
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Self-adaptive multi-robot construction using
gene regulatory networks

Honglian Guo, Yan Meng, Yaochu Jin

2009

Preprint:

This is an accepted article published in IEEE Symposium on Artificial Life (IEEE
ALIFE 2009). The final authenticated version is available online at:
https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Abstract— Biological organisms have evolved to perform and
survive in a world characterized by rapid changes, high
uncertainty, infinite richness, and limited availability of
information. Gene regulatory networks (GRNs) are models of
genes and gene interactions at the expression level. In this
paper, inspired by the biological organisms and GRNs models, a
distributed multi-robot self-construction method is proposed.
By using this method, a multi-robot system can construct
themselves to different predefined shape, and reorganize
themselves adaptively under dynamic environments. Various
case studies have been conducted in the simulation, and the
simulation results show the efficiency and convergence of the
proposed method.

I. INTRODUCTION
ULTI-ROBOT systems have drawn considerable
attentions to both industry and academia in the last two

decades, since it can be used to fulfill tasks that are quite
difficult or even unfeasible to be accomplished by a single
robot, especially in the presence of uncertainties, incomplete
information, distributed control, and asynchronous
computation.

In a multi-robot system (MRS), robots can work together
more efficiently, robustly, and reliably in those tasks
inherently distributed in space, time, or functionality.
However, these advantages are at the cost of an increase in
system complexity, especially the control and communication
complexity [12]. It is often not hard to implement a
rudimentary centralized controller that accomplishes the
complex tasks using multi-robot systems [11], but achieving
optimal performance under unknown dynamic environments
can be very challenging. Therefore, distributed methods are
more attractive compared to the centralized control methods
due to their robustness, flexibility, and adaptivity.

However, designing a distributed self-adaptive multi-robot
system is not a trivial task. Nolfi and Floreano [18] claim
that, since the individual behavior is the emerging result of
the interaction between agents and environment, it is difficult
to predict which behavior is resulted from a given set of rules,
and which are the rules behind an observed behavior. Similar
difficulties are present in the decomposition of the organized

H. Guo is a graduate student in the Department of Electrical and Computer

Engineering, Stevens Institute of Technology, NJ 07030, USA. (E-mail:
hguo@stevens.edu).

Y. Meng is with Department of Electrical and Computer Engineering,
Stevens Institute of Technology, NJ 07030, USA (Phone: (201) 216-5496,
Email: yan.meng@stevens.edu)..

Y. Jin is with the Honda Research Institute Europe, Carl-Legien-Str. 30,
63073 Offenbach, Germany. (Email: yaochu.jin@honda-ri.de).

behaviors of the whole system into interactions among
individual behaviors of the system components. Thus, it is
difficult to predict, given a set of individual behaviors, which
behavior at the system level will emerge, and it is also
difficult to decompose the emergence of a desired global
behavior into simple interaction among individuals.

The challenging issues in MRSs also involve the
realization of basic behaviors, such as dynamic task
allocation, robot coordination, and team reasoning, etc. [28].
Furthermore, MAS is usually bedeviled by the dimensionality
when facing large-scale problems. The computation
complexity often grows exponentially with the number of
agents in multi-agent systems [12]. As an emerging field,
multi-agent systems aim at providing both principles for the
construction of complex systems involving multiple agents
and mechanisms for coordination of independent agent’s
behaviors [24].

 Recently, swarm intelligence has attracted extensive
attentions to tackle the scalability issue for multi-agent
systems while maintaining system robustness and individual
simplicity. Swarm intelligence is an innovative
computational and behavioral metaphor for solving problems
in a distributed way inspired from the behavior of social
insects swarming, flocking, herding, and shoaling
phenomena in vertebrates. The social insect colonies are able
to build sophisticated structures and regulate the activities of
millions of individuals by endowing each individual with
simple rules based on local perception. More and more
researchers have been applying these swarm intelligence
based bio-inspired approaches to solve MRS problems [3, 8,
15, 16, 20, 27].

