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Demand-Driven Visual Information Acquisition

Sven Rebhan, Andreas Richter, and Julian Eggert

Honda Research Institute Europe GmbH,
Carl-Legien-Strasse 30,

63073 Offenbach am Main, Germany

Abstract. Fast, reliable and demand-driven acquisition of visual infor-
mation is the key to represent visual scenes efficiently. To achieve this
efficiency, a cognitive vision system must plan the utilization of its pro-
cessing resources to acquire only information relevant for the task. Here,
the incorporation of long-term knowledge plays a major role on deciding
which information to gather. In this paper, we present a first approach
to make use of the knowledge about the world and its structure to plan
visual actions. We propose a method to schedule those visual actions
to allow for a fast discrimination between objects that are relevant or
irrelevant for the task. By doing so, we are able to reduce the system’s
computational demand. A first evaluation of our ideas is given using a
proof-of-concept implementation.
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1 Introduction

Cognitive systems are surrounded by a vast amount of (visual) information. To
acquire the currently relevant information is a challenge for both biological and
technical systems. But how do we decide what is relevant? How many details of
the current scene do we process? Which locations in the scene contain informa-
tion we need? And what information do we need to store about these locations?

Already the work of Yarbus [1] showed that the task one currently performs
has an outstanding role in determining what is relevant. In his work, Yarbus
showed that the scanpaths of a human observer on a photo vary dramatically,
dependent on the task. But how does the task influence our perception of the
scene? To get an insight into this question many experiments were performed.
The so called ”change blindness” experiments revealed that, even though our
subjective perception tells otherwise, only parts of the scene are perceived (e.g.
[2]). Where we look is determined by the task and the knowledge about both
the current scene and the world [3, 4]. However, a very important question re-
mains: Which details are stored about a visited location? In [5] an experiment
was conducted, suggesting that only those object properties relevant for solv-
ing the current task are stored in memory. The subjects were blind to changes
of other properties of the object. This experimental evidence was confirmed by
later experiments [6]. The psychophysical experiments show that we perceive



the visual vicinity only partially. What details we perceive is also determined by
the current task and our knowledge. Here, attention is a crucial aspect [7] and
guiding this attention is assumed to be an active process [8].

First models for guiding attention were proposed under the names active

perception [9], active and purposive vision [10] and animate vision [11]. Although
the idea behind these approaches is more general, these models mainly focus on
the modulation of sensor parameters in order to guide attention. However, the
results show that using an active system it is possible to solve some problems that
are ill-posed for a passive observer. In newer approaches on scene representation,
more elaborated attention control mechanisms were implemented [12]. In these
models the long- and short-term memory (LTM & STM) of the system is used
along with the gist of a scene to accumulate task-relevant locations in a map.
The memorized properties of the objects are used to bias the low-level processing
in order to speedup the visual search.

However, all models mentioned focus solely on the spatial aspect of attention.
That is, they use the world and scene knowledge to determine where to look.
Once they have focused on a certain location, the complete feature vector is
stored in the STM. This contradicts the experiments showing that only the task-
relevant properties are stored for an object. It is our goal to build a cognitive
vision system that also accounts for this aspect of vision. Thus, it must be able
to selectively acquire information in both the spatial and feature domain to
acquire only the information relevant for solving the current task. For example:
If the task requires to know the color of an object, we only want to measure
and store the color of the object. If the task requires to identify the object, we
only want to acquire the minimal set of information that identifies the object
and so on. Here, the static processing pathways of all state-of-the-art models
do not hold anymore. Rather, a more flexible solution is required that allows to
dynamically ”construct” a processing pathway. However, this flexibility raises a
new fundamental question [13] not tackled in current approaches: In which order
should the system execute visual routines to acquire information?

In this paper, we concentrate on exactly this question and give a first idea
on how a scheduling algorithm for visual routines could look like. We propose a
method that incorporates knowledge about the task, the world and the current
scene to determine which information is relevant. To decide in which sequence
visual routines should be executed, the attention guidance process itself needs
to carefully plan the utilization of the system resources, taking the cost and gain
of each operation into account. In this work, we concentrate on simple search
tasks, as they are often a basic atomic operation for other, more complex, tasks.

In section 2, we briefly present our system architecture. Afterwards we pro-
pose a memory architecture (section 3) that accounts for both the special needs of
our scheduling process and the generic representation of knowledge. In section 4,
we describe our scheduling algorithm used to control attention in the spatial and
feature domain. We show first results using a proof-of-concept implementation
and close with a discussion and an outlook in section 6.



