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Teaching a Humanoid Robot: Headset-Free Speech Interaction for

Audio-Visual Association Learning

Martin Heckmann1, Holger Brandl1,2, Jens Schmuedderich1, Xavier Domont1,3, Bram Bolder1,

Inna Mikhailova1, Herbert Janssen1, Michael Gienger1, Achim Bendig1, Tobias Rodemann1,

Mark Dunn1, Frank Joublin1, Christian Goerick1

Abstract— Based on inspirations from infant development we
present a system which learns associations between acoustic
labels and visual representations in interaction with its tutor.
The system is integrated with a humanoid robot. Except for
a few trigger phrases to start learning all acoustical repre-
sentations are learned online and in interaction. Similar, for
the visual domain the clusters are not predefined and fully
learned online. In contrast to other interactive systems the
interaction with the acoustic environment is solely based on the
two microphones mounted on the robots head. In this paper we
give an overview on all key elements of the system and focus on
the challenges arising from the headset-free learning of speech
labels. In particular we present a mechanism for auditory
attention integrating bottom-up and top-down information for
the segmentation of the acoustic stream. The performance of
the system is evaluated based on offline tests of individual parts
of the system and an analysis of the online behavior.

I. INTRODUCTION

While pursuing the goal of developing an autonomous in-

telligent system taking inspirations from infant development

is a very promising road. Even though the balance between

nature and nurture is an open issue, the strong role the

interaction with its caregiver, i.e. nurture, plays in a child’s

development is undeniable. Translated to the development of

intelligent systems it is clear that many of the abilities one

expects from such a system should be learned in interaction.

Previously we developed a system which enabled our

humanoid robot ASIMO to learn associations of predefined

relative position clusters (”left”, ”right”, ...) with speech

labels as well as associations between robot motions (”for-

ward” and ”return”) with speech labels [1]. The two major

improvements we present here are that the visual clusters are

not predefined anymore but learned online and that the acous-

tic interaction is now completely based on the microphones

mounted on ASIMO . The latter required the introduction of

a model for auditory attention, i.e. which sounds to interpret

and which not. Many approaches to improve the speech

signal on robotic systems and models of auditory attention

exist, but to our knowledge none of these was successfully

integrated in a truly interactive system where the robot was
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moving and listening at the same time [2], [3], [4], [5]. Due

to the unfavorable acoustic conditions on a mobile robot

almost all current robotic systems use a headset mounted

close to the speakers mouth when interacting with a robot

[6], [7], [8] (see [2] for a headset free interaction in a stop-

perceive-act paradigm).
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Fig. 1. Overview of the system with a focus on the sensory and
representation parts. See [1] for details on the general architecture.

Fig. 1 shows an overview of our system where the focus

is set on the sensory and representation parts. The general

architecture is described in more detail in [1]. The following

sections will describe the main building blocks, i.e. auditory

and visual attention, online learning of speech labels and

visual clusters, association building, and behavior generation.

In the last sections we will evaluate sub-parts of our system

on offline data and interpret the online behavior. To make the

following details on the different modules more accessible

we firstly describe the kind of human-robot interaction our

system allows for.

II. INTERACTING WITH ASIMO

The design of our system targets on bootstrapping mul-

timodal representations with minimal initial knowledge and

enabling a continuous development by learning in interaction

with a tutor. For instance our system can learn a cluster in

the relative visual position space, an arbitrary speech label,

and the association between both. To focus our system’s

attention to particular characteristics of a scene we use some

phrases which can trigger a learning session, e.g. ”Learn
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where this object is.”. A typical learning session consists of

the following steps:

1) The tutor enters the interaction range of ASIMO so that

it either sees the tutor or an object he is presenting.

2) The tutor utters one of the predefined learning phrases

to teach categories as relative position, size, or a label

to a movement of ASIMO.

3) The tutor presents an instance of the cluster to be

learned, e.g. by showing and moving an object in the

left field of view of ASIMO, while uttering the label

he wants to associate to this cluster a few times (5-8).