On the other hand, biological organisms have evolved to
perform and survive in a world characterized by rapid
changes, high uncertainty, indefinite richness, and limited
availability of information [19]. Gene regulatory networks
(GRNs) are models of genes and gene interactions at the
expression level. It is a collection of DNA segments in a cell
which interact with each other indirectly through their RNA,
protein product, and other chemicals in the cell, therefore
governing the rates at which genes in the network are
transcribed into mRNA. GRNs play a central role in
understanding natural evolution and development [1]. To this
end, various models of GRNs have been suggested [2, 4, 7, 14,
23].

Shen et al. [21] proposed a digital hormone model (DHM)
as a bio-inspired distributed control method for robot swarms
and self-organization. Essentially, they applied Turing’s
reaction-diffusion model [26] to describe the interactions
between the hormones. The DHM integrated dynamic

Self-Adaptive Multi-Robot Construction using
Gene Regulatory Networks

Hongliang Guo, Yan Meng, and Yaochu Jin

M

network, topological stochastic action selection, and
distributed control by hormone reaction-diffusion. More
recently, Taylor [25] proposed a gene regulatory network
inspired real-time controller for a group of underwater robots.
Then a genetic algorithm (GA) was applied to evolve the
controller for a simple clustering task.

Inspired by these two algorithms, in this paper, we
propose a distributed, GRN-like real-time controller for
multi-robot construction. The major advantages of our
proposed method compared to the above two methods [21, 25]
are: (1) the system’s global information, such as the shape
function, can be embedded into the GRN dynamics directly;
(2) the dynamics of the GRN-like model can automatically
drive the robots to their target positions while avoiding
collision between the robots and obstacles inside the
environment.

The paper is organized as follows. Section II introduces
the biological background that inspired this work. We
propose the GRN inspired distributed control approach for a
multi-robot construction in Section III. To evaluate the
proposed method, several case studies of a multi-robot
construction are presented in Section IV. Conclusion and
future work are discussed in Section V.

II. BIOLOGICAL BACKGROUND
First, let us introduce the basic bio-chemical processes

that are involved in gene regulation. When a gene is
expressed, information stored in an organism’s genome is
transcribed and translated into proteins. Some of these
proteins are transcription factors that can regulate the
expression of their own or other genes. Thus, these proteins
are under regulatory control, resulting in complex networks
of interacting genes. These gene regulatory networks control
a number of important cellular processes including
responding to the environment, regulating the cell cycle and
guiding the development of an organism.
 It is very challenging to gain a thorough understanding of
the emergence of complex patterns of behavior from the
interactions between genes in a regulatory network. A large
number of different GRN models have been suggested.
Ordinary differential equations (ODEs) have been used to
model the reaction kinetics of regulatory systems with a long
history. Biological processes are highly complex, and usually
simplification assumptions are needed for most mathematical
models of GRNs. The first assumption is that the control of
gene expression resides in the regulation of gene
transcription. The second is that genes are expressed and
proteins produced at a continuous rate [5]. The major
advantage using ODE models is that their more detailed
representation of regulatory interactions provides a more
accurate representation of the physical system under
investigation. Furthermore, a large number of dynamical
systems theory can provide tools for model analysis. In this
section, we will introduce a single-cell GRN model, then a
multi-cell GRN model.

A. A Single Cell GRN Model
In a simple single-cell non-spatial biological model

currently used in biological systems, a cell consists of one
genome and several types of proteins. Genome may consist of
several genes that interact with each other through their
produced proteins. Each gene has a regulatory region and a
structural region. The regulatory region specifies the specific
protein that inhibits or activates its expression, while the
structural region describes the protein that is produced when
the gene is expressed. Here, when a gene is expressed, it
means that its expression value is over a certain threshold. Fig.
1 provides an example GRN with 2 genes, where product of
gene 1 regulates the expression of gene 2, and the product of
gene 2 regulates the expression of gene 1.

 Fig. 1. Illustration of a GRN of a single cell with 2 genes.

