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Transferring motion from a human demonstrator to a humanoid robot is an important

step toward developing robots that are easily programmable and that can replicate or
learn from observed human motion. The so called motion retargeting problem has been
well studied and several off-line solutions exist based on optimization approaches that

rely on pre-recorded human motion data collected from a marker-based motion capture
system. From the perspective of human robot interaction, there is a growing interest

in online motion transfer, particularly without using markers. Such requirements have
placed stringent demands on retargeting algorithms and limited the potential use of
off-line and pre-recorded methods. To address these limitations, we present an online
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task space control theoretic retargeting formulation to generate robot joint motions that
adhere to the robot’s joint limit constraints, self-collision constraints, and balance con-

straints. The inputs to the proposed method include low dimensional normalized human

motion descriptors, detected and tracked using a vision based key-point detection and
tracking algorithm. The proposed vision algorithm does not rely on markers placed on

anatomical landmarks, nor does it require special instrumentation or calibration. The
current implementation requires a depth image sequence, which is collected from a single

time of flight imaging device. The feasibility of the proposed approach is shown by means

of online experimental results on the Honda humanoid robot - Asimo.

Keywords: Retargeting, Imitation Learning, Task Space Control

1. Introduction

Learning from human demonstration, also referred to as imitation learning, has be-
come an important topic of research in robotics with applications spanning across
many disciplines such as robot motion control, human-robot interaction, and ma-
chine learning. Imitation learning promises to simplify the process of program-
ming complex humanoid robot motions by replacing the time-consuming manual
programming of a robot by an automatic programming process, solely driven by
showing the robot the task by an expert teacher 23 19. Examples from a human
demonstrator also provide a powerful mechanism for reducing the complexity of
search spaces in learning algorithms by either starting the search from the observed
locally optimal solutions 10, or by eliminating from the search space what are known
as infeasible solutions.

A long standing trend in learning from demonstration methods has been to
approach the problem from the standpoint of motion replication, although recent
work inspired by this rational is not just about observing and replicating the motion,
but rather about understanding the goals of a given action. Indeed, many aspects of
imitation are goal-directed, that is, actions are meant to fulfill a specific purpose and
convey the intention of the teacher 2. Nevertheless, one can argue that an important
pre-requisite step in learning from imitation involves mimicry, or the reproduction
of the actions of the human demonstrator.

Mimicry can be viewed as a sophisticated transfer of the observed human mo-
tion to the robot, a procedure referred to as motion retargeting by the computer
graphics community 9,14,28,27,7. The representation of motion by descriptors which
capture the essence of motion or encode meaningful information about the task is an
important research problem. Typically, motion descriptors are simply described by
either joint space or task (Cartesian) space coordinates. Task space methods offer
an advantage in that the large number of mechanical degrees of freedom involved in
the execution of movement tasks by humanoids can be represented by lower dimen-
sional descriptors. These descriptors may be referred to as task descriptors because
they are used to describe motion by higher level task variables which may be en-
coded to convey the intention of the human performer. A task oriented approach is
also compatible with current views in motor learning that suggest that the central
nervous system organizes or simplifies the control of large degrees of freedom during
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motion execution and motor learning phases. That is, the controlled operation of
the neuromuscular system with an exorbitant number of degrees of freedom requires
a reduction of mechanical redundancy, achieved by reducing the number of degrees
of freedom 3.

Regardless of how the motion is represented, by task variables or joint variables,
a suitable retargeting algorithm must deal with complex kinematic constraints due
to differences in topology, anthropometry, joint limits, and degrees of freedom be-
tween the human demonstrator and the robot. Similar problems have been widely
studied and partially addressed, particularly for transferring human motion to an
animated character. The problem is often formulated and solved as a constrained
non-linear optimization problem, where the objective is to minimize the error be-
tween the human motion and the target motion, subject to the kinematic con-
straints 29,18. Such approaches are often performed off-line, in static environments,
using pre-recorded human motion obtained from marker based motion capture sys-
tems 20,22. The resulting motion is then used as the reference trajectory to be
executed by the robot’s motion controller.

Off-line methods using prerecorded motions do not account for a dynamically
changing environment and have no provision for sensory feedback from the robot’s
current state to the motion retargetter. Therefore, there is a lack of robustness to
uncertainties in the environment. Assuming the environment is static, the edited
motion is likely to be admissible by the robot’s structure and can to a certain degree
be executed by the robot’s control scheme during run-time. Balance constraints 13,
and obstacle avoidance 24 are sometimes considered. To our knowledge, self collisions
constraints have not been explicitly considered as part of a motion retargeting
procedure, although recent work demonstrated a control formulation for a real time
self collision avoidance on a humanoid robot 26.

In many human-robot interaction applications, the requirements of interactivity
in dynamically changing environments as well as simplicity in sensing and instru-
mentation, have placed stringent demands on the retargeting procedure. One such
application requiring online and interactive performance involves imitative social in-
teraction of robots with children with learning disabilities, such as autism 21. These
requirements include capturing human motions unobtrusively, without instrument-
ing them with markers. Also, human motion capture with multiple cameras in a
special environment may neither be feasible nor practical. The imaging modality
must be simple and the underlying retargeting mechanism must cope with this.

In this paper, we present an online, Cartesian space control theoretic retargeting
formulation to generate robot joint motions that adhere to the robot’s joint limit
constraints, self-collision constraints, and balance constraints. The inputs to the
proposed method include low dimensional normalized human task descriptors, de-
tected and tracked using a vision based key-point detection and tracking algorithm
which is described in detail in our previous work 31. The visual processing algorithm
does not rely on markers placed on anatomical landmarks, nor does it require spe-
cial instrumentation or calibration. The current implementation requires a depth
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image sequence, which is collected from a single time of flight imaging device. We
present online experimental results of the entire pipeline on the Honda humanoid
robot - Asimo.

