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Abstract— Biological organisms have evolved to perform and 
survive in a world characterized by rapid changes, high 
uncertainty, infinite richness, and limited availability of 
information. Gene regulatory networks (GRNs) are models of 
genes and gene interactions at the expression level.  In this 
paper, inspired by the biological organisms and GRNs models, a 
distributed multi-robot self-construction method is proposed. 
By using this method, a multi-robot system can construct 
themselves to different predefined shape, and reorganize 
themselves adaptively under dynamic environments. Various 
case studies have been conducted in the simulation, and the 
simulation results show the efficiency and convergence of the 
proposed method.  

I. INTRODUCTION 
ULTI-ROBOT  systems  have drawn considerable 
attentions to both industry and academia in the last two 

decades, since it can be used to fulfill tasks that are quite 
difficult or even unfeasible to be accomplished by a single 
robot, especially in the presence of uncertainties, incomplete 
information, distributed control, and asynchronous 
computation. 

In a multi-robot system (MRS), robots can work together 
more efficiently, robustly, and reliably in those tasks 
inherently distributed in space, time, or functionality.  
However, these advantages are at the cost of an increase in 
system complexity, especially the control and communication 
complexity [12]. It is often not hard to implement a 
rudimentary centralized controller that accomplishes the 
complex tasks using multi-robot systems [11], but achieving 
optimal performance under unknown dynamic environments 
can be very challenging.   Therefore, distributed methods are 
more attractive compared to the centralized control methods 
due to their robustness, flexibility, and adaptivity.  

However, designing a distributed self-adaptive multi-robot 
system is not a trivial task.  Nolfi and Floreano [18] claim 
that, since the individual behavior is the emerging result of 
the interaction between agents and environment, it is difficult 
to predict which behavior is resulted from a given set of rules, 
and which are the rules behind an observed behavior. Similar 
difficulties are present in the decomposition of the organized 
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behaviors of the whole system into interactions among 
individual behaviors of the system components. Thus, it is 
difficult to predict, given a set of individual behaviors, which 
behavior at the system level will emerge, and it is also 
difficult to decompose the emergence of a desired global 
behavior into simple interaction among individuals.        

The challenging issues in MRSs also involve the 
realization of basic behaviors, such as dynamic task 
allocation, robot coordination, and team reasoning, etc. [28]. 
Furthermore, MAS is usually bedeviled by the dimensionality 
when facing large-scale problems. The computation 
complexity often grows exponentially with the number of 
agents in multi-agent systems [12]. As an emerging field, 
multi-agent systems aim at providing both principles for the 
construction of complex systems involving multiple agents 
and mechanisms for coordination of independent agent’s 
behaviors [24]. 

  Recently, swarm intelligence has attracted extensive 
attentions to tackle the scalability issue for multi-agent 
systems while maintaining system robustness and individual 
simplicity.  Swarm intelligence is an innovative 
computational and behavioral metaphor for solving problems 
in a distributed way inspired from the behavior of social 
insects swarming, flocking, herding, and shoaling 
phenomena in vertebrates.  The social insect colonies are able 
to build sophisticated structures and regulate the activities of 
millions of individuals by endowing each individual with 
simple rules based on local perception. More and more 
researchers have been applying these swarm intelligence 
based bio-inspired approaches to solve MRS problems [3, 8, 
15, 16, 20, 27].   

On the other hand, biological organisms have evolved to 
perform and survive in a world characterized by rapid 
changes, high uncertainty, indefinite richness, and limited 
availability of information [19]. Gene regulatory networks 
(GRNs) are models of genes and gene interactions at the 
expression level. It is a collection of DNA segments in a cell 
which interact with each other indirectly through their RNA, 
protein product, and other chemicals in the cell, therefore 
governing the rates at which genes in the network are 
transcribed into mRNA.  GRNs play a central role in 
understanding natural evolution and development [1]. To this 
end, various models of GRNs have been suggested [2, 4, 7, 14, 
23].  

Shen et al. [21] proposed a digital hormone model (DHM) 
as a bio-inspired distributed control method for robot swarms 
and self-organization. Essentially, they applied Turing’s 
reaction-diffusion model [26] to describe the interactions 
between the hormones.  The DHM integrated dynamic 
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network, topological stochastic action selection, and 
distributed control by hormone reaction-diffusion.  More 
recently, Taylor [25] proposed a gene regulatory network 
inspired real-time controller for a group of underwater robots.  
Then a genetic algorithm (GA) was applied to evolve the 
controller for a simple clustering task.   