According to the central dogma of biology, the

expression of a gene with auto-regulation can be described by
the following differential equations [9]:

()i
g i g i

dg
g f p

dt
γ α= − + (1)

i
p i P i

dp
p g

dt
γ α= − + (2)

where ig is the expression level (measured by the
concentration of its RNA product) of gene i and ip is the

concentration of protein i. gγ and Pγ are the decay rate of

RNA and protein concentration, respectively. gα and pα

are the synthesis rate of RNA and protein concentration,
respectively. ()f x is a sigmoid function, which can be
defined as:

 () n nf x
x

β
θ

=
+

 (3)

where β is the activation coefficient, θ is the threshold, n is
known as the Hill coefficient.

B. A Multi-cell GRN Model
 In a multi-cell organism, it is necessary to model the
intercellular communication. In addition to the internal
dynamics of the cell, we should also consider external factors
such as protein gradients and physical interactions between
cells into the GRNs model. Turing [26] proposed one of the
earliest models for pattern formation, where a pair of coupled
reaction-diffusion equations was proposed to describe a
system consisting of two morphogens. As two morphogens
diffuse across a spatial field and react with one another, a

variety of patterns emerge depending on parameter values.
The gradients of protein concentrations across cells are a
critical feature in embryonic development. The
reaction-diffusion equations have been widely used in
mathematical biology to study pattern formation in
development [6, 10, 13].
 Salazar-Ciudad et al. [22] proposed a GRN model with
reaction-diffusion mechanism as follows:

2(,) , 1 ,1ij
j i i ij j ij

dx
f x D x i n j m

dt
γ= − + ∇ ≤ ≤ ≤ ≤x u (4)

where ijx is the concentration of gene product j in cell i. The

first term specifies the production of ijx , the second term is

its degradation, and the last term specifies the diffusion
component at diffusion rate jD . jf is a nonlinear update

function of gene product j, which is usually defined as a

sigmoid function as 1()
1 xf x

e
=

+
. u is the vector of

external input signals. iγ is the degradation rate of product i.
n is the number of gene products, and m is the number of
cells.

III. THE DISTRIBUTED GRN INSPIRED CONTROL APPROACH
The objective of the multi-robot construction is to deploy

multiple robots uniformly on a predefined two dimensional
shape, for example: a circle or a square, through a distributed
control approach. Each robot only knows its local
information without any global observer.

Analogous to biology systems, in our GRN inspired
control model, as shown in Fig. 1, it is assumed that each
robot corresponds to a single cell. Within each cell’s
genome, there are two genes, one for x-position and one for
y-position in a 2D environment. Each gene can produce a
certain protein. Each protein can provide the following three
functions: (1) To regulate the expression of the gene that
produced it (i.e. auto regulation); (2) To adjust the robots’
behaviors; (3) To be able to diffuse proteins to its neighbors
to prevent collision from each other.

Inspired by equations (1)-(4), the system dynamics of the

GRN for multi-robot construction are defined as:
,

, ,

,
, ,

x i
x i x i

y i
y i y i

dg
a p

dt
dg

a p
dt

= − +

= − +

z

z
 (5)

,
, , ,

,
, , ,

()

()

i x
i x i x i x

i y
i y i y i y

dp
cp kf bD

dt
dp

cp kf bD
dt

= − + +

= − + +

z

z
 (6)

 where ,i xg and ,i yg are the expression levels of the ith rob

ot’s gene for x-position and y-position, respectively. ,i xp an

d ,i yp are the concentration of the ith robot’s proteins for x-p
osition gene and y-position gene, respectively.

 In order to embed the predefined 2D shape, which is the
global information, into the dynamic equations, we define

()if z as the following sigmoid functions:
,

,

,

,

,

,

1()
1
1()
1

i x

i x

i y

i y

i x

i y

ef
e
ef
e

−

−

−

−

−
=

+

−
=

+

z

z

z

z

z

z

 (7)

where , ,and i x i yz z are the gradients along x-axis and y-axis,

respectively, of a predesigned function h at the robot’s
current gene expression level, which are defined as:

, ,
, ,

, i x i y
i x i y

h h
g g
∂ ∂

= =
∂ ∂

z z (8)

where the predesigned function h is the function of the
desired shape where robots are supposed to be deployed
uniformly. We can also treat function h as the predefined
gradient for cell migration. To facilitate the generation of the
desired dynamics, we defined h as the square of the desired
shape function. For example, if we want to deploy the robots
onto a unit circle. The shape function is defined as