The paper is organized as follows. An overview of the entire motion retarget-
ing pipeline, from image acquisition to humanoid robot motion control, is given in
Section 2. Section 3 describes an overview of the visual procession module used to
detect key feature points on the human body. Using these detected key-points, we
describe the proposed task space retargeting framework in Section 4. The retarget-
ing framework includes the description of the Cartesian space tracking (Section 4.2),
task management strategies (Section 4.3), joint limit avoidance (Section 4.4), joint
velocity limiting (Section 4.5), self collision avoidance (Section 4.6), and balance
control (Section 4.7). Experimental results of the online retargeting using a marker-
less, single depth camera system, are reported in Section 6. The paper is summarized
in Section 7.

2. Overview of the entire pipeline

Figure 1 illustrates an overview of the proposed online motion retargeting frame-
work. The first step involves visual detection and tracking of a set of 3D anatomical
landmarks (or key-points) in the upper-body from image observations using a time
of flight depth imaging device 1. The detected key-points, registered to a human
model, correspond to 3D position vectors at the waist joint, two shoulder joints,
two elbow joints, two wrist joints, and the head center (Figure 2). The output of
the key-point detection module is represented by the vector pd, where the sub-
script d denotes detected key-point. For completeness, the theoretical formulation
of the proposed retargeting algorithm considers not only the position of key-points
as input, but also the orientation variables if such information becomes available.
Orientation information such as head pose provide important visual cues in imita-
tion learning; however, orientation is not directly observable based on our current
vision module and is not considered in our experimental results. If such informa-
tion becomes available, each detected orientation descriptor may be described by a
rotation matrix Rd.

The detected key-points are subsequently low pass filtered and normalized (limb
lengths re-scaled) to our humanoid robot model, Asimo, which has different dimen-
sions, physical parameters, geometry, and degrees of freedom than the human model.
Furthermore, the filtered and scaled key-points are up-sampled to a higher rate (100
HZ) to achieve numerical stability and good tracking within the retargeting mod-
ule. The resulting vector, denoted by the vector pr represents the reference motion
of a key-point mapped to the robot. In this paper, we will refer to these robot
motion variables as task descriptors because they correspond to Cartesian space
(or task space) positions and orientations in our proposed task space retargeting
framework. If available, a reference orientation descriptor may be denoted by the
rotation matrix Rr. Taking the reference task descriptors as input, the retargeting
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module outputs kinematically constrained robot joint variables which are issued as
commands to the robot.

Key-point
DetectionDepth

Images

Reference
Robot  Task 
Descriptors

q
Motion

Retargeting

Robot Joint 
Commands• Filtering

• Scaling
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Detected
Key-points
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Fig. 1. System diagram of the entire pipeline.
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H-N-T Template Key-PointsFig. 2. Key feature points (key-points) representing position descriptors used in the experiments.

3. Key-point Detection

We use depth image streams to extract the key feature points (key-points) in the
upper body. The depth images, obtainable by using active or passive stereo, or time-
of-flight sensors, provides a 3D point cloud of the scene, including the human body.
Our experimental results are based on a single 3D time of flight depth camera (Swiss
Ranger-SR 3000 1) which captures depth and intensity images at approximately 15
frames per second. An advantage of TOF cameras is their portability, relatively
good depth resolution as compared with passive stereo systems, and very little or
no required calibration. In addition, the nature of images captured by such devices
facilitates segmentation of the human from the background clutter.

The key-point detector is based on a Bayesian framework which utilizes both
spatial context and temporal information to robustly detect and track limbs and
identify key-points in the presence of intermittent self-occlusions. Details of the key-
point detection algorithm are described in 31. We illustrate the key-point detection
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KF_taiji: 20, 39, 45, 52, 81, 113, 149

158, 178,184, 193, 196, 226, 238 

Fig. 3. Taiji dance (upper-body). Rows 1 and 3: depth image sequence with the detected limb

templates superimposes. Rows 2 and 4: corresponding reconstructed pose.

and human body pose estimation results for a Taiji dance sequence as shown in
Figure 3. The figure illustrates snapshots of the depth image sequence and the
corresponding reconstructed human pose. In particular, Rows 1 and 3 illustrate
body limb templates which are registered to the 3D depth image. Key-points are
detected based on the location of these templates. The detected key-points are
then used to reconstruct the 3D human model pose (shown in Rows 2 and 4).
The detected key-points are denoted by the small spheres superimposed on the 3D
human model.

The position of each detected key-point is represented by the vector pdi , i ∈
{1, . . . , 8} and described in the base frame corresponding to the waist joint coor-
dinate system. We establish correspondence between the detected descriptors (or
key-points) on the human model and reference descriptors on the humanoid model
through simple scaling operations for each link. Subsequently, each detected key-
point is normalized to the robot dimensions, filtered using a 2nd order Butterworth
low pass filter, and interpolated using Cardinal splines interpolation. The resulting
position vector, denoted by pri , represents the reference task descriptors on the
robot model.

4. Retargeting

The proposed retargeting algorithm can be described as a local constrained op-
timization problem. The objective is to estimate the robot joint commands that
minimize the tracking error between the reference and predicted task descriptors
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subject to kinematic and balance constraints. Although the detected key-points
from our current vision algorithm describe the 3D position descriptors correspond-
ing to anatomical landmarks, for generality, we formulate our retargeting algorithm
such that orientation descriptors can also be incorporated if such information be-
comes available. Therefore, our formulation below considers task descriptors which
operate the full six dimensional task space, three for position and three for orienta-
tion. If an orientation descriptor is available, it is described by a reference rotation
matrix Rr. Both the position and orientation quantities are described in the base
frame corresponding to the waist joint coordinate system.