Inspired by these two algorithms, in this paper, we 
propose a distributed, GRN-like real-time controller for 
multi-robot construction. The major advantages of our 
proposed method compared to the above two methods [21, 25] 
are: (1) the system’s global information, such as the shape 
function, can be embedded into the GRN dynamics directly; 
(2) the dynamics of the GRN-like model can automatically 
drive the robots to their target positions while avoiding 
collision between the robots and obstacles inside the 
environment.     

The paper is organized as follows.  Section II introduces 
the biological background that inspired this work.   We 
propose the GRN inspired distributed control approach for a 
multi-robot construction in Section III. To evaluate the 
proposed method, several case studies of a multi-robot 
construction are presented in Section IV. Conclusion and 
future work are discussed in Section V.  

II. BIOLOGICAL BACKGROUND 
First, let us introduce the basic bio-chemical processes 

that are involved in gene regulation. When a gene is 
expressed, information stored in an organism’s genome is 
transcribed and translated into proteins. Some of these 
proteins are transcription factors that can regulate the 
expression of their own or other genes.  Thus, these proteins 
are under regulatory control, resulting in complex networks 
of interacting genes. These gene regulatory networks control 
a number of important cellular processes including 
responding to the environment, regulating the cell cycle and 
guiding the development of an organism.   
     It is very challenging to gain a thorough understanding of 
the emergence of complex patterns of behavior from the 
interactions between genes in a regulatory network.  A large 
number of different GRN models have been suggested. 
Ordinary differential equations (ODEs) have been used to 
model the reaction kinetics of regulatory systems with a long 
history. Biological processes are highly complex, and usually 
simplification assumptions are needed for most mathematical 
models of GRNs. The first assumption is that the control of 
gene expression resides in the regulation of gene 
transcription.  The second is that genes are expressed and 
proteins produced at a continuous rate [5]. The major 
advantage using ODE models is that their more detailed 
representation of regulatory interactions provides a more 
accurate representation of the physical system under 
investigation.  Furthermore, a large number of dynamical 
systems theory can provide tools for model analysis.  In this 
section, we will introduce a single-cell GRN model, then a 
multi-cell GRN model.  

A. A Single Cell GRN Model 
In a simple single-cell non-spatial biological model 

currently used in biological systems, a cell consists of one 
genome and several types of proteins. Genome may consist of 
several genes that interact with each other through their 
produced proteins. Each gene has a regulatory region and a 
structural region. The regulatory region specifies the specific 
protein that inhibits or activates its expression, while the 
structural region describes the protein that is produced when 
the gene is expressed. Here, when a gene is expressed, it 
means that its expression value is over a certain threshold. Fig. 
1 provides an example GRN with 2 genes, where product of 
gene 1 regulates the expression of gene 2, and the product of 
gene 2 regulates the expression of gene 1. 

 

      
 Fig. 1. Illustration of a GRN of a single cell with 2 genes.  

 
According to the central dogma of biology,  the 

expression of a gene with auto-regulation can be described by 
the following differential equations [9]: 

( )i
g i g i

dg
g f p

dt
γ α= − +                         (1) 

i
p i P i

dp
p g

dt
γ α= − +                                (2) 

where ig  is the expression level (measured by the 
concentration of its RNA product) of gene i and ip  is the 

concentration of protein i. gγ  and Pγ  are the decay rate of 

RNA and protein concentration, respectively. gα  and pα  

are the synthesis rate of RNA and protein concentration, 
respectively. ( )f x  is a sigmoid function, which  can be 
defined as:  

                        ( ) n nf x
x

β
θ

=
+

                                     (3) 

where β is the activation coefficient, θ  is the threshold, n is 
known as the Hill coefficient. 

B. A Multi-cell GRN Model 
      In a multi-cell organism, it is necessary to model the 
intercellular communication. In addition to the internal 
dynamics of the cell, we should also consider external factors 
such as protein gradients and physical interactions between 
cells into the GRNs model.  Turing [26] proposed one of the 
earliest models for pattern formation, where a pair of coupled 
reaction-diffusion equations was proposed to describe a 
system consisting of two morphogens.  As two morphogens 
diffuse across a spatial field and react with one another, a 



 
 

 

variety of patterns emerge depending on parameter values.  
The gradients of protein concentrations across cells are a 
critical feature in embryonic development. The 
reaction-diffusion equations have been widely used in 
mathematical biology to study pattern formation in 
development [6, 10, 13].  
     Salazar-Ciudad et al. [22] proposed a GRN model with 
reaction-diffusion mechanism as follows:   