2 2
, , , ,(,) 1 0i x i y i x i ys g g g g= + − = (9)

Then function h can be defined as
2 2 2
, ,(1)i x i yh g g= + − . (10)

 iD is defined as the protein diffusion which aims at
keeping the robot away from its neighbors. The size of
neighborhood varies according to different shapes and
different number of robots. In the example of a circular shape,

the neighborhood size can be defined as 2 r
N
π , where r is the

radius of the circle, and N is the total number of robots which
are expected to deploy on the circle.

When a robot detects its neighbor, it will receive the
protein emitted from that neighbor so that it would keep itself
away from that neighbor to avoid collision. After summing all
the neighbors’ diffused protein together, we have

, , , ,
1 1

,
i iN N

j j
i x i x i y i y

j j
D D D D

= =
= =∑ ∑ (11)

where Ni denotes the number of its neighbors, and ,
j

i xD and

,
j

i yD are the diffusions along x-axis and y-axis, respectively,
on robot i emitted from the neighbor robot j, which is defined
as

, ,
, 2 2

, , , ,

| |

() ()

i x j xj
i x

i x j x i y j y

g g
D

g g g g

−
=

− + −
 (12)

, ,
, 2 2

, , , ,

| |

() ()

i y j yj
i y

i x j x i y j y

g g
D

g g g g

−
=

− + −
 (13)

Where the directions of and ,

j
i xD and ,

j
i yD are defined as

from robot j to robot i along x-axis and y-axis, respectively.
Initially, the robots are located randomly in a 2D space.

By following the dynamic equations defined in Equations (5)
and (6), eventually multiple robots can be deployed
uniformly on the predefined shape automatically. In other
words, the system can be stabilized to an equilibrium state
defined by the shape. Essentially, the shape information is the
global information, which can be elegantly embedded into the
dynamics of each individual robot through function ()if z .

Fig. 2. The diagram of the GRN model.

 The diagram of the GRN model defined in Equations (5)
and (6) is provided in Fig.5 to facilitate the understanding of
the system. From Fig. 2, we can see that other robots’ impact
on a particular robot is excised through the diffusion of
proteins which is implemented by iD . The robot itself has two
state vectors: gene expression ig and protein concentration

ip . These two variables regulate each other via positive or
negative feedback. Through these coherent links, we can
achieve the goal of deploying robots to form a certain shape.
 In general, each robot always has to balance two
motivations: one motivation is to approach to the predefined
shape as provided inside the gene expression, and the other
one is try to prevent collision from each other as implemented
via protein diffusion. Sometimes these two forces may drive
the robots to somewhere which is not optimal from a global
observer. Since this is a truly distributed control system,
there exists no global controller. Therefore, each robot has to
make movement decisions only based on its local
information. Since it is difficult to achieve an optimal
balance, from this point of view, as long as these sub-optimal
behaviors are good enough for multi-robot systems, we can
say our objective is achieved.

IV. SIMULATION AND RESULTS
 To evaluate the reliability and the efficiency of the
proposed method, several case studies of a multi-robot
construction are studied. We implement all the case studies
using MATLAB.

A. Parameter Adjustment

 In equation (5) and (6), there are four parameters, i.e., a, c,
k, and b, which need to be set up for the simulations. Tuning
the parameters for the algorithm can speed up the system
convergence and assure the system stability.

Initially, we randomly select different combinations of
four parameters, and implement the multi-agent construction
experiments. Through rough observations, we find out that
a and k shall be equal. Otherwise the system cannot
converge. Therefore, in the following experiments, we
always set a=k. By setting up different values to a and k
while keeping other parameters same, we find out that the
bigger the value is, more force toward the predefined shape.
We also find out that the system convergence time is very
sensitive to the values of parameter c.
 First, we setup parameters as 100, 10, 100k b a= = = , and
only change the value of c for 3-robot construction. The
results are listed at the first two columns in Table I. It can be
seen that when c=10, the robots can achieve the fastest
convergence to their final states. Then, we change parameter
b while keeping other parameters as c =10, k =100, a =100
for 5-robot construction. The results are listed at the third and
forth column. It can be seen that when b=10, the system can
reach the fastest convergence. Last, we only change values of
k (=a), while keeping other parameters as c=10 and b=10 for
5-robot construction. The results are listed on the last two
columns in Table I. It can be seen that when k=a=20, the
system can achieve the fastest convergence.

