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Abstract
We hereby present our first steps towards linking an embodied
speech acquisition system and a speech production module, in
order to provide a robot with the ability to reproduce acquired
speech representations. Due to the type of interaction intended
for the robot, we endowed it with a child-like voice, concretized
with the use of a new vocoder-like technique for speech synthe-
sis. The task in hand consists of finding and using a correspon-
dence between configurations in the tutor’s acoustic parameter
space, which might be inaccessible for the system’s voice, and
phonetically equivalents in the robot’s. This mapping is learned
by having a cooperative tutor imitating the robot’s monophonic
utterances, giving the robot the necessary knowledge to map a
tutor’s utterance to its own vocal space, and imitate it.

1. Introduction
The ability to use natural spoken language to interact with a
robotic system like Honda’s ASIMO is highly desirable because
it greatly increases the naturalness and efficiency of communi-
cation. Ideally, in order to face the demand for flexibility of
such a task, an acquisition process would make little or no as-
sumptions about the used language and adapt itself to the char-
acteristics relevant in the environment, much like children do in
the first years of their lives. The speech representations should
be learned through interaction with a tutor instead of being pre-
defined. Traditional ASR and TTS systems rely on annotated
corpora, which isn’t suitable for our type of interaction scenario.

The first steps towards a system that fulfills the aforemen-
tioned requirements have been reported in [1]. There, it has
been shown how a system can learn to recognize phones, sylla-
bles and words in an unsupervised fashion using child-directed
speech. These speech recognition capabilities have already
been integrated in an autonomous learning interaction frame-
work working on the humanoid robot ASIMO, where it could
acquire speech labels for objects and their attributes, like size,
position and orientation [2]. Thanks to these previous works,
ASIMO is able to recognize previously learned speech-labels.

It was, however, not yet possible for it to produce an au-
dible description of a perceived scene.We hereby attempt to fill
this gap by combining the already mentioned acquisition system
with a speech production module.

In order to match its size, it was decided that ASIMO should
have a child’s voice. A child’s voice is also arguably more
appropriate for the type of interaction that takes place with
a learning system like the one in [2], which has the dimen-
sions of a child and where almost no knowledge of the world
is assumed. Synthesizing high-pitched voices, as children’s, is
however not trivial. There have been recent developments in

this direction in the field of articulatory synthesis [3], but syn-
thesizing some consonants, like fricatives, is still a challenge.
Acoustic-domain techniques, like those used in state-of-the-art
TTS systems [4], also show some limitations in the synthesis
high-pitched voices. Because of these limitations we devel-
oped a new acoustic-domain technique based on the channel
vocoder [5] and using a gammatone filter bank [6]. It allows
for the synthesis of high- and low-pitched voices with similar
naturalness and intelligibility.

Working with a child-like voice and an adult tutor enables
us to address the correspondence problem, because acoustic tar-
gets cannot simply be copied from the tutor for reproduction.
This is one of the unexplained skills shown by infants during the
process of language acquisition: transfer the relevant perceptual
auditory features of the utterances of their caregivers into acous-
tic goals that are attainable by their own different vocal tract.
We address this problem by exploring the role of the caregiver’s
imitative feedback, which is in line with recent views, e.g. [7],
of the role of parental imitation in the early speech acquisition
process.

In a training phase, the tutor imitates a set of constant spec-
trum vowel utterances produced by the system. This way, the
system associates its vocal productions with the imitative vo-
cal response of the tutor. Later, by inverting this association,
the system is able to interpret a tutor utterance as a trajectory
in its own articulatory space. As tutor utterances are repre-
sented in reference to its vocal repertoire, the system makes no
assumptions about the language of interaction. As an initial
step, we limited the robot’s repertoire to vowels, but because of
the frame-wise implementation more complex utterances can be
imitated. This way we are able to extend our previous parrot-
like real-time speech imitation system [8].