2( , ) ,    1 ,1ij
j i i ij j ij

dx
f x D x i n j m

dt
γ= − + ∇ ≤ ≤ ≤ ≤x u       (4) 

      
where  ijx  is the concentration of gene product j in cell i.  The 

first term specifies the production of  ijx , the second term is 

its degradation, and the last term specifies the diffusion 
component at diffusion rate jD . jf  is a nonlinear update 

function of gene product j, which is usually defined as a 

sigmoid function as 1( )
1 xf x

e
=

+
. u  is the vector of 

external input signals. iγ  is the degradation rate of product i.  
n is the number of gene products, and m is the number of 
cells.   

III.   THE DISTRIBUTED GRN INSPIRED CONTROL APPROACH 
The objective of the multi-robot construction is to deploy 

multiple robots uniformly on a predefined two dimensional 
shape, for example: a circle or a square, through a distributed 
control approach.  Each robot only knows its local 
information without any global observer.   

Analogous to biology systems, in our GRN inspired 
control model, as shown in Fig. 1, it is assumed that each 
robot corresponds to a single cell.  Within each cell’s 
genome, there are two genes, one for x-position and one for 
y-position in a 2D environment. Each gene can produce a 
certain protein.  Each protein can provide the following three 
functions: (1) To regulate the expression of the gene that 
produced it (i.e. auto regulation); (2) To adjust the robots’ 
behaviors; (3) To be able to diffuse proteins to its neighbors 
to prevent collision from each other. 

 
Inspired by equations (1)-(4), the system dynamics of the 

GRN for multi-robot construction are defined as: 
,
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 where ,i xg and ,i yg  are  the expression levels of the ith rob

ot’s gene for x-position and y-position, respectively. ,i xp  an

d ,i yp are the concentration of the ith robot’s proteins for x-p
osition gene and y-position gene, respectively.   
 
      In order to embed the predefined 2D shape, which is the 
global information, into the dynamic equations, we define 

( )if z as the following sigmoid functions:   
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where , ,and i x i yz z are the gradients along x-axis and y-axis, 

respectively, of a predesigned function h  at the robot’s 
current gene expression level, which are defined as: 

, ,
, ,

,     i x i y
i x i y

h h
g g
∂ ∂

= =
∂ ∂

z z                           (8) 

where the predesigned function h  is the function of the 
desired shape where robots are supposed to be deployed 
uniformly. We can also treat function h as the predefined 
gradient for cell migration.  To facilitate the generation of the 
desired dynamics, we defined  h   as the square of the desired 
shape function.  For example, if we want to deploy the robots 
onto a unit circle. The shape function is defined as  

2 2
, , , ,( , ) 1 0i x i y i x i ys g g g g= + − =                       (9) 

Then function h can be defined as  
2 2 2
, ,( 1)i x i yh g g= + − .                                 (10) 

    iD  is defined as the protein diffusion which aims at 
keeping the robot away from its neighbors.  The size of 
neighborhood varies according to different shapes and 
different number of robots. In the example of a circular shape, 

the neighborhood size can be defined as 2 r
N
π , where r is the 

radius of the circle, and N is the total number of robots which 
are expected to deploy on the circle.    

When a robot detects its neighbor, it will receive the 
protein emitted from that neighbor so that it would keep itself 
away from that neighbor to avoid collision. After summing all 
the neighbors’ diffused protein together, we have 

, , , ,
1 1

,    
i iN N

j j
i x i x i y i y

j j
D D D D

= =
= =∑ ∑                     (11) 

where Ni denotes the number of its neighbors, and ,
j

i xD and 

,
j

i yD are the diffusions along x-axis and y-axis, respectively, 
on robot i emitted from the neighbor robot j, which is defined 
as 
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Where the directions of and ,

j
i xD and ,

j
i yD are defined as 

from robot j to robot i along x-axis and y-axis, respectively.  
Initially, the robots are located randomly in a 2D space. 

By following the dynamic equations defined in Equations (5) 
and (6), eventually multiple robots can be deployed 
uniformly on the predefined shape automatically. In other 
words, the system can be stabilized to an equilibrium state 
defined by the shape. Essentially, the shape information is the 
global information, which can be elegantly embedded into the 
dynamics of each individual robot through function ( )if z .   

 
Fig. 2. The diagram of the GRN model.       
  