4) When the tutor keeps silent for a few seconds the

system ends the learning session and shows only

reactive behavior.

To evaluate what the system has learned the tutor presents an

object in one of the learned clusters and utters the associated

label. If the active cluster and the recognized cluster do

match ASIMO nods with its head. Otherwise ASIMO shakes

its head and continues trying to find matches. If in a given

time the match is found ASIMO finally nods and disables the

expectation.

III. VISUAL ATTENTION

To cope with the concurring stimuli impinging continu-

ously on our eyes and ears our brain disposes of mechanisms

to selectively focus on only a few stimuli at the time, a

process usually referred to as attention. Common models

of attention, auditory or visual, comprise a stimulus driven

bottom-up saliency stage and a top-down modulation to

enhance or suppress certain types of stimuli [9], [10]. Our

visual attention system is mainly bottom-up driven and

based on the concept of proto-objects. Proto-objects are

regions in the visual field that are formed by a common

grouping feature, can be tracked over multiple images, and

are stabilized both in space and time. Grouping features used

are depth, proper motion, planar surfaces, and similarity to

a given color (see [11] for more details). The visual scene

description consists of a (possibly empty) set of possibly

interesting entities that are close to the robot, move, are large

planes, have a certain color, or any possible combination

of these. From the set of proto-objects one is selected for

interaction, i.e. ASIMO can point, walk, and gaze towards

them. There is no need for any object recognition in order

for ASIMO to start interacting, although it can be used to

modify behaviors [12].

Mainly objects in the peri-personal range, i.e. very close

to the robot and covering a large amount of its field of view,

are represented as proto-objects. With these proto-object in

its peri-personal range the robot does interact. The concept of

peri-personal range reflects observations from the way small

children perceive the world [13]. Additionally, the proto-

object concept also covers visual stimuli in an inter-personal

distance (here 1 - 2 m away). Their instantiation is solely

based upon proximity, i.e. depth. They are not interacted

with by the robot, but are used as top-down information for

the auditory attention.

IV. AUDITORY ATTENTION

The purpose of our auditory attention mechanism is to

decide based on bottom-up signal information and top-down

modulation to which auditory events ASIMO should listen,

i.e. segment them and transfer them to the recognition, and

which to ignore (compare Fig. 2).
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Fig. 2. Overview on the auditory attention model

When interacting without a headset with ASIMO a mul-

titude of noise sources have to be dealt with. Stationary

background noise from the computers in the room or the

air-conditioning can be treated with conventional spectral

subtraction methods. When ASIMO turns its head during

interaction the microphones on ASIMO’s head change their

relative position to the noise generating fans in the back-

pack. This renders the noise of ASIMO’s fans instationary.

The noise emitted by the motors driving the arms and legs

motion are not only instationary but due to their proximity

to the ears of ASIMO they easily attain signal powers

above those of the speech signal. Additionally there is the

possibility of people speaking in the background. This can

not be distinguished from the interactors voice based on

spectral properties.
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Fig. 3. Comparison of the same sound signal recorded during interaction
with ASIMO once with a headset (a) and once with ASIMO’s ears (b). The
interactor is saying 3 times ”left”. The dashed lines indicate the detected
speech segments.

When comparing the headset recording in Fig. 3a with

the one from ASIMO’s ears (Fig. 3b) the high noise floor

due to the background noise and the fan noise can easily

be distinguished. The high energy signal in Fig. 3b just

before the first utterance of ”left” of the interactor is the first

movement of ASIMO’s arm when it points to the interactor.
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As can be seen from Fig. 3a in the headset recording this

signal is barely audible.

A. Bottom-Up Saliency

The first step in the auditory bottom-up saliency is a

contrast enhancement between the environmental noise and

the speech signal based on a modified two channel delay

and sum beamformer followed by an adaptive noise level

estimation.