We begin by motivating and describing the speech synthesis
framework, which includes a speech synthesis algorithm based
on the channel vocoder and an algorithm for morphing the spec-
tral prototypes. We then explain in more detail the imitation
mechanism, and describe the experiment done to evaluate its
performance. We conclude with a discussion.

2. Speech synthesis framework
Most work done on speech imitation, for example [9] and [10],
makes use of articulatory production models. In order to equip
our robot with the ability to speak with a child’s voice, we
use an acoustic production model derived from the channel
VOCODER [5] instead. It uses a gammatone filter bank in the
ERB scale [6], which offers an optimal tradeoff between spec-
tral and temporal resolution, enabling us to synthesize high-
(women’s and children’s) and low- (men’s) pitch voices with
similar naturalness and intelligibility.
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Figure 1: Results of the different preprocessing stages involved in the extraction of the spectral features of the German word ”zurück”,
from a male speaker. (a) cochlear response, (b) spectral envelope, (c) enhanced spectrogram after filtering over the channels.

Using an acoustic technique for speech imitation offers
some advantages, while presenting some difficulties. The first
advantage is the ability to synthesize out-of-the-box a broad
range of voices, namely children’s. Another advantage is the
simplicity of control, when compared to an articulatory model:
because it is done in a level nearer to the acoustic output, the
mapping between target sound and control parameters (inverse
mapping) is simpler.

The difficulty posed by an acoustic production model lies
in defining a voice model: a set of sounds that can be perceived
as having been produced by the same person. In other words,
defining a plausible set of acoustic constraints and variability. In
standard text-to-speech systems, these are statistically derived
from a corpus of utterances [4]. This is however not compati-
ble with our already mentioned goal of learning them through
interaction. In this work the voice constraints are implicitly de-
fined by a set of spectral vectors extracted from utterances from
a child speaker. The variability is achieved by means of a mor-
phing algorithm that interpolates between these spectral proto-
types, using the formant frequencies as correspondence points.
This reflects our assumption that, since each of the spectral vec-
tors belongs to the speaker’s voice, so do the intermediary steps
of a transition between each of these vectors.

We begin by explaining the mechanism of spectral extrac-
tion used to compute the spectral prototypes. We then describe
the synthesis algorithm that uses these features, and finally the
spectral morphing algorithm, used to compute new spectral con-
figurations and transitions.

2.1. Spectral features

The spectral features used to define the system’s voice are com-
puted by applying a gammatone filter bank in the ERB scale to
an input (child) speech signal. There it is decomposed in sev-
eral channels (figure 1a). In each of these channels, we com-
pute the Hilbert envelope (figure 1b). The harmonic structure is
then removed with an anisotropic gaussian kernel with a width
dependent on the pitch value, applied over the channels. Be-
cause of this, the formant structure of the resulting spectrogram
is more evident (figure 1c). These three processing stages are
schematized in figure 2.

2.2. Synthesis algorithm

The synthesis algorithm is based on the channel
VOCODER [5]. The excitation signal consists of a sum
of sinusoidal functions hi, fundamental frequency and its
harmonics, weighted with a value obtained of directly sampling
the spectrogram S at the corresponding frequency, as shown in
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Figure 2: Spectral extraction with the Gammatone filter bank.
Each channel is rectified and the Hilbert envelope is extracted.
Then, an anisotropic Gaussian filter with a width dependent on
the pitch value is applied, in order to enhance the formant struc-
ture and eliminate the harmonic structure, and consequently the
dependency on the value of the fundamental frequency.

equations 1 and 2. Fricative excitation, not used in this work, is
obtained using the classic VOCODER architecture, by driving
white noise through the filter bank and multiplying it with the
spectrogram.

hi(t) = S(ci(t), t) cos

„
2π

fs

Z t

0

f0(x)dx+ φi(0)

«
(1)

where ci(t) is the filter bank channel of the ith harmonic at
time t, φi(0) the initial phase of the same harmonic, f0(t) the
fundamental frequency, and fs the sampling rate.

