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Abstract Memetic Algorithms (MAs) represent an emerg-
ing field that has attracted increasing research interest in re-
cent times. Despite the popularity of the field, we remain to
know rather little of the search mechanisms of MAs. Given
the limited progress made on revealing the intrinsic prop-
erties of some commonly used complex benchmark prob-
lems and working mechanisms of Lamarckian memetic al-
gorithms in general non-linear programming, we introduce
in this work for the first time the concepts of local optimum
structure and generalize the notion of neighborhood to con-
nectivity structure for analysis of MAs. Based on the two
proposed concepts, we analyze the solution quality and com-
putational efficiency of the core search operators in Lamar-
ckian memetic algorithms. Subsequently, the structure of lo-
cal optimums of a few representative and complex bench-
mark problems is studied to reveal the effects of individual
learning on fitness landscape and to gain clues into the suc-
cess or failure of MAs. The connectivity structure of local
optimum for different memes or individual learning proce-
dures in Lamarckian MAs on the benchmark problems is
also investigated to understand the effects of choice of memes
in MA design.
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Nomenclature

f(x) = Objective or fitness function
x∗ = Global optimum
x(i) = i-th element of vector x

r(t)(y|x) = Conditional probability density function of
having offspring y given parent x at generation
t

d(x,y) = Euclidean distance ‖x − y‖ =√∑n
i=1 (xi − yi)2 between x and y

Ψ = A set of local optimums
Bv = Basin of attraction of local optimum v
pv(x) = Probability of converging to local optimum v

from x by means of individual learning
T (x,y) = Probability of converging to local optimum y

from x by means of reproduction and individ-
ual learning

C(x
′
,x
′′
) = Computational effort incurred to arrive at x

′′

from x
′

by means of individual learning
E[.|P ] = Expectation of a measure conditioned to popu-

lation P
Cv = Maximum computational effort required to

converge to local optimum starting from any
point within the basin of attraction Bv

n = Number of dimensions
N = Population size
S(.) = Selection operator
R(.) = Reproduction operator
IL(.) = Individual learning operator
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1 Introduction

Memetic Algorithms (MA) represent an emerging field that
has attracted increasing research interest in recent times, with
a growing number of publications appearing in a plethora
of international journals and conference proceedings. In the
last five years, hundreds of publications related to the field
have been listed in the ISI Web of Knowledge and Scopus
databases. Within the field of computational intelligence and
soft computing, special issues, special sessions and tutorials
in established journals and conferences have also been ded-
icated to the field [1–6].

The earliest form of Memetic Algorithms [7, 8] was first
introduced as a marriage between population-based global
search and heuristic learning, where the latter is often re-
ferred to as a meme, capable of local refinement. They are
often regarded as population-based meta-heuristic search ap-
proaches, inspired by Darwin’s theory of natural evolution
and Dawkins’ notion of meme defined as a unit of infor-
mation that reproduces itself while people exchange ideas.
This instantiation of MAs has materialized into the form of
a hybrid global-local approach that facilitates both explo-
ration and exploitation in the search. Up to date, many MAs
have been crafted for solving real-world problems more effi-
ciently. Such hybrid algorithms have been used successfully
to solve a wide variety of engineering design problems and
often shown to generate higher quality solutions more ef-
ficiently than canonical evolutionary algorithms [9–16]. So
far, most researchers have been concentrated on improving
the algorithmic aspects of MAs [17–23]. For a discussion
on the different depictions of MAs inspired from Dawkins’s
theory of Universal Darwinism, the reader is referred to [24].

In the literature, two basic forms of individual learning
schemes are often discussed, namely, Lamarckian and Bald-
winian learning [25]. Lamarckian learning forces the geno-
type to reflect the result of improvement in local search by
placing the locally improved individual back into the pop-
ulation to compete for reproduction. Baldwinian learning,
on the other hand, only alters the fitness of the individu-
als and the improved genotype is not encoded back into the
population. It is worth noting the significant research effort
in memetic algorithms is mainly spent on crafting special-
ized algorithms for solving a specific problem or a set of
problems via empirically investigations. The reported em-
pirical results usually demonstrate that the proposed algo-
rithm works well on a problem of interest or a relatively
small set of problems under investigation. Sometimes, the
reported results may not be easily reproducible due to minute
differences in the implementations that are often omitted in
the published manuscripts. Despite the extensive research
efforts in the field, we remain to know rather little of the
mechanisms responsible for the success of MAs. Particu-
larly, there is a lack of rigorous studies to provide under-

standings on the search mechanisms of MAs, limiting their
credibility even though the proposed memetic algorithm shows
statistical significant improvements over existing methods.

In the last two decades, a few studies to enhance the
understandings of Baldwinian MAs [26–29] have been re-
ported. However, to the best of our knowledge little progress
on study of Lamarckian MA in non-linear programming has
been made so far [30–32] with few exceptions [33]. It is
worth highlighting that to date the majority of memetic al-
gorithms that have experienced great success on real-world
problems adopt the Lamarckian learning concept in their
design. Given the limited progress made on revealing the
intrinsic properties of commonly used complex benchmark
problems and working mechanisms of Lamarckian memetic
algorithms in general non-linear programming, we introduce
in this paper the concepts of local optimum structure and
generalize the notion of neighborhood to connectivity struc-
ture for analysis of MAs. Based on the two proposed con-
cepts, we analyze the solution quality and computational ef-
ficiency of the core search operators in Lamarckian memetic
algorithms. For the first time, a systematic study on the lo-
cal optimum structure of a few commonly used benchmark
problems for continuous optimization [34] is subsequently
performed to reveal the effects of individual learning on fit-
ness landscape to gain clues into the success or failure of
MAs. To bring about new insights into the choice of memes
on Lamarckian MA design, we proceed further to investigate
on the search mechanisms of two unique individual learning
procedures in Lamarckian MAs on the benchmark problems
using the concept of local optimum connectivity. These em-
pirical studies thus serve as our initial effort to address the
lack of analysis of the benchmark problems commonly used
in the literature.

