−1
ωtk

x . (48)

By applying the approximation steps (38), (39) and (44) we
guarantee the posterior (23) to be Gaussian which allows for
Kalman-filter like update equations since the observation is
defined to factorize into Gaussian factors (29). The final
recurrent motion estimation is given by

α(vtk
x ) = N (vtk

x |μtk
x ,Σtk

x ) (49)

= N (−Itk
t,x|(∇Itk

x )T vtk
x ,Σtk

�,x) ×
N (vtk

x |μ̃tk
x , Σ̃tk

x ) , (50)

Σtk
x =

[
Λ̃tk

x + ∇Itk
x Λtk

�,x(∇Itk
x )T

]−1

, (51)

μtk
x = μ̃tk

x − Σtk
x ∇Itk

x Λtk
�,xĨ

tk
t,x . (52)

The innovations process can be approximated as the follow-
ing

Ĩtk
t,x ≈ ∂/∂tT

(
Itk
x , μ̃tk

x

)
, (53)

with T applying a backward warp plus bilinear interpola-
tion on the image Itk

x using the predicted velocities μ̃tk
x

from (48). We end up with a Gaussian scale-time filter
which is related to an extended Kalman Filter since the re-
sult of the nonlinear transitions is linearized after each mes-
sage pass with the collpase of each MoG to a single Gaus-
sian.

4. Evaluation

We present some performance results based on the
Yosemite benchmark and real world sequences to argue the
applicability of our probabilistic scale-time filter. The co-
variances Σtk

I,x, Σt′k
t,x, Σtk′

k,x of the different Gaussian ker-
nels are chosen to be equivalent to an edge enhancing diffu-
sion tensor Dtk

x at different scales and times. All other pa-
rameters are fixed during runtime. In table 1 we report some
error statistics for the cloudless Yosemite sequence using the
same error measures as proposed by [1] and added the re-
sults of Simoncelli [11]. As can be seen, we are able to keep
up with the accuracy of recent optical flow methods. The
overall performance with an average angular error (AAE) of
1.52◦ keeps up with high accuracy optical flow techniques,
like the CLG method of Bruhn et al. [5]. Looking at the

technique
frame

number
angular
error all

angular
error disc

angular
error untext

Lukas & Kanade 2 6.41◦ 7.02◦ 10.8◦

LP Registration 2 4.51◦ 5.48◦ 3.95◦

Horn & Schunk 2 4.01◦ 5.41◦ 1.95◦

Simoncelli 2 3.81◦ − −
Dynamic MRF 2 3.63◦ 5.29◦ 4.62◦

Black & Anandan 2 2.61◦ 4.44◦ 2.15◦

2D CLG 2 1.76◦ 3.14◦ 1.46◦

our approach 8 1.52◦ 3.07◦ 1.53◦

Table 1. Results of state-of-the-art methods for the cloudless
Yosemite sequence and our results for a batch of 8 frames applying
6 filter steps in time t and 3 along scale k.

Figure 3. Time lapse of the average angular error for (A) the non-
adaptive method over scale (B) the adaptive method over scale (C)
the nonadaptive method and (D) the complete adaptive forward
method.

performance only at the motion discontinuities like given in
[1] the AAE is with 3.07◦ quite low. Nevertheless, in un-
textured regions the CLG method that includes the global
optical flow constraint of Horn and Schunk [8] gets bet-
ter results with an AAE of 1.46◦ compared to 1.53◦ us-
ing our approach which has no additional global constraint
in the observation likelihood measurement. The explana-
tion for that is as follows: The probabilistic filter takes into
account neighboring measurements for optical flow predic-
tions to the next time frame. Therefore, it realizes a filling-
in process over time via a predictive prior but without a fur-
ther global smoothness constraint on the measurement. The
more data is processed over time the larger is the propaga-
tion range into untextured regions. Thus, for a small num-
ber of filter steps, such an incorporation of local smoothness
propagating along image location in time seems to be less
effective than a direct incorporation like obtained via the
Horn and Schunk constraint.

Another result is shown in Fig. 3. Here, the performance
for different graduations of the filter is shown. (A) and (B)
are the time lapses for a belief propagation filter only along
scale which neglects the temporal messages mt→t′ . In case
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Figure 4. Motion estimation examples computed with the proposed scale-time filter along an image sequence comprising 62 frames.

(A) the spatial filters are not adapted and in case (B) they are
adapted dependent on the diffusion tensor. In case (C) the
forward filter results are shown without uncertainty adapta-
tion to the local structure and in (D) the forward filter re-
sults with uncertainty adaptation can be seen. Both, the lo-
cal adaptation and the spatiotemporal prediction via mt→t′

improves the performance.
Taking a closer look at the time lapse of the AAE for the

adaptive purely scale-propagation filter (B) compared to the
time lapse of the AAE for the adaptive forward filter (D)
it turns out that the mean and the standard deviation std
of the AAE for all frames are higher for the time-isolated
scale filter mean = 3.64, std = 0.29 compared to the
time-dependent forward filter mean = 2.18, std = 0.25.
This means, beside large variations of the AAE over time
because of changing errors at motion boundaries reflected
in changing observation likelihood measurements our filter
reduces the variance of the AAE over time. Such kind of
improvement is not possible for methods that are based on
an isolated batch of images which do not allow for estima-
tion changes because of new arriving evidence.

A real world example is given in figure 4. Estimation re-
sults for the moving mouth sequence are shown that contains
62 frames and shows mouth movements of spoken words.
The scale-time filter adapts to the motion changes over time
and produces smooth estimation results without outliers.

5. Conclusion

One key capability of a motion estimation system is the
adaptability to temporal and structural changes. This is due
to the fact that variations happen in observer motion, in ob-
served object motion, and in spatial resolution as moving
objects come closer to the observer and detailed texture be-
comes more apparent. We presented a new recurrent filter
for optical flow estimation which incrementally improves
the estimation accuracy based on scale-time predictions and
adapts to the structure of the observed scene. The main ad-
vantage of the method lies in the online applicability and
the adaptation to movement changes similar to object track-
ing approaches. In particular, the proposed filter realises a
probabilistic tracking of the whole dense optical flow field.
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