TABLE I. CONVERGENCE SPEED (MEASURED BY NUMBER OF
ITERATIONS) FOR DIFFERENT PARAMETER SETUPS

c Nc b Nc k/a Nc

50
20
15
12
10
5
1

35605
7329
1053
697
589
661
1053

100
50
20
15
10
1
0.1

1069
689
581
529
517
681
3789

100
50
25
20
18
15
10

537
445
393
361
669
6033
6121

Note: Nc is the number of iterations needed to converge to final
state.

The next question is how these parameters affect the robot
trajectories? Due to page limitations, we only show the results
of parameter c while keeping others constant. We still use 3
robots to implement our algorithm with different c, and draw
the trajectories of robots from their initial positions to final
position. The simulation results are shown in Fig. 3. From
Fig. 3, we can see that when c=50, robots only need to travel a
short way to converge to the desired shape. While from Table
I, we can see that robots need to take quite a long time to
finish their short trajectories. In other words, robots are
moving very slowly. When c=1, robots travels fast, however,
their trajectories oscillate very frequently and they spend
quite a lot time to converge to the desired shape. When c=10,

h(z)zi - gi pi iD b∗

∫ ∫ h∇

c

k

a

()f z

the robots behave somewhere in between. This indicates that
it is necessary to tune c properly to achieve a good balance
between the speed of convergence (time to reach the final
position) and the length of the trajectory. From the balance
point of view, c=10 is a good choice. Similar procedure can
be implemented for other parameters as well.

It is a very tedious procedure to adjust these parameters to
achieve optimal system performance. Therefore, we plan to
apply a genetic algorithm (GA) to automatically tune these
parameters, which will be reported elsewhere.

B. Case Study 1: To deploy multiple robots to a unit circle
 For this case study, the simulation parameters of equations
(5) and (6) are set up as follows: a = 1, c = 1 and k = 1, and
b=1.

In this case, we aim onto deploy a number of initially
randomly distributed robots to a unit circle. That is, a circle
with center at (0, 0) and radius of 1. During the deployment,
the robots would try to approach to the unit circle and
meanwhile to avoid colliding with each other.
 Three groups of robots have been used to evaluate the
proposed distributed control algorithms, which contain 5
robots, 10 robots and 20 robots. Due to the page limitation,
we only show the simulation results of 20 robots in Fig. 4.
The simulation results of 5 and 10 robots are similar to Fig. 4.
Initially, robots are randomly located in the environment, as
shown in Fig. 4(a). Then robots are trying to converge to the
unit circle while avoiding each other, as shown in Fig. 4(b).
After certain rounds of simulation, they are uniformly
deployed on the circle, as shown in Fig 4(c). From the above

simulation results, we can see that any number of randomly
initiated robots can ultimately converge to the desired shape
uniformly.
 Fig. 5 shows the trajectories of robots moving from the
initial state to the final state for all three cases with 5, 10, and
20 robots. It can be seen from Fig. 5 that the trajectories of
the robots are obviously not optimized. Sometimes some
robots have to travel a long journey from their initial position
to their final position on the circle. The underlying reason for
these scenarios mainly depends on the parameter setup, as we
mentioned in parameter adjustment section. When c=1,
robots move fast but with oscillated trajectories.
 In addition, to evaluate our algorithm statistically, Table
II lists the mean errors of the final state of the robots
compared to the expected final position to the predefined
shape. It can be seen that the mean errors are very small. In
other words, the proposed GRN inspired dynamic models for
multi-robot systems is efficient and feasible.

TABLE II
NUMBER OF ROBOTS VS MEAN DIFFERENCE IN CIRCLE

DEPLOYMENT
Number of robots in the

environment
Mean difference to the

expected shape
5 robots

10 robots
20 robots

0.0800
0.0401
0.0301

-1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

 (a) c=50; (b) c=1; (c) c=10.