The paper is organized in the following manner. In Sec-
tion 2, two quantitative performance metrics for unveiling
search dynamics of MA, the progress rate and computational
cost, are introduced and described. The stochastic selection
operator of MA is analyzed based on the concept of local
optimum structure, and reproduction and individual learn-
ing operators is also studied based on connectivity analysis.
Case studies on the local optimum structure of five continu-
ous optimization benchmark problems of diverse properties
are presented in Section 3. Subsequently, the connectivity
analysis of individual learning procedures or memes in MAs
is presented in Section 4. Finally, a brief conclusion of the
paper is provided in Section 5.

2 Lamarckian Memetic Algorithm

In modern stochastic optimization, Lamarckian memetic al-
gorithms have manifested as population-based meta-heuristic
search methods inspired by both Darwinian principles of
natural evolution, Dawkins notion of a meme as a unit of
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cultural evolution, and Lamarck’s theory of evolution. Al-
though Lamarck’s theory of evolution has generated contro-
versies and doubts from biology, the potentials and contribu-
tions of Lamarckian learning in computational evolutionary
systems have been significant [35, 36]. It is worth empha-
sizing that most successful MAs to date are designed in the
spirit of Lamarckian learning. In diverse contexts, Lamar-
ckian memetic algorithms have also been used under the
name of hybrid evolutionary algorithm, Lamarckian evolu-
tionary algorithm, cultural algorithm or genetic local search.
An outline of a basic Lamarckian MA is provided in Algo-
rithm 1, where we can see that besides the evolutionary op-
erators, i.e., selection, reproduction, an individual learning
phase (line 7) is included to refine the individuals. Note that
Lamarckian learning (line 8) allows the genotype to reflect
the result of refinement through placing the improved indi-
vidual back into the population to compete for reproductive
opportunities [10, 13, 22].

Algorithm 1 Lamarckian Memetic Algorithm Search
1: Generate an initial population
2: while Stopping conditions are not satisfied do
3: Evaluate all individuals in the population
4: Select individuals for the reproduction pool Ω via selection op-

erator S(.)
5: for each individual in Ω do
6: Evolve an offspring according to reproduction operators R(.)
7: Perform Individual Learning via learning operator IL(.)
8: Proceed in the spirit of Lamarckian learning
9: end for

10: end while

2.1 Performance Metrics for Analysis of Memetic
Algorithm

In this subsection, we define some metrics for measuring the
search dynamics of Lamarckian MAs. In particular, we in-
troduce two quantitative performance metrics, namely, progress
rate and computational cost, for unveiling the effectiveness
(solution quality) and efficiency (computational cost) of MA
search, respectively. Progress rate describes the distance dy-
namics of the population and thus of the search in approach-
ing the global optimum. The second performance metric,
i.e., computational cost, is introduced to complement the
progress rate since the former does not take into account
the effort required to attain the progression of solution qual-
ity. Progress rate and computational cost together will serve
as the core metrics used in this paper for a comprehensive
study on the working mechanisms of Lamarckian MAs. In
addition, we concentrate on the general nonlinear program-

ming problem of the following form:

Minimize/Maximize : f(x), (1)

Subject− to : x(i)
l ≤ x(i) ≤ x(i)

u ,∀i = 1 . . . d

where x ∈ Rd is the vector of design variables, and xl, xu

are vectors of lower and upper bounds, respectively.

2.1.1 Progress Rate

Progress rate, notated here as θ, provides a measure on the
improvement in solution quality during the evolutionary search
[37, 38]. A consistent positive progress rate of several gener-
ations suggests that the evolution (as guided by the memetic
algorithm) is progressing well towards the global optimum
of the problem at hand. Clearly, a negative progress rate im-
plies the search diverges away from the global optimum.

Let x∗ denote the global optimum solution of the prob-
lem. The progress rate θ at population state P = {xk}N

k=1 of
size N defined as the expected change in distance to global
optimum of the population as a result of the stochastic evo-
lutionary operator(s) is given as

θ = D − E[D′|P ], (2)

D =
N∑

k=1

d(xk,x∗)/N, D′ =
N∑

k=1

d(x
′
k,x∗)/N

where P ′ = {x′k}N
k=1 is the next population, D and D′ de-

note the distance to global optimum of the current and next
populations, respectively.

2.1.2 Computational Cost

When studying the dynamics of an algorithm, besides the
progress rate of a search, the other important issue is how
fast the algorithm in finding the global optimum. Thus com-
putational cost represents another core metric that is crucial
for studying the performance of Lamarckian MA. Consider-
ing the selection, reproduction and individual learning com-
ponents of a Lamarckian memetic algorithm, it is noted that
the computational effort incurred by the two former evolu-
tionary operators do not vary much throughout the entire
search. Further, among the three search operators, the in-
dividual learning phase consumes the most computational
effort, while selection operator incurs the least.

2.2 Local Optimum Structure and Connectivity Analysis

In continuous parametric domain, the solution of interest lies
in a stationary point x, where ∇F (x) = 0 or ∇F (x) <

ε, with ε denoting some arbitrarily small value. Stationary
points exist in the form of minima, maxima or saddle points.
In Lamarckian MAs, individual learning procedures based
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on numerical solvers1 have been well established to generate
precise stationary points efficiently (i.e., 1st order necessary
condition). Practically, if Ψ is the complete local optimum
set of a problem, all subsequent populations of Lamarckian
MA search, except the initial population, are subsets of Ψ.
The study on the search dynamics of Lamarckian MAs thus
evolves around the set of local optimum solutions. For this
reason, it is crucial to uncover the properties and characteris-
tics of the local optimum set Ψ when analyzing Lamarckian
MAs. In the rest of this section, we study the search mecha-
nisms of Lamarckian MAs on general non-linear optimiza-
tion problems by analyzing the local optimum structure and
connectivity properties of the set Ψ.

Lamarckian memetic algorithms are composed of three
core operators, namely, selection (line 4), reproduction and
individual learning (lines 6 and 7), see Algorithm 1. Here
we study the working mechanisms of the algorithms by ana-
lyzing the progress rate and computational cost of these core
operators. In what follows, Section 2.2.1 presents the study
on stochastic selection operator using local optimum struc-
ture, and the study on reproduction and individual learning
operators using connectivity analysis is subsequently pre-
sented in Section 2.2.2.