4.1. Differential Kinematics

Let n represent the number of robot upper body joint variables. Let the vector
q = [q1, · · · , qn]T describe the degrees of freedom which fully characterize the con-
figuration space, or joint space, of the upper-body humanoid robot. For general-
ity, suppose there are k task variables to control in our humanoid model. Let i

(i = 1 · · · k) be the index of the spatial velocity vector ẋi corresponding to the ith
task descriptor. The associated Jacobian is given by Ji = ∂xi

∂q .The mapping between
the joint space velocities and task space velocities is obtained by considering the
differential kinematics relating the two spaces,

ẋi = Ji(q) q̇. (1)

The spatial velocity vector is defined by

ẋi =
[
ωi ṗi

]T
, (2)

where ωi and ṗi are vectors corresponding to the angular velocity of the task frame
and the linear velocity of the task position referenced to the base frame, respectively.
If the Euler angles Θ are available, the angular velocity can be computed from,

ωi = Hi(Θi) Θ̇i, (3)

where the transformation matrix Hi depends on the particular set of Euler angle
sequence considered. Alternatively, the angular velocities can be directly extracted
from the rotation matrix through

ω̃i = ṘiR
T
i , (4)

where ω̃i corresponds to a 3×3 the skew symmetric matrix containing the elements
of the angular velocity vector. To augment all task variables, we form an augmented
spatial velocity vector ẋ and an augmented Jacobian matrix J as follows,

ẋ =
[
ẋT

1 · · · ẋT
i · · · ẋT

k

]T
, (5)

J =
[
JT

1 · · · JT
i · · · JT

k

]T
. (6)
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The Jacobian matrix may be decomposed to its rotational and translational com-
ponents, denoted by Jo and Jp, respectively.

J =
[
Jo

Jp

]
. (7)

If for example, only a position descriptor pi is observable, then the parameters in
Equation 1 can be modified to ẋi = ṗi, and Ji = Jpi

.

4.2. Cartesian tracking control

We wish to create a control policy that produces the robot joint commands (q)
such that the Cartesian error between the predicted robot task descriptors and
the normalized human task descriptors are minimized. The tracking performance is
very much subject to the robot’s kinematic constraints, as well as the execution of
multiple and often conflicting task descriptor requirements. Our formulation of such
a constrained optimization is based on extensions of a Cartesian space kinematic
control method known as closed loop inverse kinematics (CLIK). In this section, we
provide an overview of CLIK in the context of motion retargeting. Subsequently,
we incorporate kinematic constraints to the CLIK formulation.

Let the reference task descriptors in the augmented space be described by,

ẋr =
[
ẋT

r1
· · · ẋT

ri
· · · ẋT

rk

]T
. (8)

The joint velocities may be computed by inverting Equation (1) and adding a feed-
back error term to correct for numerical drift.

q̇ = J∗(ẋr + K e), (9)

where J∗ denotes the regularized right pseudo-inverse of J weighted by the positive
definite matrix W ,

J∗ = W−1JT (JW−1JT + λ2I)−1. (10)

The parameter λ > 0 is a damping term, and I is an identity matrix. The vec-
tor ẋri

= [ωri
ṗri

]T corresponds to the differential kinematics of the reference
motion and ωri may be calculated based on Equation 3. The rate of convergence
of the error for the ith descriptor is controlled by Ki, a diagonal 6 × 6 positive
definite gain matrix. The vector e is the concatenation of the individual error terms
ei = [eoi

epi
]T , where(epi

) and (eoi
) are the position and orientation error vectors

between the reference and computed task descriptors. The position error is simply
defined as epi

= pri
−pi , where pri

and pi correspond to the reference and computed
task descriptor positions, respectively. The computation of the orientation error is
more complex. Orientation is typically described by three Euler angles, denoted
here by the vector Θri

. The Euler angles can also be calculated if the reference ro-
tation matrix is known. Let Rri = [nr sr ar] and Ri = [n s a] correspond to
the reference and computed unit vector triple representation of the task descriptor
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frame orientation, respectively. A functional expression of the orientation error in
terms of an angle and axis error is given by 15,

eo =
1
2
(n× nr + s× sr + a× ar). (11)

Describing the orientation error using Equation 11 is convenient because there is no
need to explicitly extract Euler angles from the rotation matrix: a procedure which
can be problematic due to the non-unique and sometimes discontinuous solutions.

The block-diagram of the tracking control based on the CLIK algorithm is illus-
trated in Figure 4. This algorithm is used in order to arrive at a configuration which
tracks the position and orientation of the observed motion descriptors. Equation 9 is
used in order to arrive at a configuration which tracks the position and orientation
of the observed motion descriptors.

rp

),,( asn

q&
∫

pe
+

q

)(qR

)(qJo

)(qJ p

oe
compute

rR
rΘ

rω

)(qp

rp&

p
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Orientation Error Modules

+ _
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pJdt
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)(H rΘ

)(* eKxJq r += &&

Fig. 4. Detailed system diagram of a first order closed loop inverse kinematics (CLIK) tracking

control with partitioned position and orientation control modules.

4.3. Managing multiple task descriptors

An important question yet to be addressed is the how to manage multiple and often
conflicting task requirements. Task management strategies are important from a
sensing standpoint to ensure that key-points detected with a higher confidence are
assigned a higher priority for tracking. For instance, detecting elbow locations are
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often more difficult than other anatomical landmarks associated with end-effectors,
such as the hands. In such cases, the relative confidence values in the detected
key-points provide insight on how well a particular key-point should be tracked.