Fig. 3. Trajectories of 3 robot with different value of parameter c.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

20robots randomly initialized
-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

20 robots intermediate state
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

20robots
 (a) Initial state of robots; (b) Intermediate state of robots; (c) Final state of robots.

Fig. 4. 20 robots deployed uniformly on a unit circle.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

5robotsformation process
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10 robots formation process
-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

3

4

20 robots formation process
 (a)5 robots; (b)10 robots; (c) 20 robots.

Fig. 5. Robots’ movement trajectories. (a) 5 robots; (b) 10 robots; (c) 20 robots.

C. Case Study 2: To deploy multiple robots to a unit square
 In this case, we plan to deploy a number of initially
randomly distributed robots to a unit square. The unit square
is defined as follows: lower-left point at (-0.5,-0.5) and the
upper-right point at (0.5, 0.5). It is a little bit tricky to define
the shape function s of the unit square compared to the unit
circle. We first set up a circle with the center at (0, 0) and

radius of 1
2

. Therefore, the shape function of a circle can

be defined as: 2 2
1 , , , ,

1(,) 0
2i x i y i x i ys g g g g= + − = and

2
1 1 , ,((,))i x i yf s g g= . Then, through the first function, we

can deploy the robots to the specific circle first, and then
define 2 (,)s x y according to the following rules:

,

,
2 , ,

,

,

(1 / 2)
(1/ 2)

(,) (1/ 2)

(1/ 2)

i x

i x
i x i y

i y

i y

g
g

s g g g

g

+⎧
⎪ −⎪= ⎨ +⎪
⎪ −⎩

 if

,

,

,

,

0
0
0

0

i x

i x

i y

i y

g
g
g

g

≤
≥
≤

≥

 and

,

,

,

,

1 / 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2
1/ 2 1/ 2

i y

i y

i x

i x

g

g

g
g

− ≤ ≤

− ≤ ≤

− ≤ ≤
− ≤ ≤

 (14)

2

2 2 , ,((,))i x i yf s g g= (15)
Note that it is impossible that a robot’s position satisfies

both of the two aforementioned conditions, since after the
first phase deployment, the robots are on the circle and will
satisfy only one condition as depicted in Fig. 6.

We have tested two groups of robots to deploy them to the
unit square with 8 robots and 12 robots, respectively. Fig. 7
shows the simulation results of deploying 12 robots to a unit
circle in the environment. The simulation results for 8 robots
are similar. Initially, robots are randomly located in the
environment, as shown in Fig.7(a). Then robots are trying to
converge to the unit square while avoiding each other, as
shown in Fig. 7(b). After enough iterations of simulation,

they are uniformly deployed on the square, as shown in
Fig.7(c). Table III lists the statistics regarding the mean
errors of the final state of the robots and the expected final
position to the predefined shape. From it, we can see that the
mean errors are very small which indicates that our robots
under the genetic control can converge to the desired shape.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig 6: The relationship between the circle and the expected square

TABLE III
NUMBER OF ROBOTS VS MEAN DIFFERENCE IN SQUARE

DEPLOYMENT
Number of robots in the

environment
Mean difference to the

expected shape
8 robots

12 robots
0.0640
0.0317

D. Case Study 3: Self-reorganization
From previous two case studies, we can see that the

proposed GRN-based control algorithm can automatically
drive multiple robots to a predefined shape. In this case study,
we would like to evaluate the system’s capability of
self-reorganization. More specifically, when new robots join
the team, can the original team reorganize themselves to
incorporate the newcomers?

For this case study, the simulation parameters of
equations (5) and (6) are set up as follows: a = k =100, c =50,
and b = 10. The main reason to set c=50 instead of c=10 here
is because we want to show the robot trajectories during the
self-organization procedure. The robot trajectories with c=50
are much clearer with weaker oscillations, which would make
the figure more easy to read, although the convergence speed
is relatively slow. Fig. 8 provides the trajectories of robots’
initial shape formation as well as self-reorganization to

incorporate the new comers. Fig. 8 demonstrates the
self-reorganization capability of our proposed approach for
various sizes of multi-robot systems.