2.2.1 Local Optimum Structure

The search dynamics and performance of Lamarckian MAs
depend on the properties of the problem fitness landscape.
Since the search operators of Lamarckian MAs evolve around
the set of local optimum solutions Ψ, local optimum struc-
ture or the distribution of local optimum solutions represents
one of the key property of the problem landscape to bring
new insights into the search algorithm. Before studying on
the role of stochastic selection operator in Lamarckian MAs,
we introduce the term of constructive and obstructive local
optimum structure and outline some basic definitions and
theorems used in our analysis.

Let P = {xk ∈ Ψ}N
k=1 denotes the initial population of

N locally optimum individuals and PS = S(P ) = {x′k ∈
Ψ}N

k=1 denotes the resultant population of optimum individ-
uals after undergoing the stochastic selection operation.

1 These numerical solvers are commonly categorized into three
groups according to the type of derivatives used in the search [39]: (1)
Zero-order methods, also known as direct search techniques, use the
objective function values or the relative rank of objective values in the
move operator to decide on the search structure. (2) First-order meth-
ods employ both function values and first (partial) derivative vector
to decide its moves. (3) Second-order Newton methods, on the other
hand, make use of the objective function values, first derivative vec-
tor as well as the second derivative Hessian matrix. However, due to
the difficulty of obtaining Hessian matrix, a class of methods named
as Quasi-Newton attempts to approximate Hessian matrix through the
first-order derivatives. Davidon-Fletcher-Powell (DFP) and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) are two examples of Quasi-Newton
methods.

Definition 1: The selection progress rate of the search
(θS) is defined as the expected change in distance to global
optimum as a result of the selection operator S(.).

θS(P ) = D − E[D′|P ]

=
1
N
×

N∑

k=1

d(xk,x∗)− 1
N
×

N∑

k=1

E[d(x
′
k,x∗)|P ]

(3)

Definition 2: A ‘constructive’/ ‘obstructive’ local opti-
mum structure exhibits a property that the ‘better’/ ‘poorer’
fitness quality a local optimum has, the closer it is to the
global optimum.

Let Ψ = {x1,x2, . . .xM}, where |Ψ| = M , denote the
finite set of local optimum solutions. Let di and fi be the
abbreviations for d(xi,x∗) and f(xi), respectively. Without
loss of generality, members of set Ψ are sorted in an ascend-
ing order of distance to the global optimum d(xi,x∗) such
that 0 < d1 ≤ d2 ≤ d3 . . . ≤ dM . For a maximization prob-
lem, our definition implies f1 ≥ f2 ≥ f3 . . . ≥ fM for con-
structive local optimum structure and f1 ≤ f2 ≤ f3 . . . ≤
fM for obstructive correlated structure of local optimums.

Examples of problems with a fitness landscape imbued
with properties of constructive and obstructive correlated lo-
cal optimum structure are depicted in Figures 1(a) and 1(b),
respectively.

Chebyshev’s sum inequality theorem: if two sequences,
{fj}N

j=1 and {dk}N
k=1, are of the same order, f1 ≤ f2 ≤

. . . ≤ fN and d1 ≤ d2 ≤ . . . ≤ dN , then

(
N∑

j=1

fj)(
N∑

k=1

dk) ≤ N ×
N∑

u=1

fudu

Similarly, if two sequences are of an inverted order, f1 ≥
f2 ≥ . . . ≥ fN and d1 ≤ d2 ≤ . . . ≤ dN , then

(
N∑

j=1

fj)(
N∑

k=1

dk) ≥ N ×
N∑

k=1

fudu

In what follows, we present our analysis on the search
mechanisms of the stochastic selection operator in Lamarck-
ian MAs based on the local optimum structure of a problem
landscape. Considering, for example, the stochastic fitness-
proportional selection scheme [40], which represents one of
the commonly used selection operators in evolutionary com-
putation. The probability of individual xk ∈ P = {xk}N

k=1

to survive in the reproduction pool of a Lamarckian MA
with stochastic fitness-proportional selection operator can
be derived as fk∑N

j=1 fj
. The selection progress rate then be-
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(a) Problem Landscape with Constructive Local Optimum
Structure

(b) Problem Landscape with Obstructive Local Optimum
Structure

Fig. 1 Illustrations of ‘constructive’/ ‘obstructive’ landscapes in maximization problem

comes

θS(P ) =
∑N

k=1 dk

N
− 1

N
×

N∑

k=1

E[d(x
′
k,x∗)|P ]

=
∑N

k=1 dk

N
− 1

N
×N × (

∑N
u=1 fudu∑N

j=1 fj

)

=
∑N

k=1 dk

N
−

∑N
u=1 fudu∑N

j=1 fj

=
(
∑N

j=1 fj)(
∑N

k=1 dk)−N ×∑N
u=1 fudu

N
∑N

j=1 fj

(4)

Without loss of generality, based on Equation (4), it is
possible to infer the progress rate of the stochastic selec-
tion operator on maximization problems with fitness land-
scape containing a constructive or obstructive local optimum
structure using the Chebyshev’s sum inequality theorem. For
a maximization problem fitness landscape containing a con-
structive correlated local optimum structure, the selection
progress rate is thus positive, i.e., θS(P ) ≥ 0, ∀P ,

Proof: Note that on constructive local optimum struc-
ture, two sequences {fj}N

j=1 and {dk}N
k=1 are of an inverted

order. According to the Chebyshev’s sum inequality theo-
rem, we have

(
N∑

j=1

fj)(
N∑

k=1

dk) ≥ N ×
N∑

u=1

fudu

(
N∑

j=1

fj)(
N∑

k=1

dk)−N ×
N∑

u=1

fudu ≥ 0 (5)

As the left-hand side of Inequality (5) is the numerator of
θS(P ), refer to Equation (4), we have θS(P ) ≥ 0

Conversely, for a maximization problem fitness landscape
containing an obstructive correlated local optimum struc-
ture, the selection progress rate is thus shown negative, i.e.,
θS(P ) ≤ 0,∀P ,

Proof: Note that on obstructive local optimum structure,
two sequences {fj}N

j=1 and {dk}N
k=1 are of the same order.