In robotics, a more conventional use of task management relates to the actual
task execution by the robot according to the importance of achieving particular task
relative to other tasks. For example, to replicate a human demonstrator grasping
a cup of water, faithfully tracking the grasping hand posture is more important
than tracking other tasks. In this section, we describe two methods for managing
multiple task descriptors in our retargeting framework. These methods are referred
to as task augmentation and task prioritization.

4.3.1. Task Augmentation

The formulation presented in Section 4.2 is an example of task descriptor aug-
mentation, referring to the concatenation of individual spatial velocities and the
associated Jacobian matrices and feedback gain matrices. An effective method to
manage the descriptors is to modulate the tracking error rate. The error rate for
each element of a task descriptor can be controlled by the augmented feedback gain
matrix K, which represents a diagonal matrix in the augmented space. The tra-
jectory tracking error convergence rate depends on the eigenvalues of the feedback
gain matrix in Equation (9); the larger the eigenvalues, the faster the convergence.
In practice, such systems are implemented as a discrete time approximation of the
continuous time system; therefore, it is reasonable to predict that an upper bound
exists on the eigenvalues, depending on the sampling time. A particular task de-
scriptor or its individual components can be more tightly tracked by increasing the
eigenvalues of K associated with that direction. By modulating the elements of K,
we can effectively encode the relative level of confidence we have in our observations.
Measurements with higher confidence will be assigned higher feedback gain values.
Likewise, the relative importance of tasks for robot execution can be modulated by
choosing the proper feedback gains. In general, task augmentation is suitable when
we are more interested in capturing the essence of the entire human motion, rather
than precisely executing a specific task.

We tested the task augmentation strategy on simulated human reaching motion
obtained from the Carnegie Mellon University (CMU) human motion data base 5.
The raw human motion data in the CMU data-set is represented in C3D file format,
from which we extracted eight 3D upper body Cartesian positions corresponding
to the key-points in Figure 2. From the possible 8 descriptors, we selected only 3
motion descriptors (left hand, right hand, and waist) to show the tracking results
using task augmentation. Figure 5 illustrates the effect of varying the feedback gain
(K) on the tracking error for three different sets of simulations. For each simulation
trial, we recorded the root mean squared error (RMSE) between the observed and
predicted motion descriptors using three different values for the feedback gain. In
each simulation trial, we assigned a feedback gain of K = 150 I3 for one task
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descriptor and K = 50 I3 for the remaining two, where I3 represents a 3×3 identity
matrix. The plot illustrates that for a given task descriptor, the tracking error across
the different simulation trials (intra-trial error) can be reduced by increasing the
feedback gain associated with that descriptor. However, modulation of the feedback
gain in the task augmentation framework cannot guarantee that a particular task
will be precisely executed with certainty. In theory, as will be described in the next
section, task prioritization can precisely execute the highest priority task if there
are no algorithmic or task singularities. In practice, however, such requirements are
difficult to realize in our retargeting application.

RMSE as a function of feedback gain

Simulation 1Simulation 1 Simulation 2 Simulation 3

K=150

K=50
K=50 K=50

K=50

K=50

K=50

K=150K=150

Fig. 5. Illustration of simulated RMS tracking error for a reaching motion obtained from the CMU

data-set.

4.3.2. Task Prioritization

Multiple tasks can be managed by prioritizing their execution, particularly if there is
a high degree of redundancy. Recursive methods which handle an arbitrary number
of prioritized task descriptors have been previously described 25. We develop an
alternative algorithm here.

Suppose we wish to assign a priority on the execution of a particular task de-
scriptor or groups of task descriptors. For example, suppose we form i = 1 · · · k
sub-groups of tasks (or subtasks). Here, the index i is associated with the ith sub-
task, where a sub-task may be associated with a single task descriptor, or a group
of task descriptors which are concatenated using task augmentation. The total task
description may be composed of k subtasks with the order of priority. Let mi be
the dimension of each subtask. For execution of tasks in group i, the differential
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kinematic relationship between the joint velocity q̇ ∈ <n and the Cartesian variable
ẋi ∈ <mi is expressed by,

q̇ = J+
i (q)ẋi. (12)

where Ji is the Jacobian matrix of the ith subtask descriptor and J+ is typically
defined as right pseudo-inverse of J , given by J+ = JT (JJT )−1. A solution for
a prioritized two task problem has been outlined in 16. A prioritized solution can
be extended to more than two tasks following the same procedure, as given in
Algorithm 1.

Algorithm 1: General solution for multiple tasks with the order of priority
Input: Ji ∈ <mi×n, ẋi ∈ <mi , i = 1, . . . , k, where k is the number of

subtasks
Output: q̇

begin
N0 = I

for i← 1 to k do
vi = ẋi

Ĵi = JiNi−1

v̂i = vi − Ji

∑i−1
j=1(Ĵ

+
j v̂j)

Ni = Ni−1(I − Ĵ+
i Ĵi)

q̇ =
∑k

i=1(Ĵ
+
i v̂i) + Nkz where z ∈ <n is an arbitrary vector

end

A key fact in Algorithm 1 is that all Ni’s are orthogonal projectors, which is used
to derive the identity Ni−1Ĵ

+
i = Ĵ+

i . Note that {Ni} form a sequence of orthogonal
projectors with decreasing ranks. The final solution space can be considered as the
intersection of the k solution subspaces determined by the k subtasks. Let J be the
matrix of size

∑
mi × n obtained by stacking Ji’s, the exact solution space is not

empty if and only if J is of full row rank, i.e. rank(J) =
∑

mi. However, when the
matrix J is rank deficient, i.e. rank(J) <

∑
mi, the system can only have solution

in the least squares sense and the resulting joint velocity q̇ may become very large
due to the singularity of Ji. For more detailed discussion on handling this singularity
issue, we refer to 25. A practical approach is to replace the pseudo-inverse Ĵ+

i in the
last step of the above algorithm by a singularity robust inverse, e.g. the damped
least squares inverse 17.