2 System Architecture

In order to investigate the execution sequence of visual routines, we need a flex-
ible system architecture as mentioned before. Such a flexible architecture was
first proposed in [14], where different elementary visual routines are called on
demand. Our system architecture as shown in Fig. 1 is based on this work and
comprises four major parts: a relational short- and long-term memory, the atten-
tion control, a tunable saliency map and visual routines for extracting different
object properties. The relational memory stores the knowledge about the world
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Fig. 1. The overall system architecture mainly consists of four parts: a relational mem-
ory(1), the attention control(2), a tunable saliency(3) and several feature extraction
components(4).

(LTM) and the current scene (STM). We will give a more detailed view on the
memory in section 3. The focus of this paper is the attention control, as it de-
termines which locations and features are attended (for details see section 4).
Furthermore, a saliency map is used to find the objects in the current scene.
By doing so, it can use top-down information to speedup the visual search task
similar to [15]. Finally, the system comprises a bank of visual routines, each
of them specialized to determine a certain property of a focused object [16].
The execution of a visual routine is selectively triggered by the attention control
mechanism. Currently, our system comprises three elementary visual routines for
measuring the color, the disparity-based distance z from the camera (calibrated
stereo setting) and a pixel mask of an object. Along with the object mask we
store its rectangular bounding box, having a width of w and a height of h where
we define w ≥ h, ∀(w, h). Based on these properties, more complex ones like the
position in the three-dimensional space x, the physical size s and a coarse shape
r can be calculated. Here, the physical size is defined as s ∝ w/< z > 1, and the
coarse shape is defined as the aspect ratio r of the bounding box r = h/w.

1 With < z > being the averaged distance z using the object mask.



3 Memory Architecture

In our approach, the system’s memory does not just serve as a ”data store” for
the world knowledge. More importantly, it provides a suitable representation for
deciding which properties are characteristic for the different objects. A flexible
and general memory architecture, fulfilling our requirements, was proposed in
[17], which we use as a basis for our implementation as shown in Fig. 2. This
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Fig. 2. The memory architecture allows a relational representation of knowledge with
an identical structure for both STM and LTM. Nodes representing visual properties
are ”anchored” by storing direct links to sensory representations. Nodes can inherit
information from other nodes (dashed line) and represent hypotheses (see shape1).

memory architecture allows for freely definable link patterns, inheritance of in-
formation and hypothetical nodes in both short- and long-term memory. It is
important to note that property nodes are ”anchored” by storing direct links to
the sensory representation (see Fig. 2). Figure 2 shows that all nodes are equiva-
lent. The role of the node is entirely defined by its incoming and outgoing links.
These properties of the memory architecture distinguish the chosen memory ar-
chitecture from standard AI models. In the following illustrations, we merge the
labels attached to the nodes into the node names for better readability.

Additionally to storing knowledge about the world and the current scene,
in our case the LTM also stores knowledge about the process of acquiring in-
formation (see [18] for details). For example, if we want to measure the color
of an object, we first need to know where the object is and which dimensions
it has. This dependency on other properties is consistently represented as links
between those property nodes in the LTM. As both STM and LTM share the
same object structure, transferring information is straightforward. When search-
ing for a certain object in the current scene, a hypothetical object is instantiated
in the STM (see obj1 in Fig. 2). The object instance inherits (dashed line) all
object properties from the long-term memory and thus can access these proper-
ties as predictions (see shape1). Using the visual routines, the predictions can be
confirmed on demand (see size1). The scheduling of visual routines to confirm
property predictions is the task of the attention control.



4 Attention Control and Scheduling

We now want to focus on the key element of this paper, the attention control
mechanism. So what is the role of attention? As mentioned earlier, we understand
attention as a selection process, deciding where to look and which details to store
about that location. So the problem is twofold. First, there is a spatial aspect
of attention, namely to locate object candidates in the current scene. A lot of
work has been done in this direction, the probably most prominent one is [15].
The authors state that modulating low-level features using knowledge about an
object can speedup visual search. Once focusing on a location the system needs
to assure that the attended object has all properties requested by the task.
This leads to the second, not well researched aspect of attention: attention in
the feature domain. The system needs to acquire the information relevant for
solving the current task. But how does it know what is relevant? For tasks already
containing a hint on which property is relevant, the system can simply trigger
the respective visual routine. If the task is to ”find a small object”, the system
immediately knows that it needs to analyze the size of an object candidate.