1) Modified Delay and Sum Beamformer: In normal inter-

action ASIMO looks to the object presented by the interactor,

who typically presents the object in front of him. Hence one

can assume that the speech signal is always coming from the

looking direction of ASIMO. Therefore, when the head pan

angle is small we use a delay and sum beamformer assuming

a sound source at 0◦, i.e. we add the signals form the left and

right microphone. When ASIMO turns its head the Signal to

Noise Ratio (SNR) in the two ears is dramatically different.

For head pan angles of more than 20◦ it is better to use only

the microphone farthest away from the fans. The transition

between the two approaches is obtained via a continuous

blending between the two ears depending on the head angle

(compare Fig. 2).

2) Adaptive Noise Level Estimation: The basis of the

noise estimation is an adaptation of the Improved Minimum

Controlled Recursive Averaging (IMCRA) algorithm [14].

In contrast to the original implementation we transform

the signal via a Gammatone filterbank into the frequency

domain. The Gammatone filterbank constitutes a set of band-

pass filters modeling the properties of the human cochlea. In

the IMCRA algorithm the energy of the stationary parts of

the acoustic signal, i.e. the background noise, are estimated

and combined with the current signal energy to calculate an

instantaneous speech probability for each filter-bank channel.

The results of these contrast enhancement steps are depicted

in Fig. 4 and constitute the bottom-up saliency signal.
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Fig. 4. Visualization of the contrast enhancement for the signal shown in
3.b. In (a) the signal is shown after application of the adaptive beamformer
and transformation into the frequency domain via the Gammatone filterbank.
The result of the contrast enhancement, a frequency dependent speech
probability, is shown in (b). Dark colors indicate high probability.

B. Top-Down Modulation

After the bottom-up saliency calculation not only speech

but all non-stationary signal parts are salient, including

sounds produced by the movements of ASIMO (compare

Fig. 3a and b and Fig. 4b). To suppress these noise sources

additional top-down information is necessary to modulate the

bottom-up saliency.

1) Spectral Modulation: The first form of top-down in-

formation we use is the spectral characteristics of the noise

produced by ASIMO’s movements. Arm and leg movement

noise typically covers the speech signal for frequencies above

3.5 kHz. Additionally, leg movement noise has more energy

than the speech signal for frequencies below 400 Hz. For

the time being we only want to tune the auditory attention

to speech signals. Therefore, we have chosen a frequency

weighting of the bottom-up saliency which attenuates signals

below 400 Hz and above 3.5 kHz. To obtain the modulated

saliency signal the bottom-up saliency signal is multiplied

with the frequency weighting and summed over all frequency

channels. A threshold on this signal determines signal parts

to be salient and hence a possible start of a speech segment.

2) Ego-Motion Status: Additionally we use the movement

status of the robot to modulate the attention. We calculate

the speed of the arm and leg motion and adapt the respon-

siveness, i.e. the speech segment detection threshold, of the

attention system accordingly. The current setting allows the

interaction via speech while ASIMO is moving its arms or

makes small steps. However, when it walks or in the brief

but very noisy instant when it starts raising the arm from the

rest position it will only detect speech when shouted at.

3) Interaction Status: Another very important top-down

information we recruit is the current interaction status of

ASIMO which we determine based on the visual attention

system. When ASIMO neither sees an object in its peri-

personal space or a human in its inter-personal space it

assumes that nobody is interacting with it and hence it

raises the minimal activity threshold for its auditory attention.

Currently the threshold is raised up to a level where it

is not able to detect speech segments anymore. With this

mechanism the voices of people standing in the background

can be suppressed in non-interaction phases.

4) Minimum Segment Length: The final top-down modu-

lation factor we use is the minimum segment length. Many

sound events we want to ignore when focusing on speech are

rather short, e.g slamming of a door or something dropping to

the floor, and therefore can be rejected based on a minimum

length criterion. We use a minimum segment length of

110 ms. When we detect an activity in the modulated saliency

we accumulate the evidence for this time span and decide

at the end if we accept this as the start of a speech segment

which will be continued or if we reject it. Due to the latency

introduced in the overall system it is not advisable to prolong

the accumulation time much more even though this would

allow to reject more erroneous segments. As a result of

the rather long reverberation time in our robotics laboratory

(τ60 = 810 ms) this minimum segment length contributes

only to a smaller extend to the overall system performance.