In addition to this, we add a small weight to each of the
harmonics, to compensate the smaller precision of the Gam-
matone filter bank in the higher frequencies and the additional
smoothing effect of the Gaussian kernel, which leads to an over-
quantification of the energy of the high frequency sinusoidal
components. Currently, this consists of a decay of −0.2dB per
harmonic, such that the voicing source signal v(t) is given by

v(t) =

nX
i=0

dihi(t) =

nX
i=0

10
−0.2 i

10 hi(t) (2)

An important aspect is the setting of the phase of each of the si-
nusoidal components φi(0), known to be of high importance to
the synthesis quality. The initial phases of the sinusoidal func-
tions are set to linearly distributed, signal alternating, values
between π/2 and 0.



2.3. Spectral morphing algorithm

We use a spectral morphing algorithm for generating the spec-
tral vectors needed for imitating an utterance (see section 3.2).
This algorithm has two different functions. One is to compute
the transition between two spectral vectors, and the other is to
represent an intermediate state between two or more spectral
vectors. The algorithm receives initial and final spectral config-
urations, a set of reference points in both of these vectors, and
a correspondence between these reference points. In this work,
the correspondence is given by the formant frequencies associ-
ated to the spectral vectors. It provides the information needed
to connect the two spectral configurations and reconstruct the
intermediate steps of the transition.

The morphing algorithm computes the value of spectral
channel c at the normalized intermediary position α ∈ [0, 1],
S(α, c), by linearly interpolating between points pc and qc, re-
spectively part of the initial and final spectral vectors.

S(α, c) = (1− α)S(pc, 0) + αS(qc, 1) (3)

where pc and qc are calculated by maintaining the proportion
of the distance from channel c to the immediately inferior, piqi,
and superior, pjqj , line segments as defined by the correspon-
dence matrix (

pc = pi + c−ci
cj−ci

(pj − pi)

qc = qi + c−ci
cj−ci

(qj − qi)
(4)

This is illustrated in figure 3.
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Figure 3: The morphing algorithm computes the spectral value
S(α, c) for a channel c at an intermediary position α ∈ [0, 1],
given an initial and final spectral vectors p and q, and a corre-
spondence matrix associating (p1, q1), (p2, q2), (p3, q3).

3. Learning and using a tutor-system
mapping for imitation

In some existing models of early infant speech acquisition, the
system learns an acoustic to articulatory inverse mapping by
direct imitation of its caregiver. However, vocal tracts of chil-
dren aren’t just a shorter version of those of adults, but present
significant differences [3]. This reflects in differences in the
acoustical characteristics of children’s and adult’s voices, which
include higher fundamental and formant frequencies [11].

In order to make use of the important feedback from the
caregiver, the child needs to be able to correspond acoustic tar-
gets, suggested by the caregiver, which are unreachable for it-
self, into other phonetically equivalent targets that he can pro-
duce. Depending on the models, the required phonological
knowledge is presented as innate [12] or learned [13]. We sup-
port an alternative viewpoint, see [7] and [9], that it is the care-
giver that has access to this necessary knowledge, which he uses
it to interpret the child’s immature utterances and imitate them.

In [7], a reinforcement learning model is proposed where
the ”child” utters in order to receive a reward, usually in the
form of a positive response/imitation from the caregiver. This
way it learns simple associations between its muscular activity
and the caregiver’s acoustic output, leaving the complex acous-
tic voice matching task to the only expert in the linguistic envi-
ronment: the caregiver. In [9], it is shown how the caregiver can,
thanks to its phonological bias, guide the infant in the search for
clearer vowel targets. In this work, we investigate the use of the
systematic imitation of a caregiver in order to learn a correspon-
dence between the caregiver’s and the system’s voice, making
no assumptions on the tutoring language. In a training phase,
the tutor is instructed to imitate utterances from the system.
These consist, at this stage, of a set of vowels, synthesized from
a set of predefined spectral vectors also seen as motor primi-
tives. The imitative responses of the tutor allow to bootstrap a
correspondence model between the system voice and the tutor’s
one.