However, for finding a specific object the procedure is more complex. In
order to keep the computational and storage demand low, the goal is to find the
minimal set of measurements ensuring that the attended object is the searched
one. This way, the amount of information that needs to be stored in the STM
and the computation time are minimized. In our approach the system uses its
LTM knowledge to determine characteristic properties of the searched object.
Please note that the discriminative power of a certain property strongly depends
on concurrently active object hypotheses. In Fig. 3, the system has to search an
apple and knows that an apple is ”green”, ”small” and ”compact”. Now the
system must decide on which property it wants to focus. If it measures the color
”green”, there are two valid hypotheses (bottle and apple), for the size ”small”
also two hypotheses remain (lemon and apple) and for the shape ”compact”
four hypotheses remain (see Fig. 3a). So the gain is highest for the color and
the size measurements, as they reduce the set of possible interpretations most.
Now a second factor comes into play, the cost of a certain measurement. Here,
we interpret the computation time of a certain visual routine as the cost of
the measurement and store this time for each visual routine in the system. In
our system the color measurement is faster than the size measurement, so the
attention control decides to measure the color. As you can see in Fig. 3a, an
object (obj1) is predicted to have the color ”green” (color1). To measure the color
of an object, one first needs to locate an object candidate using the saliency map
(location1). See [18] on how these dependencies are resolved by the system. After
confirming the color ”green”, only one further object hypothesis (bottle) beside
apple remains as shown in Fig. 3b. As a consequence of the color measurement,
most hypotheses were rejected and the discriminative power of both the size and
shape increased. Now, either measuring the size ”small” or the shape ”compact”
would uniquely confirm the object candidate to be an apple. Again, the speed
of the visual routines biases the selection. For our system the measurement of
the size is faster, so the prediction that the focused object is small is added to
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Fig. 3. a) To search the apple it is activated in the LTM (red). By propagating the
activation, attached sensory representations are activated in the LTM (yellow). Prop-
agating the activation further triggers competing object hypotheses (blue). b) After
measuring the color of the object candidate, two hypotheses (bottle and apple) re-
main. c) By measuring the size the object candidate is confirmed to be the apple.

the STM (size1). After confirming the size, only the apple remains as a valid
object hypothesis and is thus linked to the object candidate (see Fig. 3c). If a
measurement contradicts the searched object, another object candidate will be
located. To formalize our approach, we use the following notation: The LTM
graph G = (V, E) consists of the object nodes O, property nodes P where V =
O ∪ P and edges E. In summary, the scheduling works as follows:

1. Locate an object candidate oc using the saliency map and set Or = O.

2. Activate the searched object os ∈ O and collect its attached properties
Ps = {p ∈ P |(os, p) ∈ E}.

3. Find all remaining competing object hypotheses Oh sharing properties with
the searched object Oh = {o ∈ Or|∃p ∈ Ps : (o, p) ∈ E}.

4. Calculate the discriminative power di = |Di|
−1 against the remaining hy-

potheses where Di = {o ∈ Oh|∃(o, pi) ∈ E}, ∀pi ∈ Ps.

5. Trigger the visual routine on the object candidate oc for the most discrimi-
native property pi : di ≤ dj∀j. If multiple properties minimize the set, select
the fastest one. Remove the selected property from the set Ps = Ps \ pi.

6. Find the property node pm ∈ P that matches the measurement best and
determine the attached objects Om = {o ∈ O|∃(o, pm) ∈ E}. Calculate the
remaining objects Or = Oh ∩ Om. If the search object is rejected os /∈ Or,
go to step 1. Otherwise, if |Or | > 1, continue with step 3. For Or = {os} we
have found the object.