The segmentation of the speech signal resulting from

the combination of the bottom-up saliency and the speech

oriented top-down modulation is visualized in Fig. 3b. As can

be seen the signal parts resulting from the arm movements

do not trigger the start of the segment.
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V. ACOUSTIC FEATURE EXTRACTION

The acoustic feature extraction is continuously running

and the segmentation obtained by the auditory saliency only

gates these features. As features we use a combination of

RASTA-PLP features [15] and the HIST features developed

by ourselves. We could show previously that this combi-

nation yields in the order of 20 − 40% better recognition

performance when compared to RASTA-PLP alone [16].

However, it is very difficult to measure this improvement

for an online system in free interaction.

VI. ONLINE LEARNING

Initially the system has only very little knowledge. The

visual clusters and the speech labels are fully learned in

interaction. To ease the use of our system, we have favored a

focused attention mechanism over unconstrained associative

learning. Learning of new clusters is only possible during

so called learning sessions, that allow the different percep-

tual modalities to accumulate sufficient samples for cluster

learning. Currently such sessions are triggered by uttering a

predefined criterion that constraints the non-speech attention

of our system to a certain visual object property (like its

size) or robot action. Within a session an object with the

property to be labeled is presented, and matching speech

labels are uttered several times. After a session has timed

out, speech and the visual subsystem in focus determine

the novelty of the current session to existing clusters. For

each pair of two associated clusters a weighted summation

of their activations is performed, forming a multimodal

novelty signal. These signals are returned to their originating

classifiers which individually decide whether the session

data should be represented by a new cluster or whether

the best matching cluster should be adapted. We call this

a local learning decision. Finally, newly created clusters

are associated with each other. The visual cluster learning,

association learning, and behavior organization will only be

explained to a level so that the reader can grasp the overall

behavior of the system. The focus is on the auditory aspects.

The remaining parts will be detailed elsewhere.

A. Online Word Learning

We apply Hidden Markov Models for speech represen-

tation, and the features described in Sec. V. Each speech

cluster is modeled as an 8 state HMM with Bakis-topology.

According to the local learning decision, either a new speech

model is learned or the best matching speech cluster is

updated. New speech clusters are initialized with the best

matching label model, and are subsequently estimated us-

ing segmental k-means training with the collected session

samples. If the target class in the teaching signal is already

modeled, the according speech cluster is updated with max-

imum a-posteriori training.

During decoding we use a combined search space that

includes HMM-subgraphs of already acquired label mod-

els, the above-mentioned predefined learning-criteria, and

a generic background model learned prior in interaction

as described in [17]. The latter equips our system with

the ability to reject Out Of Vocabulary (OOV) utterances.

Decoding results are accordingly split into commands used

to trigger the learning sessions and recognized labels. The

latter are combined to an activation vector which is passed

to the online association learning.

Speech novelty for a training session S = s1, · · · , sN

containing N samples of an auditory label is calculated as

follows. First, we determine the model λ̂ that best matches

to the session data as the model that maximizes the session

joint liklihood P (S|λ̂). Next, we approximate the proba-

bility density function pH(l
λ̂
(s)) with a Parzen-model with

Gaussian kernels estimated on the segments contained in H.

Hereby l
λ̂
(s) denotes the likelihood of a segment s given the

model λ̂ and H the set of segments used for the estimation

of l
λ̂

. In the same fashion we estimate the probability density

function pS(l
λ̂
(s)) based on the likelihoods of each element

in the training session S. Finally, a session is considered

to contain samples of a new, not yet represented word if

q0.3(pS) > q0.5(pH). Hereby qα(p) denotes the α-quantile

of a probability density function p.

B. Online Visual Cluster Learning

For learning of visual properties different features of the

currently focused proto-object are used, such as a vector of

its 3d position in heel coordinates or the absolute value of

its 3d size in camera-coordinates. However, the underlying

classifiers are identical.