According to the Chebyshev’s sum inequality theorem, we
have

(
N∑

j=1

fj)(
N∑

k=1

dk) ≤ N ×
N∑

u=1

fudu

(
N∑

j=1

fj)(
N∑

k=1

dk)−N ×
N∑

u=1

fudu ≤ 0 (6)

As the left-hand side of Inequality (6) is the numerator of
θS(P ), refer to Equation (4), we have θS(P ) ≤ 0.

To summarize, the stochastic selection operator is shown
to have an effect of “pulling” the MA population towards the
global optimum on problem landscapes imbued with a con-
structive correlated local optimum structure, thus advanc-
ing the search towards the global optimum. In contrast, the
stochastic selection operator exhibits an effect of “pushing”
the population away from the global optimum on problem
landscapes having an obstructive correlated optimum struc-
ture.

2.2.2 Local Optimum Connectivity

The previous section has focused on the analysis of the MA
selection operator based on the notions of correlated opti-
mum structure and selection progress rate θS . In what fol-
lows, we proceed to study the synergy between the repro-
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duction and individual learning operators of Lamarckian MAs
based on the properties of the local optimum connectivity.
We begin with introducing the notion of ‘constructive’/ ‘ob-
structive’ local optimum connectivity, and then outline some
definitions used in our analysis.

Let x
′

denote the offspring of x through reproduction,
i.e., x

′
= R(x), and x

′′
denote the resulting offspring of x

after undergoing reproduction and individual learning oper-
ators, i.e., x

′′
= IL(R(x)). Further,

E[4d(x,x
′′
)|P ] = E[d(x,x∗)− d(x

′′
,x∗)|P ]

represents the expected change in distance to global opti-
mum of individual x.

Definition 4: Progress rate θR−IL and computational
cost C are defined for reproduction & individual learning
operators as the expected change in distance to global opti-
mum and incurred computational cost, respectively.

Definition 5: Local optimum u is connected to local op-
timum v if and only if v is reachable from u, i.e., the proba-
bility of v = IL(R(u)) is non-zero, or P (v = IL(R(u))) >

0.
Definition 6: The connectivity of a local optimum x

is constructive if E[4d(x,x
′′
)|P ] ≥ 0 and obstructive if

E[4d(x,x
′′
)|P ] < 0. In other words, a ‘constructive’/ ‘ob-

structive’ connectivity indicates that a local optimum con-
nects at a high probability to other local optimum solutions
of ‘improved’/ ‘inferior’ quality.

Examples on constructive and obstructive connectivity
of local optimum solutions are depicted in Figure 2(a) and
2(b), respectively. Note that the ‘solid’/ ‘dotted’ lines in the
figures refers to the ‘high’/ ‘low’ probability connections of
local optimums.

Here, the connectivity of local optimum solutions is mod-
eled as a directed graph G = (V,E). Vertex V represents
the local optimum solutions (i.e. V = Ψ). A directed edge
eu,v represents that v is reachable from u via the repro-
duction R(.) and individual learning IL(.) operators. Figure
3 depicts possible connections between a local optimum u
to other local optimum solutions of a improved or inferior
quality, as illustrated by vertex v1,v2 and v3,v4, respec-
tively.

Weight wu,v of a directed edge eu,v is defined as the
transition probability T (u,v) of reaching v from u, which
is given by

wu,v = T (u,v) =
∫

z

r(t)(z|u)× pv(z)dz, (7)

where r(t)(z|u) denotes the conditional probability density
function of the offspring z = R(u) and pv(z) denotes the
probability of v = IL(z). From this point onwards, time
index t of r(t)(y|x) is omitted for the sake of conciseness.
Note that if the basin of attraction Bv of local optimum v
is defined as Bv = {z : pv(z) > 0}, as pv(z) ∈ {1, 0}

Fig. 3 Connectivity of local optimums

for deterministic individual learning methods, Equation (7)
becomes

wu,v = T (u,v) =
∫

Bv

r(z|u)dz (8)

i.e., the transition probability T (u,v) is an integration of
r(z|u) across the basin of attraction Bv.

In the following, we present our analysis on the search
mechanisms of the reproduction & deterministic individual
learning operators in Lamarckian MAs using the concept of
local optimum connectivity. Through reproduction and in-
dividual learning, a population P = {xk}N

k=1 would be-
come P

′′
= {x′′k}N

k=1. Note that the computational effort
C(x,x

′′
) required to arrive at x

′′
from x for a given pre-

cision ε can be defined as α + C(x
′
,x

′′
) 2. The expected

progress rate θR−IL and computational cost C for popula-
tion P = {xk}N

k=1 can then be derived as

θR−IL = D − E[D′′|P ]

=
1
N
×

N∑

k=1

d(xk,x∗)− 1
N
×

N∑

k=1

E[d(x
′′
k ,x∗)|P ]

=
1
N
×

N∑

k=1

E[d(xk,x∗)− d(x
′′
k ,x∗)|P ]

=
1
N
×

N∑

k=1

E[4d(xk,x
′′
k)|P ] (9)

2 The reproduction operator for every offspring incurs a small com-
putational effort denoted by α.
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(a) Constructive Connectivity of Local Optimums (b) Obstructive Connectivity of Local Optimums

Fig. 2 Illustrations of ‘constructive’/ ‘obstructive’ connectivity in minimization problem

and

C =
1
N
×

N∑

k=1

E[C(xk,x
′′
k)|P ]

=
1
N
×

N∑

k=1

E[α + C(x
′
k,x

′′
k)|P ]

=
1
N
×

N∑

k=1

(α + E[C(x
′
k,x

′′
k)|P ])

= α +
1
N
×

N∑

k=1

E[C(x
′
k,x

′′
k)|P ] (10)

The progress rate θR−IL and computational cost C of the re-
production and deterministic individual learning operators
on the ‘constructive’/ ‘obstructive’ local optimum connec-
tivity (i.e. T (xk,v)) are investigated using Equations (9)
and (10). In particular, the addend in Equations (9) and (10),
denotes the expected individual improvement E[4d(xk,x