      The diagram of the GRN model defined in Equations (5) 
and (6) is provided in Fig.5 to facilitate the understanding of 
the system. From Fig. 2, we can see that other robots’ impact 
on a particular robot is excised through the diffusion of 
proteins which is implemented by iD . The robot itself has two 
state vectors: gene expression ig  and protein concentration 

ip .  These two variables regulate each other via positive or 
negative feedback. Through these coherent links, we can 
achieve the goal of deploying robots to form a certain shape. 
     In general, each robot always has to balance two 
motivations: one motivation is to approach to the predefined 
shape as provided inside the gene expression, and the other 
one is try to prevent collision from each other as implemented 
via protein diffusion.  Sometimes these two forces may drive 
the robots to somewhere which is not optimal from a global 
observer.   Since this is a truly distributed control system, 
there exists no global controller.  Therefore, each robot has to 
make movement decisions only based on its local 
information.  Since it is difficult to achieve an optimal 
balance, from this point of view, as long as these sub-optimal 
behaviors are good enough for multi-robot systems, we can 
say our objective is achieved.  

IV. SIMULATION AND RESULTS 
     To evaluate the reliability and the efficiency of the 
proposed method, several case studies of a multi-robot 
construction are studied.  We implement all the case studies 
using MATLAB.  

A. Parameter Adjustment 

      In equation (5) and (6), there are four parameters, i.e., a, c, 
k, and b, which need to be set up for the simulations.  Tuning 
the parameters for the algorithm can speed up the system 
convergence and assure the system stability.   

Initially, we randomly select different combinations of 
four parameters, and implement the multi-agent construction 
experiments. Through rough observations, we find out that 
a and k shall be equal. Otherwise the system cannot 
converge.  Therefore, in the following experiments, we 
always set a=k.  By setting up different values to a and k 
while keeping other parameters same, we find out that the 
bigger the value is, more force toward the predefined shape. 
We also find out that the system convergence time is very 
sensitive to the values of parameter c.   
     First, we setup parameters as 100, 10, 100k b a= = = , and 
only change the value of c for 3-robot construction.  The 
results are listed at the first two columns in Table I.  It can be 
seen that when c=10, the robots can achieve the fastest 
convergence to their final states.  Then, we change parameter 
b while keeping other parameters as c =10, k =100, a =100 
for 5-robot construction.  The results are listed at the third and 
forth column.  It can be seen that when b=10, the system can 
reach the fastest convergence. Last, we only change values of 
k (=a), while keeping other parameters as c=10 and b=10 for 
5-robot construction.  The results are listed on the last two 
columns in Table I.  It can be seen that when k=a=20, the 
system can achieve the fastest convergence.       

 
TABLE I. CONVERGENCE SPEED (MEASURED BY NUMBER OF 
ITERATIONS) FOR DIFFERENT PARAMETER SETUPS 

c Nc b Nc k/a Nc 

50 
20 
15 
12 
10 
5 
1 

35605 
7329 
1053 
697 
589 
661 
1053 

100 
50 
20 
15 
10 
1 
0.1 

1069 
689 
581 
529 
517 
681 
3789 

100 
50 
25 
20 
18 
15 
10 

537 
445 
393 
361 
669 
6033 
6121 

Note: Nc is the number of iterations needed to converge to final 
state.  
 

The next question is how these parameters affect the robot 
trajectories? Due to page limitations, we only show the results 
of parameter c while keeping others constant. We still use 3 
robots to implement our algorithm with different c, and draw 
the trajectories of robots from their initial positions to final 
position.  The simulation results are shown in Fig. 3.  From 
Fig. 3, we can see that when c=50, robots only need to travel a 
short way to converge to the desired shape. While from Table 
I, we can see that robots need to take quite a long time to 
finish their short trajectories.  In other words, robots are 
moving very slowly.  When c=1, robots travels fast, however, 
their trajectories oscillate very frequently and they spend 
quite a lot time to converge to the desired shape.  When c=10, 

h(z)zi - gi pi iD b∗

∫ ∫ h∇  

c 

k 

a 

( )f z



 
 

 

the robots behave somewhere in between. This indicates that 
it is necessary to tune c properly to achieve a good balance 
between the speed of convergence (time to reach the final 
position) and the length of the trajectory. From the balance 
point of view, c=10 is a good choice.  Similar procedure can 
be implemented for other parameters as well.  

It is a very tedious procedure to adjust these parameters to 
achieve optimal system performance.  Therefore, we plan to 
apply a genetic algorithm (GA) to automatically tune these 
parameters, which will be reported elsewhere. 