Each cluster is represented by a multi-dimensional Gaussian,

consisting of a cluster-center and a covariance. The activation

of each cluster given some feature-vector is based on the

distance between the cluster-center and the feature vector,

integrated over time. The larger the distance, the lower the

cluster activation (refer to [11] for more details).

(a) (b)

Fig. 5. Image taken from ASIMO’s camera during learning of ”bottom” in
(a) and illustration of the construction of the clusters in (b).

At the end of each learning session, the feature-vectors

accumulated during the session are used to iteratively update

the mean value and the covariance of the cluster specified by

the local learning decision (compare Fig. 5). If the learning

decision indicates the creation of a new cluster, that cluster

is initialized with the mean value and covariance computed

from the collected data.

C. Online Associtation Learning

Initially, the system neither contains any clusters nor

associations. The learning of new associations assumes syn-

chronously presented clusters in two different modalities to

belong together. Therefore, the local learning decisions of

425



the speech and the visual classifier in focus can be used

to define the mapping between the two modalities. If both

classifiers vote for the creation of a new cluster these two

clusters are associated with each other. In the case where

only one learning decision demands the creation of a new

cluster this new cluster is associated with the already existing

one in the other modality.

D. Behavior Organization

The system’s behavior is organized in several parallel

layers of control (see [1] for more details). The lowest level

serves the whole body motion control of the robot, including

a basic conflict resolution for different target commands and

a self collision avoidance of the robot’s body. A reactive

behavior control implements task-unspecific interaction with

the environment. It is based on tracking of proto-objects as

sensory input and uses a competitive dynamics for arbitration

of about 20 alternative behaviors like point, grasp, gesture

and approach. Multiple behaviors can be active at any time

e.g. pointing with one hand while gesturing with another, but

behaviors also compete for execution if they are mutually

exclusive, e.g. nodding and shaking the head. The behavior

selection is based on two values for each behavior, a fitness

that describes the applicability of the behavior given the

environment and robot state and an external bias that allows

to suppress or boost specific behaviors by other control

layers. On top we built a layer that allows for an expectation-

driven behavior. In this implementation the speech recogni-

tion generates the expectation of the visual properties or the

activated behaviors. In case of expectation match the robot

nods using the bias mechanism. Otherwise, for a fixed period

of time the robot tries to resolve the mismatch by sending

an appropriate top-down signal to the reactive layer.

VII. RESULTS

First, we will present results we obtained from offline tests.

After this we will discuss the online performance of our

system.

A. Offline Tests

The first issue we want to investigate is how the word

recognition performance depends on the number of training

samples presented in the learning session. Therefore, we

recorded a database where our interactor uttered 21 different

words (e.g. ”left”, ”right”, ”top”, . . . ) each 20 times. While

doing so he was standing in our robotics laboratory (rever-

beration time τ60 = 810 ms) in front of the robot which was

turned on but not moving. Hence the recoding conditions

were very close, but due to the passive robot not identical, to

the ones faced in the interaction. In Fig. 6a it can be seen that

the recognition performance strongly depends on the number

of training samples used. Each Word Error Rate (WER)

value represents the mean of a 10-fold cross-validation. The

bars indicate the minimum and maximum value in each

validation step. From 7 examples on the performance is by

far sufficient to allow for a smooth interaction. Reasons for

the good recognition scores we see are certainly the quite
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Fig. 6. Word Error Rate (WER) results when the training size was varied
(a) and when the segment boundaries were changed (b).

small vocabulary (≈ 20 words) and the fact that we train

and test under the same conditions. It is well known that

such matched training has a much larger effect than most

preprocessing methods.

The next question we want to address is the influence of

the segmentation of the speech signal on the recognition per-

formance. The segmentation based on the auditory attention

can be erroneous either in the learning phase, the testing

phase or both. We investigated this by randomly varying the

detected segment start and stop boundaries. To avoid cutting

off parts of the speech signal segments were only prolonged

relative to the originally detected boundaries. Hence this

test reflects the sensitivity of the learning and recognition

algorithms on additional background noise at the start and

end of the segment. We altered the segment start and stop

points with noise from a folded Normal distribution, i.e.