In a second stage, given a target tutor utterance, the system
computes the posterior probability of each of its motor prim-
itives, based on the previous tutor feedback. These posterior
probabilities are then transformed in a time-varying population
code of vocal primitives. By means of the morphing operation
presented in section 2.3, the population code is transformed into
output spectral vectors and synthesized as the system’s imitation
of the tutor’s utterance.

3.1. Training: tutor imitates the system

The system has a repertoire of vocal primitives available in the
form of predefined spectral vectors. In the training phase, the
task is to learn a correspondence between each of the vocal
primitives and the imitation from the tutor. The system pro-
duces a set of vowel utterances with constant timbre, by syn-
thesizing each of the spectral vectors. These system utterances
are presented to a human tutor, instructed to imitate them. The
system analyzes the tutor’s responses (see equation 5) and in-
terprets them as imitations to the vocal primitive used to trigger
the response. From each utterance, the formant frequencies and
their spectral energy are extracted (200Hz). These are then used
to compute perceptual features pi later used in the imitation pro-
cess:

p1(t) = F1(t)

p2(t) = F2(t)− F1(t)

p3(t) = F3(t)− F1(t)

p{4,5,6}(t) = log(S(C{1,2,3}(t), t))

(5)

whereCi(t) is the filter bank channel (ERB scale) of the ith for-
mant frequency Fi, and S the spectral representation obtained
by the process described in section 2.1. Feature vectors are then
subject to whitening, so that they have mean 0 and variance 1.

3.2. Imitation: system imitates the tutor

In order to imitate, the system maps the perceptual features of
the tutor’s utterance to an equivalent vocal action. For this, we
use a local estimation technique called k-Nearest-Neighbours
[14]. The choice was motivated by it not making any assump-
tions on the data distribution of the tutor’s responses. For a set
of labels or vocal-classes Cj and an input feature vector x, we
consider a neighbourhood V of x that contains exactly k points.
The posterior probability of class membership depends on the
number of training points of class Cj present in V , denoted by
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Figure 4: Training procedure for the imitation experiment. A
spectral vector is randomly picked (yellow box) from a set of
templates and used to synthesize a vowel with constant timbre.
A tutor is instructed to imitate the sound that the system pro-
duces. The value of the first three formant frequencies and their
spectral energy is measured from the tutor utterance and used to
train a kNN. The identity of the randomly chosen is used as the
label for the perceptual parameters of the tutor’s utterance.

Kj :

p(Cj |x) =
Kj

K
(6)

Because we work with a small number of basis spectral
vectors and want the system to also be able to imitate inter-
phonemic transitions, we need to represent intermediary states.
Furthermore, we don’t restrict the system’s utterances to the ba-
sis spectral vectors, in the sense that new sounds can be pro-
duced as a combination of the existing primitives. For this, in-
stead of making a hard classification limited to the class Cj that
maximizes the posterior probability as given by equation 6, we
identify Cj1 and Cj2 as the two classes with higher posterior
probabilities and use them to code the output spectral vector.
We compute the relative strength of activation α of these two
classes, given a feature vector x from a tutor utterance, by

α =
p(Cj1|x)

p(Cj1|x) + p(Cj2|x)
(7)

This value is used by the morphing algorithm described in 3 for
the computation of the spectral output.

The formant frequencies of the new morphed spectral vec-
tors are given by

fi = fk1
i α+ fk2

i (1− α) (8)

and can be used as correspondence points in the computation
of transitions or new spectral outputs. In order to endow the
process with robustness against outliers, class posterior proba-
bilities computed by equation 6 are low-pass filtered in time.

The different stages of the imitation process are shown in
figure 6. In figure 6a, we show the spectrogram and the for-
mant frequencies. For each frame, we extract the features and
classify them with the k-Nearest-Neighbours algorithm. The
classification, expressed in terms of class posterior probabili-
ties, p(Cj |x), is low-pass filtered in time for robustness. The
smoothed classification curves, upper part of figure 6b, are used
as activations of the motor primitives. These are then morphed

...