We tested the task prioritization strategy on simulated human reaching obtained
from the Carnegie Mellon University (CMU) human motion data base 5. For this
simulation, we used all 8 upper body descriptors which were grouped into three
priority levels. The highest priority group corresponds to the Cartesian position of
the waist. The medium priority group corresponds to the Cartesian position of the
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right and left wrists. Finally, the low priority group corresponds to the position of
the elbows, shoulders, and neck. The results, depicted in Figure 6, illustrate that
the highest priority descriptor has the lowest error. The non-zero error in the high-
est descriptor is attributed to the error introduced by the damping factor used for
singularity robustness. The damping term is effective in handling task singulari-
ties as well as algorithmic singularities, but introduces errors in task position. To
minimize the task error, an adaptive damping factor may be used. The two other
priority levels also exhibited the expected error performance.

low 
priority

medium 
priority

high 
priority

Fig. 6. Illustration of simulated tracking error for a reaching motion obtained from the CMU data-
set. The task descriptors are assigned three priority levels. Lower figure illustrates snapshots of

the reaching motion on the Asimo humanoid model.

4.4. Joint limit avoidance constraints

Joint limit avoidance is achieved by the proper selection of the weighting matrix
W in Equation 10. Chan and Dubey 6 proposed joint limit avoidance based on a
Weighted Least-Norm (WLN) solution. The WLN solution considers a candidate
joint limit function, denoted by H(q) , that has higher values when joints near their
limit and tends to infinity at the joint limits. One such candidate function is given
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by

H(q) =
1
4

n∑
j=1

(qj,max − qj,min)2

(qj,max − qj)(qj − qj,min)
,

where qj represents the generalized coordinates of the jth degree of freedom, and
qj,min and qj,max are the lower and upper joint limits, respectively. The upper and
lower joint limits represent the more conservative limits between the physical joint
limits and the virtual joint limits used to avoid self collision as will be described in
the Section 4.6. Note that H(q) is normalized to account for variations in the range
of motion. The gradient of H, denoted as ∇H, represents the joint limit gradient
function, an n× 1 vector whose entries point in the direction of the fastest rate of
increase of H.

∇H =
∂H

∂q
=

[
∂H
∂q1

, · · · , ∂H
∂qn

]
. (13)

The element associated with joint j is given by

∂H(q)
∂qj

=
(qj,max − qj,min)2 (2qj − qj,max − qj,min)

4(qj,max − qj)2 (qj − qj,min)2
.

The gradient ∂H(q)
∂qj

is equal to zero if the joint is at the middle of its range and
goes to infinity at either limit. As described in 6, we define the joint limit gradient
weighting matrix, denoted by WJL, by an n × n diagonal matrix with diagonal
elements wJLj

(j = 1 · · ·n). The matrix W in Equation 10 is constructed by WJL,
i.e. W = WJL. The scalars wJLi are defined by

wJLj
=

{
1 + | ∂H

∂qj
| if ∆|∂H/∂qj | ≥ 0,

1 if ∆|∂H/∂qj | < 0.
(14)

The term ∆|∂H/∂qj | represents the change in the magnitude of the joint limit
gradient function. A positive value indicates the joint is moving toward its limit
while a negative value indicates the joint is moving away from its limit. When a
joint moves toward its limit, the associated weighting factor, described by the first
condition in Equation 14, becomes very large causing the motion to slow down.
When the joint nearly reaches its limit, the weighting factor is near infinity and the
corresponding joint virtually stops. If the joint is moving away from the limit, there
is no need to restrict or penalize the motions. In this scenario, the second condition
in Equation (14) allows the joint to move freely.

Figure 7 illustrates simulated results of the joint limit avoidance for a drink-
ing motion sequence obtained from the CMU motion database. The solid spheres
depicted on the Asimo model corresponds to the actual task descriptor positions
while the striped spheres represent the desired (or target) position of the task de-
scriptors. The upper and lower joint limits are illustrated by the dashed lines, at
0 degrees and -177 degrees, respectively. When joint limit avoidance is turned off
(left figure), the computed task descriptor (solid sphere) attached to the wrist can
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track the desired task descriptor (striped sphere) very well. However, the joint limit
at the elbow is violated. When joint limit avoidance is turned on, the elbow joint
limit is not violated. Since the elbow joint cannot flex beyond its joint limit, the
computed wrist task descriptor does not track the desired wrist task descriptor.

Without Joint Limit Avoidance With Joint Limit Avoidance
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Fig. 7. Illustration of right elbow joint limit avoidance for a drinking motion from the CMU data-

set. The upper and lower joint limits are illustrated by the dashed lines, at 0 degrees and -177
degrees, respectively.

4.5. Joint Velocity Limits

Joint velocity constraints are frequently handled by clamping the velocities when
they reach their limit. While such an approach preserves the time required to execute
the entire motion, it may not preserve the original trajectory profile. For fast hu-
man motions, the re-targeted robot motion profile may become significantly altered
as a result of velocity clamping. We propose an alternative method to limit joint
velocities by adaptively modulating the time between two successive time samples
such that the motion profile q is re-scaled in time, but is not altered in its profile.