B. Case Study 1: To deploy multiple robots to a unit circle 
     For this case study, the simulation parameters of equations 
(5) and (6) are set up as follows: a = 1, c = 1 and k = 1, and 
b=1.   

In this case, we aim onto deploy a number of initially 
randomly distributed robots to a unit circle. That is, a circle 
with center at (0, 0) and radius of 1. During the deployment, 
the robots would try to approach to the unit circle and 
meanwhile to avoid colliding with each other.   
     Three groups of robots have been used to evaluate the 
proposed distributed control algorithms, which contain 5 
robots, 10 robots and 20 robots.  Due to the page limitation, 
we only show the simulation results of 20 robots in Fig. 4.  
The simulation results of 5 and 10 robots are similar to Fig. 4.  
Initially, robots are randomly located in the environment, as 
shown in Fig. 4(a). Then robots are trying to converge to the 
unit circle while avoiding each other, as shown in Fig. 4(b).  
After certain rounds of simulation, they are uniformly 
deployed on the circle, as shown in Fig 4(c). From the above 

simulation results, we can see that any number of randomly 
initiated robots can ultimately converge to the desired shape 
uniformly. 
       Fig. 5 shows the trajectories of robots moving from the 
initial state to the final state for all three cases with 5, 10, and 
20 robots.  It can be seen from Fig. 5 that the trajectories of 
the robots are obviously not optimized.  Sometimes some 
robots have to travel a long journey from their initial position 
to their final position on the circle.  The underlying reason for 
these scenarios mainly depends on the parameter setup, as we 
mentioned in parameter adjustment section.  When c=1, 
robots move fast but with oscillated trajectories.   
      In addition, to evaluate our algorithm statistically, Table 
II lists the mean errors of the final state of the robots 
compared to the expected final position to the predefined 
shape. It can be seen that the mean errors are very small. In 
other words, the proposed GRN inspired dynamic models for 
multi-robot systems is efficient and feasible. 
 

TABLE II 
NUMBER OF ROBOTS VS MEAN DIFFERENCE IN CIRCLE 

DEPLOYMENT 
Number of robots in the 

environment 
Mean difference to the 

expected shape 
5 robots 

10 robots 
20 robots 

0.0800 
0.0401 
0.0301 
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         (a) c=50;                                                          (b) c=1;                                                         (c) c=10. 

Fig. 3. Trajectories of 3 robot with different value of parameter c.  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

20robots randomly initialized
-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

20 robots intermediate state
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

20robots  
                  (a) Initial state of robots;                              (b) Intermediate state of robots;                      (c) Final state of robots. 

Fig. 4. 20 robots deployed uniformly on a unit circle. 
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Fig. 5.   Robots’ movement trajectories. (a) 5 robots; (b) 10 robots; (c) 20 robots. 
   

C. Case Study 2: To deploy multiple robots to a unit square 
      In this case, we plan to deploy a number of initially 
randomly distributed robots to a unit square. The unit square 
is defined as follows:  lower-left point at (-0.5,-0.5) and the 
upper-right point at (0.5, 0.5).   It is a little bit tricky to define 
the shape function s of the unit square compared to the unit 
circle.  We first set up a circle with the center at (0, 0) and 

radius of 1
2

.  Therefore, the shape function of a circle can 

be defined as:  2 2
1 , , , ,

1( , ) 0
2i x i y i x i ys g g g g= + − =  and 

2
1 1 , ,( ( , ))i x i yf s g g= . Then, through the first function, we 

can deploy the robots to the specific circle first, and then 
define 2 ( , )s x y according to the following rules: 
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2

2 2 , ,( ( , ))i x i yf s g g=                              (15) 
Note that it is impossible that a robot’s position satisfies 

both of the two aforementioned conditions, since after the 
first phase deployment, the robots are on the circle and will 
satisfy only one condition as depicted in Fig. 6.  