′′
k)|P ]

and cost of learning E[C(x
′
k,x

′′
k)|P ] of individual xk, are

expressed in term of transition probabilities T (xk,v) from
xk to other local optimums v, as given in Equations (11)
and (12), respectively. Recall that the transition probability
for deterministic individual learning operator as defined in
Equation (8) becomes

T (xk,v) =
∫

Bv

r(x
′
k|xk)dx

′
k

Thus

E[4d(xk,x
′′
k)|P ]

=
∫

x
′
k

r(x
′
k|xk)× (

∑

v∈Ψ

pv(x
′
k)×4d(xk,v))dx

′
k

=
∑

v∈Ψ

4d(xk,v)×
∫

x
′
k∈Bv

r(x
′
k|xk)dx

′
k

=
∑

v∈Ψ

4d(xk,v)× T (xk,v) (11)

and

E[C(x
′
k,x

′′
k)|P ]

=
∫

x
′
k

r(x
′
k|xk)× (

∑

v∈Ψ

pv(x
′
k)× C(x

′
k,v))dx

′
k

=
∑

v∈Ψ

∫

x
′
k

r(x
′
k|xk)× pv(x

′
k)× C(x

′
k,v)dx

′
k

=
∑

v∈Ψ

∫

x
′
k∈Bv

r(x
′
k|xk)× C(x

′
k,v)dx

′
k

≤
∑

v∈Ψ

max
x
′
k∈Bv

C(x
′
k,v)×

∫

x
′
k∈Bv

r(x
′
k|xk)dx

′
k

≤
∑

v∈Ψ

Cv × T (xk,v) (12)

where Cv = maxx
′
k∈Bv

C(x
′
k,v) is the maximum learning

cost at the precision ε required by an individual (i.e., off-
spring) x

′
k in the basin of attraction Bv.

For the constructive connectivity property illustrated in
Figure 2(a), Equations (11) and (12) suggest that if most of
the local optimums xk of an optimization problem possess
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a high probability of connecting to improved quality solu-
tions (i.e., large T (xk,v) and positive 4d(xk,v)) at low
learning expense Cv, a large overall progress rate θR−IL at
small computational cost C is expected. In this case, Lamar-
ckian MAs will search effectively and efficiently towards the
global optimum.

On the other hand, for problems imbued with obstructive
connectivity where most local optimums are likely to con-
nect to low-quality solutions (i.e., large T (xk,v) and nega-
tive 4d(xk,v)) at the expenses of high learning costs Cv,
a limited progress rate can be expected accompanied with a
high computational cost, as illustrated in Figure 2(b). In the
extreme case, where x = IL(R(x)) = x

′′
, no search im-

provement can be achieved (i.e. θR−IL = 0), which leads to
the well-known problem of premature convergence in MA
[32].

3 Local Optimum Structure Analysis of Representative
Benchmark Problems

In the field of continuous optimization, a number of diverse
complex benchmark minimization problems are available
[34]. Although the set of problems has been used exten-
sively for benchmarking evolutionary [41–43] or memetic
algorithms in particular [14, 10, 44, 24, 17], little effort has
been made to reveal their properties thus far, particularly the
local optimum structure of these benchmark problems.

In this section, we present for the first time a systematic
analysis of the local optimum structure of five continuous
parametric benchmark problems of diverse properties exten-
sively used in the literature3. These benchmarks represent
classes of multimodal, ‘epistatic’/ ‘non-epistatic’ optimiza-
tion problems [10], as summarized in Table 1. Further, we
study the impact of individual learning phase in MAs on the
problem landscape, i.e., the set of local optimum solutions
or the transformed problem landscape.

3.1 Representative Test Problems

3.1.1 Ackley function

Ackley function is symmetric and very bumpy. It has a global
minimum located at (0, . . . , 0), of which the minimum fit-
ness is 0. The function is defined as

FAckley = 20 + e− 20e
−0.2

√
1
n

n∑
i=1

x2
i − e

1
n

n∑
i=1

cos(2πxi)

x ∈ [−32, 32]n

3 A number of other commonly used test problems from the litera-
ture were also investigated. However, due to similarity in the properties
of some functions, only representatives of each benchmark problem
class are presented here.

Table 1 Benchmark functions used in the study

Func Range Characteristics
Epistasis Multi-modality

FAckley [−32, 32]10 yes yes
FRastrigin [−5, 5]10 no yes
FGriewank [−600, 600]10 yes yes

FWeierstrass [−0.5, 0.5]10 no yes
FRosenbrock [−100, 100]10 yes yes

3.1.2 Rastrigin function

Rastrigin function is also a highly multimodal function with
many local minimums and the global minimum located at
(0, . . . , 0). The minimum fitness at the optimal solution is 0.
It has also a very rugged landscape.

FRastrigin = 10n +
∑n

i=1(x
2
i − 10 cos(2πxi))

x ∈ [−5, 5]n

3.1.3 Griewank function

Griewank function is also a highly multimodal function with
many local minimums and the global minimum located at
(0, . . . , 0), of which the function’s minimum fitness is 0. The
function is defined as

FGriewank = 1 +
∑n

i=1 x2
i /4000−∏n

i=1 cos(xi/
√

i)

x ∈ [−600, 600]n

3.1.4 Rosenbrock function

Rosenbrock function is non-separable, with highly corre-
lated decision variables. The function’s minimum fitness at
the optimal solution (1, . . . , 1) is 0. In the two-dimensional
case, the minimum is located in a long, flat-bottomed, curved,
and narrow valley. It is defined as

FRosenbrock =
∑n−1

i=1 (100× (xi+1 − x2
i )

2 + (1− xi)2)

x ∈ [−100, 100]n

3.1.5 Weierstrass function

Weierstrass function has its global optimum located at (0, . . . , 0)
with a minimum fitness of 0. The function is defined as

FWeierstrass =
∑n

i=1(
∑kmax

k=0 (ak cos(2πbk(xi + 0.5))))

−n
∑kmax

k=0 (ak cos(πbk))

a = 0.5, b = 3, kmax = 20, x ∈ [−0.5, 0.5]n

3.2 Empirical Study

To study the local optimum structure of the benchmark prob-
lems, a basic random multi-start local search (individual learn-
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ing) optimization algorithm is used to search on them 4.
In the experiments, the sets of local optimum solutions for
the five problems 5 are attained using the Davidon-Fletcher-
Powell (DFP) strategy, which is a class of very popular quasi-
Newton method. The stopping criteria of DFP is defined
by the Cauchy’s convergence test 6 (i.e. |xn+1 − xn| ≤ ε

for N > N0 in which the precision ε is set to 1E-8). In
each run, a total of m randomly sampled individual learn-
ing iterations using the DFP was conducted to arrive at their
corresponding local optimums. Here, analysis on the initial
m = 4000 randomly sampled points and the obtained local
optimums was performed to reveal the properties of the orig-
inal and transformed benchmark problem landscape, respec-
tively, and the effect of individual learning on the search.