5 Results

To test our scheduling algorithm, we have implemented a proof-of-concept sys-
tem with a hand-crafted LTM. We use an artificial visual scene with precomputed
sensor values to neglect sensor noise and gain more control over the scene. How-
ever, in [19] we have shown that the memory architecture and the visual routines
are capable of dealing with real sensory data. In a first experiment, the system’s
task is to search for a cherry. The content of the long-term memory as shown
in Fig. 4a is the same for all following experiments. The system interprets the

Fig. 4. a) Search for a cherry. Based on the long-term memory, the system knows
cherries are red. b) The saliency map selects an object candidate and its color is
measured. c) Because object obj 1 is red, it is identified as a cherry. See the text
for the color code.

search task by activating the cherry in the LTM (marked red in Fig. 4a). We have
observed, that by spreading this activation in the memory the properties ”red”,
”compact” and ”tiny” were activated. As Fig. 4b shows, the system decided to
measure the color of the object first (marked yellow), because red is a unique
property identifying the cherry in the system’s LTM. The computed location of
an object candidate was stored together with its measured color in the STM
(see Fig. 4b). The system identified the measured color color 1 as ”red” using
a nearest neighbor classifier (dashed line in Fig. 4b). Figure 4c shows that after
this measurement the system classified the object candidate (obj 1) as a cherry
(dashed line). Starting from this point, the system could predict further prop-
erties of that object like its size or shape. The system only stored one property
for this object in its STM, where other systems would have stored the property
vector containing three elements.



In a second experiment, the system’s task was to search for an apple (see
Fig. 5a). For better visualization, we reset the STM. In Fig. 5b we observed that

Fig. 5. a) Search for an apple. b) First, the color of the object candidate is measured
to minimize the set of remaining hypotheses. c) Then, the need to distinguish between
the bottle and the apple triggers the measurement of the size. d) Finally, the object
obj 1 is identified to be an apple.

the system decided to measure the color first. It did so, even though two pos-
sibilities were given because both the color ”green” and the size ”small” would
trigger two hypotheses. This decision was due to the fact that the predefined
computation time (cost) was smaller for the visual routine measuring the color.
Figure 5b shows that a green object was found in the scene (dashed line). Fur-
thermore, a second hypothesis (bottle) beside the apple remained (see Fig. 5b).
The system started another refinement step as shown in Fig. 5c. Here, the sys-
tem decided to measure the size ”small” to distinguish between the remaining
hypotheses. Again the system chose the faster visual routine although a shape
measurement would have identified the object. Figure 5c shows that the object
candidate was indeed small, which only left the apple as a valid hypothesis.
The system identified object obj 1 as an instance of the apple (see dashed line



in Figure 5d). Again the system only stored the minimal number of properties
required to identify the object.

To emphasize the memory and computation savings of our algorithm, we
measured the number of computed and stored properties for all objects in the
LTM (see Table 1). As current state-of-the-art models (e.g. [15]) always store the

Object Penguin Bottle Banana Pen Apple Lemon Orange Cherry Ø

without scheduling 3 3 3 3 3 3 3 3 3.0

our approach 1 2 2 1 2 2 1 1 1.5
Table 1. Comparison of properties measured per object.

complete property vector, they always perform three measurements. Compared
to this, our algorithm performs only half of those measurements on average.
Along with the saving of computation time, the required memory size is reduced
because only those properties measured are stored. Of course, the number of
required measurements depends on the memory structure, nevertheless, in a
worst-case scenario, the number of measurements is identical to current models.

6 Discussion

In this paper, we presented a system that contrary to state-of-the-art models se-
lects both the locations and the features it attends. Furthermore, our proposed
scheduling algorithm actively triggers visual routines based on the knowledge
about the object to search and its LTM. The goal is to minimize the set of
hypotheses applicable to a certain object candidate. This way, the number of
measurements and thus the amount of data stored in the STM is reduced to the
information necessary to solve the current task. We proposed that in situations
where more than one visual routine leads to the same minimal size of the hy-
potheses set, the costs (in our case the computation time) of the different visual
routines are taken into account. In this paper, the cost parameters where chosen
by hand, representing the approximated computation time of the different visual
routines.

In future work, the performance of our system needs to be tested on real-
world scenes. One possible problem in such a setup could be the influence of noise
of real sensor data on the scheduling algorithms. Here, a more sophisticated and
probabilistic activation spreading algorithm might be required. The reason is
that the activation for the property nodes and thus also for the object nodes is
more ambiguous for noisy measurements. Another interesting aspect for further
investigations is the triggering of an object hypothesis using a fast feed-forward
pathway for prominent features as proposed for neocortical structures in [20].
This would confine the initial set of hypotheses and speedup the identification.
In such a regime, the proposed algorithm would act as a refinement process. Fur-
thermore, we want to investigate the relation between our scheduling algorithm



and decision and game theory problems, where a gain (the number of excluded
hypotheses) is often weighted against a risk (an ambiguous measurement).
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