To simplify notation, we drop the subscript j, previously referred to quantities
associated with joint j (i.e. q = qj and q̇ = q̇j). Let q̇s (s = 1 · · ·N) represent a
length N sequence corresponding to a discrete time representation of q̇(t). In the
discrete implementation of the algorithm, the discrete time sequence at sample s+1
is given by

ts+1 = ts + ∆ts, (15)



April 13, 2009 15:18 WSPC/INSTRUCTION FILE IJHR

16 Behzad Dariush, Michael Gienger, Arjun Arumbakkam, Youding Zhu, Bing Jian, Kikuo Fujimura, Christian Goerick

where ∆ts is time between sample s and s + 1. To avoid velocity limits, we can
replace the time sequence in Equation (15) with the following,

t′s+1 =
{

t′s + ∆ts εs if εs ≥ 1,

t′s + ∆ts if εs < 1.
(16)

where εs is a time-modulation factor defined by εs = |q̇s|
q̇lim

, and q̇lim is the joint
velocity limit associated with a particular degree of freedom. By definition, εs ≥ 1
implies that the joint velocities are equal or above their limits and corrective action is
required by modulating (expanding) time between sample s and s+1. The resulting
joint motion with the expanded timescale will conform to the velocity limits, without
modifying the shape of the joint motion profile. Furthermore, εs < 1 implies the joint
velocities are below their limits and no time modulation is required. Equation 16
must be performed for each joint at each time-step. Note that each joint in a multi-
degree of freedom robot may have a different modulation factor at each instant in
time. In order to synchronize the sample time for all joints, a naive, yet simple
solution would be to compute εs for all the joints, and select the largest among
them for use in Equation 16.

The time modulation scheme presented above preserves the original motion pro-
file, but may expand the total time required to execute the motion. In order to pre-
serve the motion profile as well as the total execution time, it is possible to design
alternative time modulation schemes where ∆ts is expanded when joint velocities
exceed their limits and compressed when the joint velocities are below their lim-
its. This may be performed in such a way that the overall execution time remains
unchanged. Finally, it should be mentioned that the specification for time modu-
lation may require that the first and second order time derivatives of q meet more
strict smoothness and continuity requirements. In such a case, it is possible to use
blending functions into the design of εs to maintain smoothness.

4.6. Avoiding self collision

Self collision avoidance may be categorized as one of two types: 1) collision between
two connected segments, and 2) collision between two unconnected segment pairs.
By connected segment pairs, we imply that the two segments are connected at a
common joint and assume that the joint is rotational.

4.6.1. Collision avoidance between two connected bodies

If two segments are connected at a common rotational joint, i.e. connected segments,
self collision may be handled by limiting the joint range as described in Section 4.4.
Joint limits for self collision avoidance need not correspond to the physical joint
limits; rather, they may be more conservative virtual joint limits whose values are
obtained by manually verifying the bounds at which collision does not occur. There-
fore, for two segments connected by a rotation joint, joint limit avoidance and self
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collision avoidance may be performed by using the same formulation presented in
Section 4.4.

4.6.2. Collision avoidance between unconnected bodies

Consider two unconnected rigid bodies, i.e. bodies which do not share a joint, as
shown in Figure 8. In general, Body A and body B may both be in motion. However,
for simplicity of presentation and without loss of generality, suppose body A is
moving toward a stationary body B. Let pa and pb represent the coordinates of the
shortest distance d(d ≥ 0) between the two bodies, described in the base reference
frame. Hereafter, we refer to pa and pb as collision points. The coordinates pa and
pb can be obtained using a standard collision detection software. In this work, we
use the SWIFT++ library 30.

Let n̂a = pb−pa

|pb−pa| be the unit normal vector and ~d = d n̂a the vector from pa to
pb. Consider a 3D virtual surface surrounding body A, shown by a dashed line in
Figure 8. For every point on body A, its associated virtual surface point is located
by the vector ~dc = dc n̂, where dc is the critical distance, and n̂ is the unit normal
vector at the surface point. Let pvsa

be the coordinates of a point on the virtual
surface of A defined by

pvsa
= pa + dcn̂a. (17)

We define the region between the actual surface of body A and its virtual surface
as the critical zone. If body B is stationary, we can redirect the motion at pa to
prevent collision in the critical zone. For now, we consider that the redirection is
invoked when d < dc. Later in this section, we will use a blending approach to
adjust the initiation of the redirection. In our CLIK control framework, one way to

Body A
cd
v

ap d
v

bp

ap&'
ap&

Virtual surface

d
bpap

avsp

Body B

avsp

cd

Fig. 8. Body A moving towards a fixed body B

control (or redirect) the motion of pa is by modifying the trajectory of the desired
task descriptor pr. Let us specify a redirected motion of pa by p′a and its associated
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velocity by ṗ′a. The question is, how shall we specify the magnitude and direction of
ṗ′a to redirect the collision point to prevent the two bodies from penetrating deeper
into the critical zone. There is no unique solution. The most straightforward, and
perhaps conservative solution is to redirect the collision point in a direction opposite
to the unit normal vector n̂a. A more effective strategy is to redirect the collision
point so that it slides along a direction which is tangent to the surface at the collision
point, as shown in Figure 8.

ṗ′a = ṗa− < ṗa, n̂a > n̂a. (18)

In theory, the above redirection vector will guide the collision point motion along
the virtual surface boundary, producing a more natural motion toward the target.