From our experimental study, the fitness distance scat-
ter plots and correlation coefficients, i.e., %L and %, of the
10-dimensional benchmark problems across 30 independent
runs are obtained and presented in Figures 4-8 and Table 2,
respectively. Fitness distance correlation (FDC) analysis, a
common method for revealing the correlated structure of a
landscape [45, 46, 30], has been used here. The correlation
coefficient measure % of the original fitness landscape can be
defined by Equation (13) as the level of correlation between
the fitness and distance to global optimum.

%(f, d) =
Cov(d, f)

σ(d)× σ(f)
(13)

Alternatively, % can be estimated from a set of m solutions
{(di, fi)}m

i=1 using Equation (14)

%(f, d) ≈ 1
σ(f)σ(d)

1
m

m∑

i=1

(fi − f)(di − d), (14)

where f and σ(f) refer to the mean and standard deviation,
respectively. Similar notations are used for d and σ(d). Note
that Equation (14) is also used for estimating the statistical
measure %L of the transformed landscape from a set of m

local optimums {(di, fi)}m
i=1.

Beside the fitness distance correlation coefficient %, the
scatter plot (f(x), d(x,x∗)) of fitness and distance to global
optimum is also provided here as an effective method for
visualizing the correlation property of a problem landscape.

From the scatter plots in Figures 4 and 5, strong con-
structive correlated structure of local optimums are observed
on both Ackley and Rastrigin functions. The left and right

4 The random multi-start local search algorithm is the simplest form
of stochastic algorithm that uses a basic random search as a global
optimizer. Being an unbiased global optimizer, it allows an accuracy
revelation on the local optimum structure of the problem landscape

5 ΨAckley , ΨRastrigin, ΨGriewank,ΨRosenbrock and
ΨWeierstrass

6 Cauchy’s convergence test for sequence {xi} can be described as:
for every ε > 0, there is a number N , such that for all n, m > N holds
‖xm − xn‖ < ε

panels of the figures show the scatter plot of local optimums
and initial sampled points, or the transformed and the orig-
inal landscapes, respectively. Further, the results in Table 2
indicate a higher mean-variance structure correlation value
for the transformed landscape than the original landscape
on both Ackley (%L = 0.920672 ± 5.791E − 3 > % =
0.780676 ± 6.539E − 3) and Rastrigin (%L = 0.994019 ±
0.306E−3 > % = 0.719241±6.925E−3). This highlights
the significant impact of individual learning on the search
space, where the phenomenon of reinforcement in fitness
distance correlation of the transformed problem landscape
can be observed. 7

On the Griewank function, however, the scatter plot in
Figure 6 shows a similar degree of constructive correlation
structure on both the original and transformed landscape,
i.e., (%L = 0.995402 ± 0.297E − 3 ≈ % = 0.994486 ±
0.247E−3). Although Griewank function has a very rugged
landscape, which is often difficult to search, it is to see that
the degree of ruggedness decreases with increasing dimen-
sion, which may be the reason for the similar level of struc-
ture correlations obtained.

From Figure 7 and Table 2, we can see that the construc-
tive correlated structure of local optimums is significantly
higher than that of the original landscape on the Rosenbrock
function (%L = 0.999912±0.228E−3 À % = 0.621473±
9.374E − 3). The high-dimensional (n=4-30) Rosenbrock
function, which contains only 2 local optimums, was studied
empirically in [47] and shown to have more than 2 station-
ary points. It is worth noting that since the DFP strategy does
not distinguish between different types of stationary points,
similar to [47], 3 stationary points were found in our work
on the 10-dimensional Rosenbrock function.

Last but not least, Weierstrass function possesses a weak
constructive correlated structure of local optimums, even though
visually the problem landscape appears to be relatively struc-
tured. Besides the scatter plot in Figure 8, the resulting FDC
coefficient % of the original landscape of the Weierstrass
function is shown to be higher (% = 0.877178±3.749E−3)
than the local optimum structure correlation (%L = 0.709783±
8.725E−3). Hence, Weierstrass function possesses an unique
property from the other benchmark functions considered.

The structure correlation profile of the five representa-
tive benchmark problems is summarized in Table 2. It is
worth noting that most of the problems presented here in-
dicated improvements in the transformed landscape struc-
ture correlation over the original one, i.e., %L > %. Hence,
based on the proof presented in Section 2.2.1, with the im-
proved structure correlation of the transformed landscape or

7 On a minimization problem, the local optimum solutions of the
landscape is considered to possess strong constructive correlation prop-
erty if FDC-L %L ≈ 1, i.e., the closer an individual is to the global
optimum, the lower (better) is its fitness value. On the other hand, the
local optimum structure is considered to display strong obstructive cor-
relation property if FDC-L %L ≈ −1.