E. Case Study 4: Self-adaption to environment changes
Another interesting test for our algorithm is whether our

algorithm can self-adapt to the dynamic changing
environment? In the environment, when we setup an obstacle
on the perimeter of the desired shape, can robots circumvent
the obstacle and continue to form the desiring shape on the
rest of the shape using our proposed control method?

For this case study, the simulation parameters of
equations (5) and (6) are set up as follows: a = k = 100, c =50,

and b = 10. Fig. 9 shows the simulation results of three
different multi-robot systems with one obstacle located on the
perimeter of the predefined shape where robots are supposed
to be deployed on. Here, the obstacle is modeled as a static
robot. The obstacle can emit protein to neighboring robots so
that it can influence neighboring robots’ behaviors. However,
it doesn’t receive protein diffusion and it can’t move. From
Fig. 9, we can see that the multi-robot systems can adapt
themselves to the environment change. They are supposed to
form a circle, since there is an obstacle, they can circumvent
the obstacle and form a circle on the rest of the perimeter.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

12robots
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

12robots intermediate state
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

12 robots
(a) Initial state of robots; (b) Intermediate state of robots; (c) Final state of robots.

Fig. 7: 12 robots deployed uniformly on the unit square

-1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) 3 robots with 2 newcomers; (b) 4 robots with 2 newcomers; (c) 8 robots with 4 newcomers.

Fig. 8: Trajectories of multi agents during self-organization with newcomers. The initial positions of the robots are plotted as ‘*’, the
intermediate states where the first batch of robots are located are plotted as ‘o’, and the final states of all the robots are plotted as ‘+’, the dash
lines are the initial deployment trajectories of the first batch of robots and the solid lines are the trajectories of all the robots after
incorporating newcomers.

-2 -1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 (a) 6 robots with one obstacle; (b) 8 robots with one obstacle; (c) 10 robots with one obstacle.

Fig. 9: Trajectories of multi agents in self-adaptive test cases. The big red circle represents one obstacle in the environment. The initial
positions of the robots are plotted as ‘o’, and the final states of robots are plotted as ‘*’.

V. CONCLUSION AND FUTURE WORKS
 In this paper, we have presented a novel GRN inspired

distributed control approach for multi-robot construction.
Compared to other multi-robot control methods, the major
advances of the proposed method are: (1) embedding the
global shape information into the dynamic models through a
sigmoid function to provide boundaries; (2) truly distributed
behaviors of each robot balanced by two different forces: one
force to approach to the predefined shape and the other force
to avoid collision with other robots. The local interaction
among the robots is represented by the reaction-diffusion
model inspired from the multi-cellular mechanism of living
organisms.

 In the future, we will continue with our research on GRNs
inspired multi-robot controller. We will investigate arbitrary
shape construction using the evolving GRNs model. We will
also investigate the system robustness when one or more
robots fail.

REFERENCES
[1] U. Alon, An Introduction to Systems Biology: Design Principles of

Biological Circuits. Chapman & Hall/CRC, July 2006.
[2] H. de jong, “Modeling and simulation of genetic regulatory systems: a

literature review.” Journal of Computational Biology, vol. 9, no. 1, pp.
67-103, 2002.

[3] M. Dorigo, V. Maniezzo, and A.Colorni, “Ant System: Optimization by
a Colony of Cooperating Robots,” IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics, Vol. 26, No. 1, February
1996.

[4] D. Endy , and R. Brent 2001. Modelling cellular behavior. Nature 409,
391-395

[5] N. Geard, Modeling gene regulatory networks: systems biology to
complex systems, ACCS technical report. 2004.

[6] A, Gierer, Generation of biological patterns and form: some physical,
mathematical, and logical aspects. Prog. Biophys. Mol. Biol. 37, 1-47.

[7] J. Hasty, D. McMillen, F. Isaacs., and J.J.Collins 2001. Computational
studies of gene regulatory networks: In numero molecular biology. Nat.
Rev. Genet. 2, 268-279.