To find the mapping between ṗ′a and ṗr, consider first the computation of the
equivalent joint velocities which will redirect the collision point velocities along ṗ′a.
We compute the redirected joint velocity vector using the following mapping,

q̇′ = J∗
a ṗ′a + SJ∗(ṗr + K e), (19)

where Ja = ∂pa/∂q is the Jacobian at the collision point and J∗
a is its weighted

Damped Least Squares inverse. The matrix S = diag(s1 · · · sn) is a diagonal selec-
tion matrix where si = 1 when the ith column of Ja has all zero entries and si = 0
elsewhere. The term J∗(ṗr + K e) is simply the joint velocity solution obtained
from Equation 9. The physical interpretation of Equation 19 is as follows. The first
term determines the joint velocities needed to redirect the collision point velocities
along ṗ′a. Any zero column of Ja (all zero entries) implies that the associated degree
of freedom does not contribute to the motion of the collision point. The second
term in Equation 19 is the orthogonal complement of the first term which computes
the entries for those joint velocities which do not affect the motion of the collision
point(s). Intuitively, it would seem more appropriate to formulate Equation 19 us-
ing a two priority inverse kinematics strategy similar to the control of redundant
manipulators 16. In such a strategy, the first priority term corresponds to satisfying
self collision avoidance by redirection (as in first term in Equation 19). Utilizing re-
dundancy, the second priority term can be constructed to satisfy the requirements
for tracking the task descriptors. In practice, this approach leads to jerky behaviors
due to numerical instability to arrive at a prioritized solution when multiple collid-
ing pairs enter and exit the critical zone. When there are multiple collision pairs,
there is insufficient degrees of freedom to perform the secondary tasks. Numerical
instability can also arise since collision points may be discontinuous.

Based on the collision free joint velocity commands computed from Equation 19,
a redesigned position task descriptor trajectory may be computed as follows

ṗ′r = J q̇′. (20)

The closed loop inverse kinematics equation with the modified parameters is given
by

q̇ = J∗(ṗ′r + K ′ e′), (21)
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where e′ = p′r − p′ and K ′ is an adaptively changing diagonal feedback gain matrix
whose values decrease as the distance d decreases. Note that p′r at the current time
t may be computed by a first order numerical integration.

The instantaneous redirection ṗa → ṗ′a, as described above, produces a discon-
tinuous first derivative of pa at the boundary d = dc. The discontinuity at ṗa results
in a discontinuity in ṗr, as given by the solution in Equation 20. To preserve first or-
der continuity, we may blend the solutions of ṗ′r before and after redirection occurs.
A blended solution to Equation 20 is given by

ṗ′r = (1− b) ṗr + b J q̇′, (22)

where b is a suitable blending function such as,

b(d) =
e−α(d/dc−δ)

1 + e−α(d/dc−δ)
, (23)

where α and δ are scalar parameters used to modulate the blending rate and shift
of the blending function, respectively. Figure 9 shows the plot of b in relation to
the ratio d/dc for α = 15. The blending function is plotted for δ = .5 and δ = 1.0.
The parameter δ may be used to shift the distance d where blending is initiated
and terminated. In the case δ = .5, when d > dc the function b(d) ≈ 0, implies that
the second term in Equation 22 is effectively zero so that there is no redirection
of the original task descriptor velocity (i.e. ṗ′r = ṗr). At the other extreme, when
d = 0, the function b(d) = 1, implies that the first term in Equation 22 is zero and
the reference trajectory is altered in order to redirect the collision points along the
tangent surface. To be more conservative, we may chose δ = 1.0 in the blending
function. This way, blending initiates even before the collision points reach their
critical distance. The case when body A is stationary and body B is in motion is
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the dual of the problem considered above. When both body A and body B are in
motion, we can specify the redirection vectors at the collision points pa and pb and
use task augmentation to control both critical points.

Figure 10 illustrates snapshots of simulated retargeting results of a fast dancing
motion with a full body twisting. The human data was obtained from the CMU mo-
tion capture database. These simulated results are generated using the humanoid
robot Asimo’s model and geometry. As before, the eight upper body landmarks
illustrated in Figure 2 were used as the detected key-points in the retargeting pro-
cedure. The top row illustrates the results without invoking the collision avoidance
algorithm. The colliding body segments, detected using the SWIFT++ collision de-
tection software, are highlighted by the diagonal striped pattern. The bottom row
illustrates the results of the same motion when the collision avoidance was used.

Fig. 10. Snapshots of simulated dancing motion with and without collision avoidance. Bodies which

experience contact are represented by the diagonal striped pattern.

For the dancing sequence, Figures 11 and 12 show the minimum distance between
collision points on the left hand and torso segment pairs, and left hand and right
hand collision pairs, respectively. The minimum distances are plotted with and
without using the collision avoidance algorithm. Without collision avoidance, the
collision points attached to the left hand and torso segment penetrate the collision
zone and eventually collide between frames 470 and 505 as shown in Figure 11.
Note that a negative distance implies collision and penetration of the two bodies.
Penetration distance is clamped when penetration of the two bodies is beyond
−2.5 cm. When collision avoidance is turned on, contact between the two segments
does not occur. The blending parameter was set at δ = .5 such that blending is
initiated at the critical distance of dc = 5.0 cm; therefore, collision points are not
fully redirected at the virtual surface. Redirection is gradual, and penetration into
the critical zone occurs. However, the two bodies do not collide. Figure 12 shows
more dramatic contact between the left hand segment and the torso segment. The
collision avoidance algorithm can successfully avoid penetration.
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critical distance

collision boundary

Collision distance between left hand and right hand

Fig. 11. Minimum distance between left and right hand collision points for a dancing motion.
Critical zone is set at .05 meters, and depicted by the dashed line.

critical distance

collision boundary

Fig. 12. Minimum distance between left hand and torso collision points for a dancing motion.