10

Benchmark
Problem

Original Landscape Structure (%± σ) Transformed Landscape or Local Opti-
mum Structure (%L ± σL)

Ackley 0.780676± 6.539E − 3
Weak Constructive Correlation

0.920672± 5.791E − 3
Strong Constructive Correlation

Rastrigin 0.719241± 6.925E − 3
Poor correlation

0.994019± 0.306E − 3
Strong Constructive Correlation

Griewank 0.994486± 0.247E − 3
Strong Constructive Correlation

0.995402± 0.297E − 3
Strong Constructive Correlation

Rosenbrock 0.621473± 9.374E − 3
Poor correlation

0.999912± 0.228E − 3
Strong Constructive Correlation

Weierstrass 0.877178± 3.749E − 3
Weak Constructive Correlation

0.709783± 8.725E − 3
Poor correlation

Table 2 Mean (%L/%) and Variance (σL/σ) of Landscape Structure Correlation

(a) Ackley(10D) (b) L-Ackley(10D)

Fig. 4 Fitness distance scatter plots of Ackley function

(a) Rastrigin(10D) (b) L-Rastrigin(10D)

Fig. 5 Fitness distance scatter plots of Rastrigin function
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(a) Griewank(10D) (b) L-Griewank(10D)

Fig. 6 Fitness distance scatter plots of Griewank function

(a) Rosenbrock(10D) (b) L-Rosenbrock(10D)

Fig. 7 Fitness distance scatter plots of Rosenbrock function

local optimum structure observed, the stochastic selection
operator of the MA is expected to benefit from the strong
“pulling” effect on the population, which promotes the search
towards the global optimum. Further, it is also revealed that
the Weierstrass function has a degrading degree of construc-
tive correlated structure, i.e., %L < %, in MA search, differ-
ent to the other representative benchmark problems consid-
ered in this work.

4 Local Optimum Connectivity Analysis of Individual
Learning Procedure or Memes in MA

Recent studies on MAs have shown that the choice of indi-
vidual learning procedure or meme employed significantly
affects the search performance [10, 44, 14, 22]. Given the
restricted theoretical knowledge available in this area, we
attempt to provide in the following some insights into the
success of an individual learning procedure using the con-
nectivity analysis method proposed above.
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(a) Weierstrass(10D) (b) L-Weierstrass(10D)

Fig. 8 Fitness distance scatter plots of Weierstrass function

Table 3 MA parameters setting

General parameters
Individual learning
strategies

DSCG and DFP

Encoding scheme Real-coded
Reproduction operator Gaussian mutation N(0, 1)

Initial step size s 0.5
Stoping criteria ε 1.0E-4

4.1 Empirical Study

In our experimental study, we consider a MA that uses the
Gaussian mutation operator for reproduction, and the Davidon-
Fletcher-Powell (DFP) or Davies, Swann, & Campey with
Gram-Schmidt orthogonalization (DSCG) for individual learn-
ing, which are notated hereafter as MA-DFP and MA-DSCG,
respectively (Table 3). DSCG represents a form of direct
search method that has been demonstrated to have good per-
formance over some derivative-based numerical methods on
the set of continuous benchmark problems in [10, 44]. DFP,
on the other hand, is a popular quasi-Newton based individ-
ual learning method, which has also been used in Section 3
to obtain the sets of local optimums. Using the five sets of
local optimum solutions for the benchmark problems 8 ob-
tained in Section 3, the expected improvement E[4d(x,x

′′
)|P ]9

and cost E[C(x
′
,x

′′
)|P ] 10 of individual learning for each

local optimum x are subsequently estimated to provide reve-
lation into the search mechanisms of the Gaussian mutation

8 ΨAckley, ΨRastrigin, ΨGriewank, ΨRosenbrock and
ΨWeierstrass

9 Note that 4d(x,x
′′
) = d(x,x∗)− d(x

′′
,x∗), see Equation (9)

10 C(x,x
′′
) = α + C(x

′
,x
′′
), see Equation (10)

and individual learning operators, i.e., DFP or DSCG in the
MAs, through local optimum connectivity analysis 11.

The fitness function f(x) in Equation (1) indirectly pro-
vides an indication of the distance to global optimum d(x,x∗).
Hence 4d(x,x

′′
) = d(x,x∗)− d(x

′′
,x∗) may be replaced

by the fitness improvement 4f(x,x
′′
) = f(x) − f(x

′′
).

Here, the computational cost C(x
′
,x

′′
) is defined by the

number of function evaluations incurred. The expectation
of fitness improvement E[4f(x,x

′′
)|P ] is then estimated

through a simulation of T = 10 × n iterations ( n de-
notes the number of dimensions) on each local optimum x:
E[4f(x,x

′′
)|x] ≈ ∑T

i=1 (f(x)− f(x
′′
i ))/T . In each iter-

ation i, x
′
i = R(x) is an offspring of x reproduced by mu-

tation with a normal distribution N(0,1) and x
′′
i = IL(x

′
i)

denotes the resulting individual after learning. The details of
the simulation procedure is outlined in Algorithm 2. Using a
similar procedure, the computational cost expectation of the
search operators can also be estimated as E[C(x

′
,x

′′
)] ≈∑T

i=1 Ci/T , where Ci denotes the total computational cost
incurred by each iteration.

Simulation studies on the five 10-dimensional bench-
mark problems using the algorithm outlined in Algorithm 2
are performed, and the results are summarized in the FI-plot
(f(x), E[4f(x,x

′′
)|P ]) and C-plot (f(x), E[C(x

′
,x

′′
)])

in Figures 9-13. Note that FI-plot and C-plot provide in-
formation on progress rate θR−IL and computational effort
incurred by the MA search, respectively.

11 As discussed in Section 2.2.2, an ‘positive’/ ‘negative’ expected
improvement E[4d(x,x

′′
)|P ] for each x indicates a ‘constructive’/

‘obstructive’ connectivity of local optimums.
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(a) Expected Fitness Improvement on Ackley(10D) (b) Expected Cost of Learning on Ackley(10D)

Fig. 9 Connectivity Analysis on Ackley(10D) function

Algorithm 2 Descriptions for Local Optimum Connectivity
Analysis

for x in Ψ do
FI(x) = 0, C(x) = 0
for i = 1 to T = 10× n do

Produce offspring x
′
i according to R(x)

Produce individual x
′′
i by individual learning L(x

′
i)

Fitness improvement 4f(x,x
′′
i ) = f(x)− f(x

′′
i )

FI(x) = FI(x) +4f(x,x
′′
i )

C(x) = C(x) + Ci {Ci: function evaluations}
end for
FI(x) = FI(x)/T
C(x) = C(x)/T

end for
Provide FI, C plots

4.1.1 Ackley function

The FI-plot and C-plot for MA-DFP and MA-DSCG on the
Ackley function are illustrated in Figures 9(a) and 9(b), re-
spectively. On the lower panel of Figure 9(a), DSCG is ob-
served to result in a positive expected FI, i.e.,4f(x,x