...

tutor
utterance

feature
space

motor
primitive
activation

morphing

Figure 5: Imitation of a tutor’s utterance. The perceptual fea-
tures of the utterance are analyzed and classified by the kNN
algorithm. The posterior probability of each class is computed
for each feature vector. The two most likely classes are selected
and used as population coding.

accordingly, energy-normalized (lower part of figure 6b), and
become the energy contour of the input utterance, and a pitch
contour obtained from the original by adding 130Hz.

4. Experimental results
We grounded the system’s voice in a set of 8 spectral vectors,
selected per hand from cluster centers computed with the K-
Means algorithm over the spectrograms of utterances spoken
by a 10 year old male child, from the TIDIGITS corpus [15].
Each spectral vector, 100 channels with center frequencies from
40Hz to 8KHz, represents one of the following vowels (IPA al-
phabet): O, e, @, o, a, E, i, U. Spectral representations (like in
figure 1) were extracted using the procedure described in sec-
tion 2.1 and the pitch algorithm presented in [16].

The first four formant frequencies were extracted as de-
scribed in [17], and added to the spectral vectors to generate
the correspondence matrices for the morphing algorithm.

Each of the vowel prototypes was synthesized and played
15 times to a male adult speaker, who imitated them. In order
to improve the naturalness of the training session we synthe-
sized each robot’s utterance with a random duration (between
0.25 to 0.3 seconds), smoothly decaying energy contour and ei-
ther falling, ascending or flat pitch contours. From each tempo-
ral frame (extracted at 200Hz) of each imitative tutor utterance,
we extracted the features from equation 5. For the k-Nearest-
Neighbours algorithm we used k = 21 and the standard eu-
clidean metric.

To evaluate the classification performance of the kNN and
the feature quality, we divided the 9355 feature frames into a
training and a test sets, containing respectively 66% and 34%
of the total number of feature frames. For each class Cj from
the test set we computed the mean class posterior probability of
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Figure 6: (a) Spectrum and formant frequencies of the input tutor’s utterance [aua]. Upper figure (b): smoothed posterior probabilities
of each class/vowel motor primitive. Lower figure (b): energy normalized spectral vectors resulting from the computation of the
population coding. Output spectrum (c), with copied envelope.

Cj given a feature frame f

M(i, j) =
1

|test(Ci)|
X

f∈test(Ci)

P (Cj |f) (9)

As can be seen in figure 7, the matrix is mostly diagonal, the
sum of the elements of the diagonal corresponding to a ratio
0.7396 of the total sum of the matrix. This shows that the im-
itative response of the tutor significantly varies depending on
the robot’s vowel that originated it, suggesting that the system’s
vowels were clear most of the time.

Figure 7: Mean posterior probabilities for each vowel class.

We also performed a subjective evaluation of the imitation
process, in order to assess the changes in performance with dif-
ferent vocal repertoires, and the capacity to produce sounds not
represented by the vocal primitives. A total of 24 test subjects
(17 male and 7 female, all native or experienced german speak-
ers) were presented with 47 pairs of utterances, where the first
was taken from a test corpus, with 3 times 13 german vowel ut-
terances spoken by the same male person with which the system
was trained, and the second corresponded to an imitation. We
asked the participants to judge between 1 and 5 the phonetical
similarity of each pair, where 1 corresponds to different and 5 to
same. Used vowels were the 8 represented by the system, and
Y, 9, aI, aU, OI.

Imitation utterances were generated using 4 different pro-
cedures. We trained the imitation systems with different vocal
primitives sets and corresponding training data: the whole set
S8; a shorter set S3 corresponding to phonemes a, i, U; an in-
termediate set S5 containing a, i, U, E, O.The remaining set of
utterances was produced by controlled activation of the primi-
tive corresponding to the phoneme being imitated Sc. For the

imitation utterances, duration and energy contours were copied
from the original, pitch changed by adding 130Hz.