Critical zone is set at .05 meters, and depicted by the dashed line.
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4.7. Balance Control

The presented control scheme does not yet consider the constraints that are required
to maintain balance during standing and walking. These aspects are not handled
within the retargeting framework, but rather by a separate walking and balancing
controller that is described in 11,12. In detail, the retargeted motion is commanded

Fig. 13. Separation of balance- and whole body posture control.

to the whole body motion controller. The motion generated by the whole body
controller will cause some momentum and moment of momentum from a desired
reference. This deviation is compensated by the ZMP based balance controller by
shifting the upper body in forward- and lateral direction. As depicted in Figure 13,
the whole body control and the ZMP control operate cooperatively.

To account for the body shift, the upper body translational degrees of freedom
are incorporated in the kinematic model of the robot. However, they are not actively
driven, but rather considered as external input into the controller equations of the
whole body control. Whole body control and ZMP control are coupled through
momentum and state feedback, which turns out to be an efficient way to separate
these controllers.

5. Motion Interface

We use a motion interface to provide a communication link and command interface
between off-board computations to generate the retargeted joint commands and
the on-board real time control. The motion interface provides a comprehensive way
to give motion commands to the robot, without having the user to care about
issues such as synchronization, delays, or on-board control for maintaining balance.
As a safety measure, there is also an on-board self collision avoidance in the real
time control loop with details given in 8,26. Such an interface is desirable since the
real-time implementation requires synchronization between critical control processes
that may not be satisfied dependably with a network connection. Issues like balance
control, on-board self collision avoidance, and other critical aspects are handled
within the real-time controller. The motion interface has been successfully used in
various other applications, as for instance in 4.
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6. Experimental Results

Experiments were performed on the Honda humanoid robot, Asimo, using a single
time-of-flight range image sensor 1, to obtain depth images at approximately 15
frames per second. As described previously, the eight upper-body key-points shown
in Figure 2 were detected and tracked at approximately 10 frames per second. The
data was further processed and the retargeting module then generates collision free
joint commands for the Humanoid Robot Asimo at 100 Hz. A socket program sends
the joint commands to the motion interface, described in Section 5, over a wireless
network. The whole body motion interface then communicates these joint space
coordinates to low level controllers on the robot, including the balance controller,
that run on a dedicated real time processing computer onboard the robot, through
UDP sockets. The Experimental setup of the entire pipeline is illustrated Figure 14.
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Fig. 14. Set-up for experiments

Figure 15 illustrates experimental results of online retargeting from three differ-
ent demonstrators performing various motions which contains in-plane and out-of-
plane movements. The sequence in the first two rows depict snapshots from a Taiji
dance motion. The last row illustrates simple exercise motions which demonstrates
that the balance controller makes slight adjustments to the waist and the lower body
to accommodate for the upper body movements. This is especially apparent in the
first image of the last row. In all experiments, Asimo replicates the motion fairly
well while enforcing all kinematic constraints. A delay of approximately .25 seconds
is observed in the tracking of the human motion by Asimo during experiments,
although visual processing and retargeting algorithms performed with no software
latency. This delay is attributed to software overhead in the communication and
control protocols. Efforts to resolve these latency issues are in progress.
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Fig. 15. Snapshots from online motion retargeting to Asimo

7. Summary and Future Work

Although several systems have previously demonstrated human to humanoid mo-
tion retargeting, the approach described in this paper is distinct in several ways.
Notably, the three major contributions are as follows. First, the proposed retarget-
ing framework relies on human motion descriptors (or task descriptors) obtained
from a marker-less vision algorithm using a single time-of-flight camera. These task
descriptors are noisy, sparse, and represent only a few key feature points on the
human body. We reported retargeting results based on eight upper body task de-
scriptors; however, the proposed formulation can handle an arbitrary number. The
algorithm is suitable when there is redundant degrees of freedom as well as when
the system is over-constrained. In fact, for many of the motions tested, we observed
that utilizing as few as four task descriptors (waist, two hands, head) could repro-
duce realistic and natural looking robot motions. This attribute enables flexibility in
sensing and instrumentation required to acquire human motion, as well as flexibility
in controlling the robot by a limited number of task descriptors.

The second important contribution is the online self collision avoidance algo-
rithm. This problem is particularly challenging in humanoid motion control since
for a given motion, several segments can simultaneously collide. We presented a
robust method which can cope with fast motions where multiple collisions can si-
multaneously occur. Unlike many existing collision avoidance algorithms such as
those based on virtual forces or potential functions, the proposed method does not
require parameter tuning and is not subject to numerical instabilities such as those
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observed based on null-space projections.
The third important contribution of this paper is the system and algorithmic

integration to create a unified framework for online motion retargeting with kine-
matic constraints. Although certain individual components used in this paper are
based on previously developed algorithms, the integration and modification of those
algorithms to create a unified framework is novel. The complete pipeline has been
tested and verified experimentally on the Asimo humanoid robot.

Two notable extensions of the current framework involve the inclusion of con-
straints to enforce torque limits and development of a more sophisticated balance
controller. Currently, the upper body retargeting algorithm relies on Asimo’s ex-
isting balance controller in order to make balance adjustments by modulating the
pelvis position. No provisions are made for the robot to automatically take steps
in order to sustain balance due to large disruption to the upper body. Stepping is
an essential component of a complete whole body balance controller as has been
demonstrated by Nakaoka et. al 18. We are currently considering incorporating step-
ping strategies into our whole body motion retargeting framework.
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