′′
), on

each local optimum x. In contrast, the upper panel of Figure
9(a) indicates that DFP results in a negative expected FI for
the local optimum with fitness value under 8 (see x-axis).
Further, the negative expected FI phenomenon is shown to
prevail for most of the local optimums even at higher fit-
ness ranges. The results highlighted a significantly higher
expected FI on the local optimum resulting from DSCG-
based individual learning than DFP-based individual learn-
ing. Based on the notions of constructive and obstructive
connectivity described in Section 2.2.2, the property of a
constructive connectivity, i.e., local optimums of Ackley func-

tion are likely to connect to other optimums of higher fitness,
is shown for the MA-DSCG. In contrast, obstructive con-
nectivity is observed on the MA-DFP. In addition, Figure
9(b) presents the expected computational cost of learning
for DSCG and DFP strategies on the set of local optimums
on Ackley function. From the figure, it is observed that the
cost of learning for DSCG is approximately half that of DFP
to arrive at the expected improvements shown in Figure 9(a).

4.1.2 Rastrigin function

As shown in Figure 10(a), both MA-DFP and MA-DSCG
bring about a positive expected FI on majority of the local
optimum, but a negative expected FI on some high qual-
ity local optimums of the Rastrigin function. Hence a ob-
structive connectivity can be inferred for local optimums
that are closer to the global optimal. Comparing MA-DFP
with MA-DSCG, however, MA-DSCG results in a higher
expected FI on most of the local optimums than MA-DFP.
Overall, MA-DSCG displays a stronger constructive con-
nectivity profile than MA-DFP on Rastrigin. The expected
computational cost for learning of the MAs is also given
in Figure 10(b), which indicates that the learning cost for
MA-DFP is approximately 10 times higher than that of MA-
DSCG.

4.1.3 Griewank function

Next, we discuss the simulation results on the Griewank
function. Although the local optimum landscape of Griewank
function appears similar to that of Rastrigin function, it is
worth noting that in contrast to the latter, both MA-DFP and
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(a) Expected Fitness Improvement on Rastrigin(10D) (b) Expected Cost of Learning on Rastrigin(10D)

Fig. 10 Connectivity Analysis on Rastrigin(10D) function

(a) Expected Fitness Improvement on Griewank(10D) (b) Expected Cost of Learning on Griewank(10D)

Fig. 11 Connectivity Analysis on Griewank(10D) function

MA-DSCG exhibit a positive expected FI on nearly all the
local optimums, as observed in Figure 11(a). Further, MA-
DSCG generates a higher expected FIs than MA-DFP for
the same local optimums. Particularly, for local optimum
with a fitness value of 100, the MA-DSCG contributed ex-
pected FIs that are in the range of 50− 100, while MA-DFP
generated FIs lower than 40. In addition, the learning cost
of DFP (at > 2500 evaluations for each local optimum),
as compared to that of DSCG (< 500), is shown in Figure
11(b), highlighting the remarkably larger computational re-
quirements of DFP.

4.1.4 Rosenbrock function

For the Rosenbrock function, it is worth noting the sparse-
ness of the scatter plot in Figure 12, which indicates that
a small number of local optimums exists in the landscape.
The obtained expected FI of Figure 12(a) clearly depicts
the strong constructive connectivity of the local optimums
to global optimum. For instance, it is observed that the ex-
pected FI is approximately 10 for a local optimum x having
fitness value 10, from which we can infer that the local op-
timum x is very likely to connect to the global optimum. In
addition, the cost of individual learning for DFP is consid-
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(a) Expected Fitness Improvement on Rosenbrock(10D) (b) Expected Cost of Learning on Rosenbrock(10D)

Fig. 12 Connectivity Analysis on Rosenbrock(10D) function

erably higher than that of DSCG on Rosenbrock function as
shown in Figure 12(b).

4.1.5 Weierstrass function

MA-DSCG shows a positive expected FI on nearly all local
optimums on the Weierstrass function. A linearly increas-
ing positive expected improvement is observed in the lower
panel of Figure 13(a) for MA-DSCG. MA-DFP, on the other
hand, exhibits an entirely opposite behavior, with most lo-
cal optimums giving a negative expected FI, as shown in
Figure 13(a), i.e., for those local optimums with a fitness
value < 15. Further, in contrast to the other representative
problems where DSCG is found to be computationally more
efficient than DFP, the cost of learning for DSCG is approx-
imately twice that of DFP on the Weierstrass function, see
Figure 13(b).

The local optimum connectivity profiles of MA-DSCG
and MA-DFP on the five benchmark problems are listed in
Tables 4 and 5. These results indicate that MA-DSCG pos-
sesses a constructive local optimum connectivity on most of
the representative test functions, while MA-DFP produces
an obstructive connectivity of local optimums when approach-
ing the global optimum of the Ackley, Rastrigin functions
and Weierstrass functions. Further, it is worth noting that lo-
cal optimum connectivity with a higher expected FI is achieved
at a lower computation cost in MA-DSCG as compared to
MA-DFP on four of the five problems considered, thus shed-
ding some light on the success of MA-DSCG widely re-
ported in the literature [10, 44].

5 Conclusions

In this paper, we have proposed and introduced the concepts
of local optimum structure and connectivity structure for the
analysis of MAs. The notion of ‘constructive’/ ‘obstructive’
local optimum structure is defined as a property of the trans-
formed fitness landscape as a result of the individual learn-
ing procedure in MAs. ‘Constructive’/ ‘obstructive’ connec-
tivity, on the other hand, is introduced as a property for re-
vealing the working mechanism of a MA solver in search.
Both properties of local optimum structure and connectiv-
ity are demonstrated to have great influence on the search
mechanism and performance of MAs. The results on typi-
cal benchmark problems indicated that the correlated struc-
ture of the transformed landscape is improved as compared
to the original, thus allowing the MA to reap the benefits
of individual learning in advancing the search towards the
global optimum. Further analysis on MA-DSCG and MA-
DFP also highlighted the unique local optimum connectivity
properties of memes and their influences on MA search per-
formance, which explains the superior performance of MA-
DSCG reported in previous studies.
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