We have tested two groups of robots to deploy them to the 
unit square with 8 robots and 12 robots, respectively. Fig. 7 
shows the simulation results of deploying 12 robots to a unit 
circle in the environment. The simulation results for 8 robots 
are similar. Initially, robots are randomly located in the 
environment, as shown in Fig.7(a). Then robots are trying to 
converge to the unit square while avoiding each other, as 
shown in Fig. 7(b).  After enough iterations of simulation, 

they are uniformly deployed on the square, as shown in 
Fig.7(c).       Table III lists the statistics regarding the mean 
errors of the final state of the robots and the expected final 
position to the predefined shape. From it, we can see that the 
mean errors are very small which indicates that our robots 
under the genetic control can converge to the desired shape. 
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Fig 6: The relationship between the circle and the expected square 
 

TABLE III 
NUMBER OF ROBOTS VS MEAN DIFFERENCE IN SQUARE 

DEPLOYMENT 
Number of robots in the 

environment 
Mean difference to the 

expected shape 
8 robots 

12 robots 
0.0640 
0.0317 

D. Case Study 3: Self-reorganization 
From previous two case studies, we can see that the 

proposed GRN-based control algorithm can automatically 
drive multiple robots to a predefined shape.  In this case study, 
we would like to evaluate the system’s capability of 
self-reorganization.  More specifically, when new robots join 
the team, can the original team reorganize themselves to 
incorporate the newcomers?  

For this case study, the simulation parameters of 
equations (5) and (6) are set up as follows: a = k =100, c =50, 
and b = 10.  The main reason to set c=50 instead of c=10 here 
is because we want to show the robot trajectories during the 
self-organization procedure.  The robot trajectories with c=50 
are much clearer with weaker oscillations, which would make 
the figure more easy to read, although the convergence speed 
is relatively slow.  Fig. 8 provides the trajectories of robots’ 
initial shape formation as well as self-reorganization to 



 
 

 

incorporate the new comers.  Fig. 8 demonstrates the 
self-reorganization capability of our proposed approach for 
various sizes of multi-robot systems.       

E. Case Study 4: Self-adaption to environment changes 
Another interesting test for our algorithm is whether our 

algorithm can self-adapt to the dynamic changing 
environment?  In the environment, when we setup an obstacle 
on the perimeter of the desired shape, can robots circumvent 
the obstacle and continue to form the desiring shape on the 
rest of the shape using our proposed control method? 

For this case study, the simulation parameters of 
equations (5) and (6) are set up as follows: a = k = 100, c =50, 

and b = 10. Fig. 9 shows the simulation results of three 
different multi-robot systems with one obstacle located on the 
perimeter of the predefined shape where robots are supposed 
to be deployed on. Here, the obstacle is modeled as a static 
robot. The obstacle can emit protein to neighboring robots  so 
that it can influence neighboring robots’ behaviors. However, 
it doesn’t receive protein diffusion and it can’t move. From 
Fig. 9, we can see that the multi-robot systems can adapt 
themselves to the environment change.  They are supposed to 
form a circle, since there is an obstacle, they can circumvent 
the obstacle and form a circle on the rest of the perimeter. 
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12 robots  
(a) Initial state of robots;                              (b) Intermediate state of robots;                      (c) Final state of robots. 

Fig. 7: 12 robots deployed uniformly on the unit square 
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(a) 3 robots with 2 newcomers;                (b) 4 robots with 2 newcomers;                      (c) 8 robots with 4 newcomers. 

Fig. 8: Trajectories of multi agents during self-organization with newcomers.  The initial positions of the robots are plotted as ‘*’, the 
intermediate states where the first batch of robots are located are plotted as ‘o’, and the final states of all the robots are plotted as ‘+’, the dash 
lines are the initial deployment trajectories of the first batch of robots and the solid lines are the trajectories of all the robots after 
incorporating newcomers. 
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          (a) 6 robots with one obstacle;                       (b) 8 robots with one obstacle;                      (c) 10 robots with one obstacle. 

Fig. 9: Trajectories of multi agents in self-adaptive test cases. The big red circle represents one obstacle in the environment.  The initial 
positions of the robots are plotted as ‘o’, and the final states of robots are plotted as ‘*’.  



 
 

 

 

V.     CONCLUSION AND FUTURE WORKS 
 In this paper, we have presented a novel GRN inspired 

distributed control approach for multi-robot construction. 
Compared to other multi-robot control methods, the major 
advances of the proposed method are: (1) embedding the 
global shape information into the dynamic models through a 
sigmoid function to provide boundaries; (2) truly distributed 
behaviors of each robot balanced by two different forces: one 
force to approach to the predefined shape and the other force 
to avoid collision with other robots. The local interaction 
among the robots is represented by the reaction-diffusion 
model inspired from the multi-cellular mechanism of living 
organisms.   

  In the future, we will continue with our research on GRNs 
inspired multi-robot controller. We will investigate arbitrary 
shape construction using the evolving GRNs model.  We will 
also investigate the system robustness when one or more 
robots fail.   
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