Figure 8: Histogram showing the mean score and variance for
all trained (S3, S5 and S8) and control (Sc) systems and differ-
ent sets of test utterances. T3 contains a, i, U; T5−T3 contains
E, O; T8 − T5 contains e, @, o; and T all 13 phonemes.

The mean scores for each system and test sets are shown
in figure 8. As can be observed, the control system Sc per-
forms consistently significantly better than all others. Also gen-
erally, through two Kruskal-Wallis (0.05 significance) tests we
could find evidence to reject the null-hypothesis that there are
neither significant differences between non-control systems nor
between test sets. The data also suggest a dependency between
the scores of the evaluated phonemes and their representation
in the system’s repertoire. Namely, statistical significant dif-
ference (through a Wilcoxon test at 0.05 significance) can be
observed for the performance S3 and S5 between their fully
represented test sets (T3 and T5) and the whole test set. This
was not observed for S8. Furthermore, significant difference
was found for T8 between S8 and the other systems.

These results confirmed our hypothesis, that the system
benefits from a more extended vocal repertoire. Possibly, the
ideal case would be that system would have at least one pro-
totype for each of the target categories. Nevertheless, even
whilst being directly represented by the system, differences in
the scores of the vowels could be observed. This could be due
to the clarity of the vowel prototypes themselves, but there is
no significant difference shown by the control group. It is then
more likely that these are either due to problems with the clas-
sification of the tutor utterances, or that through the morphing
operation the clarity of the output is affected.

5. Conclusion and future work
We have presented a method to learn a correspondence between
vowel sounds from a tutor and vocal actions from its repertoire.
The method makes no assumptions on the language of interac-
tion or on the characteristics of the tutor’s voice. The mapping is



learned by having a cooperative tutor imitating utterances spo-
ken by the system. By analyzing the responses of the tutor, the
system first learns to predict the tutor’s imitation, and later use it
to compute posterior probabilities for each vocal primitive. Us-
ing these probabilities, it can represent tutor utterances in terms
of its own vocal primitives, and imitate them.

This interpretation of the role of feedback is in tune with
recent work in robotics and psychology. It relieves the learning
system from the burden of having (to find) a universal speaker-
independent speech representation, where its utterances and its
tutor’s would be similar. Instead, it allows the system to infer
from the interaction, which vocal tract configurations produce
phonetically equivalent vocal sounds to those of the tutor.

As an initial step, we endowed the system with a prede-
fined set of motor primitives, in the form of spectral vectors
corresponding to vowels. We used a nearest-neighbours al-
gorithm to compute the posterior probabilities of the spectral
primitives. The system imitates an incoming utterance by trans-
forming the class posterior probabilities into motor primitive
activations, which it then merges using a morphing algorithm.
The system has been implemented in real-time, and can imitate
any vocal sequence, although its repertoire is, for the time being
limited to vowels.

We have also described a new speech synthesis algorithm
that allows the synthesis of high-pitched voices, without the
need of building a specific articulatory model for the desired
voice. It is based on the channel-vocoder and uses a gammatone
filter bank at its core, which offers an optimal tradeoff between
spectral and temporal resolutions.

Presently, the imitation module receives a tutor target ut-
terance from the system, which it then transforms and synthe-
sizes. In the future, however, we will be integrating our system
more tightly with the recognition system described in [1], so
that we can integrate the recognition and production learning
processes of speech acquisition. Furthermore, this will allow us
to make use of more sophisticated pattern recognition methods
for phone classification, trained on a broader range of utterance
examples. This way we will also be able to work with conso-
nant sounds and, more importantly, have a less rigidly divided
training and imitation stages.

6. Supplementary information
A supplement to this paper containing the .wav format audio
samples with imitation examples can be found on the website:
http://mvaz.net/research/specom2009.html.
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