[8] W. Jatmiko, K. Sekiyama, and T. Fukuda, “A PSO-based Mobile Robot
for Odor Source Localization in Dynamic Advection-Diffusionwith
Obstacles Environment: Theory, Simulation and Measrument”, IEEE
Computational Intelligence Magazine, May 2007. pp.37-51.

[9] Y. Jin and B. Senthoff, Evolving in silico Bistable and Oscillatory
Dynamics for Gene Regulatory Network Motifs, IEEE/CEC Congress
on Evolutionary Computation, pp. 386-391, Hongkong, China, 2008.

[10] S. A. Kauffman, The origins of order: self-organization and selction in
Evolution, Oxford University Press, New York, 1993.

[11] B. Khoshnevis and G. A. Bekey, “Centralized sensing and control of
multiple mobile robots”, Computers in Industrial Engineering, 35(3-4).
Pp.503-506. 1998.

[12] E. Klavins, “Communication Complexity of Multi-Robot Systems”
Springer Tracts in Advanced Robotics, Volume 7/2003 page 275-292.

[13] P. K. Maini, K. J. Painter, and P. C. Nguyen. Spatial pattern formation
in chemical and biological systems. J. Chem. Soc., Garaday Trans.
93(20), 3601-3610.

[14] H.H. McAdams , and A.Arkin 1998. Simulation of prokaryotic genetic
circuits. Ann. Rev. Biophys. Biomol. Struct. 27, 199-224.

[15] Y. Meng and J. Gan, LIVS: Local interaction via virtual stigmergy
coordination in distributed search and collective cleanup, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2007), San Diego, CA, USA.

[16] Y. Meng and J. Gan, A Distributed Swarm Intelligence based
Algorithm for a Cooperative Multi-Robot Construction Task, IEEE
Swarm Intelligence Symposium, 2008. St. Louis, Missouri, Sept. 21-23,
2008.

[17] E. Mjolsness, D. H. Sharp, and J. Reinitz. A connectionist model of
development. Journal of Theoretical Biology, 152:429-453, 1991.

[18] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines. MIT Press,
Cambridge, MA, 2000.

[19] R. Pfeifer, M. Lungarella, and F. Iida, Self-organization, embodiment,
and biologically inspired robotics, Science, Vol. 318, November 2007.

[20] J. Pugh and A. Martinoli, Inspiring and Modeling Multi-Robot Search
with Particle Swarm Optimization, Proceedings of the 2007 IEEE
Swarm Intelligence Symposium (SIS 2007). 2007.

[21] W. Shen, P. Will and A. Galstyan, Hormone-Inspired Self-Organization
and Distributed Control of Robotic Swarms, Autonomous Robots, 17,
pp.93-105, 2004.

[22] I. Salazar-Ciudad, H. Garcia-Fernandez, and R. V. Sole. Gene networks
capable of pattern formation: from induction to reaction-diffusion.
Journal of Theoretical Biology, 205:587-603, 2000.

[23] P. Smolen, D.A.Baxter and J.H.Byrne 2000. Modeling transcriptional
control in gene networks: Methods, recent results, and future directions.
Bull. Math. Biol. 62, 247-292.

[24] P. Stone, M. Veloso “Multiagent Systems: A Survey from a Machine
Learning Perspective.” Autonomous Robots, 8(3):345–383, July 2000.

[25] T. Taylor (2004), A Genetic Regulatory Network-Inspired Real-Time
controller for a Group of Underwater Robots, Proceedings of Eighth
Conference on Intelligent Autonomous Systems (IAS-8), 2004.

[26] A. M. Turing, The chemical basis of morphogenesis, Philos Trans. R.
Soc. London B, 237. 1952.

[27] J. Werfel, Building blocks for multi-robot construction. 7th
International Symposium on Distributed Autonomous Robotic Systems
(DARS 2004). June 23-25, 2004. Toulouse, France.

[28] E. Yang and D. Gu, “Multiagent Reinforcement Learning for
Multi-Robot Systems: A Survey”. Technical Report CSM-404,
Department of Computer Science, University of Essex, 2004