Y ∼ |N(0, σ2)|, with varying variances. As can be seen from

Fig. 6b the word error rates increase rapidly with increasing

variance. The tests are based on 10 training samples and

again a 10-fold cross-validation. Alterations of the segments

only in the training phase has only a rather small impact

on performance. From this we conclude that the learning

algorithm can cope quite well with additional noise at the

beginning and end of the segment which can be due to the

averaging over 10 segments in the learning phase. However,

when the segment boundaries are also altered in the testing

the performance decreases significantly. We obtain the worst

results if the segment boundaries are only altered in the

testing. In this case already a variance of 0.2 increases the

error rates 7 times (from 0.2% to 1.4%, compared to 0.8%

with modifications in training and testing and 0.3% only

in training). The results clearly demonstrate the importance

of the auditory attention system and the need for correct

segmentation of the audio stream.

Finally we evaluated the performance of the novelty de-

tection. As outlined in section VI-A its performance depends

on the accuracy of the estimated likelihood-distributions. To

assess the quality of our session-based novelty method, we

evaluated changes in the size of S and H. We computed

F1- measure for each configuration as the equally weighted

harmonic mean of precision and recall. Hereby, a true

positive was defined to be a successful detection of an known

word as known, and a true negative was counted when an

unknown segment was correctly identified as new. Results

are shown in figure 7. As expected the performance of our
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system improves with increasing trainings- and test-sessions.

Surprisingly, the influence of the test-session was found to

be much stronger.

B. Online Results

The methods described above were integrated in an online

system running on Honda’s humanoid robot ASIMO. Based

on the mentioned pre-trained key-phrases the system is able

to learn visual and speech clusters in an interaction pattern

as described in Sec. II. In this interaction also the learning of

synonyms for previously learned speech labels is possible.

We tested this e.g. while learning the size of a book and

a jug. The two objects have a similar size but a quite

different appearance. Hence the visual novelty is low as the

representation is based on the object size and not its identity.

Due to the correspondingly high auditory novelty the visual

cluster is adapted and a novel speech model is generated

and associated with the original visual cluster. Therefore we

could teach the English word ”large” when presenting the

book and then adapt the visual model and at the same time

learn a speech synonym while presenting the jug and uttering

”oki”, the Japanese word for large. When we then evaluate

what was learned by showing the book and uttering ”oki”

the system successfully associates the active visual cluster

and the speech label.

VIII. CONCLUSION

We presented a system enabling to teach our humanoid

robot ASIMO associations between visual clusters and speech

labels in natural interaction. The system continues our pre-

vious work [1]. Novel aspects are that the speech interaction

is solely based on the microphones mounted on ASIMO and

that the visual clusters are learned from scratch. To our best

knowledge this is the first interactive robotic system without

headset not following a strict stop-perceive-act paradigm.

This required the development of a system for auditory

attention so as to reduce the number of misclassifications to a

minimum. Our attention system integrates different bottom-

up and top-down cues. None of these cues by themselves

would be powerful enough but via integrating them we are

able to obtain a robust segmentation of the speech signal

allowing for online learning and recognition of the labels.

The interaction without a headset significantly added to the

naturalness of the interaction as in principle anybody can just

step up to the robot and interact with it. This is only limited

by the fact that the key phrases triggering the learning session

are pre-trained in a speaker dependent fashion. Nevertheless,

it is still rather easy to trick the system by producing

other sounds which will erroneously be identified as speech.

Therefore, further developments of the system will focus

on the integration of spectral features in the segmentation

process and improvements of the novelty detection/rejection

mechanisms in the recognition stage. Additionally, a better

detection of humans and their interaction state, e.g. their

gaze direction, will also be necessary to further increase the

naturalness of the interaction.
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