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Learning and Use of Sensorimotor Schemata Maps
Claudius Gläser, Frank Joublin, and Christian Goerick

Abstract—In this paper we present a framework for the learn-
ing and use of sensorimotor schemata. Therefore, we introduce
the concept of a schema as a compact representation of an
attractor dynamic and discuss how schemata, if embedded into
the proposed architecture, can be used to produce, simulate,
or recognize goal-directed behaviors. We further present a
first implementation of the framework which incorporates well-
founded biological principles. Firstly, we apply population coding
for the representation of schemata in a neural map and, secondly,
we use basis functions as flexible intermediate representations
for sensorimotor transformations. Simulation results show that
during an initial motor babbling phase the system is able to
autonomously develop schemata which correspond to generic
behaviors. Moreover, the learned sensorimotor schemata map is
topologically ordered insofar as neighboring schemata represent
similar behaviors. In accordance with biological findings on the
motor system of vertebrates the schemata form a set of behavior
primitives which can be flexibly combined to yield more complex
behaviors.

I. INTRODUCTION

In our everyday life we apply rules when interacting with

the physical world or social environment. These rules, also

called schemata, are cognitive structures describing regulari-

ties within experiences [1]. They, thus, serve for the organiza-

tion of our knowledge and mediate how we see and interpret

the world [2]. Schemata are hierarchically organized, thereby

they represent knowledge at all levels of abstraction [3].

Over the past, Schema Theory has been applied in a wide

range of fields, one of them being behavior-based robotics.

In [4] it has been proposed that motor schemata represent

generic behaviors of an agent. Thereby, an instantiation of a

schema determines action patterns appropriate for reaching the

behavior’s goal. Moreover, by using a hierarchically organized

network of behaviors an agent’s goal can be decomposed

and accomplished by instantiating schemata which serve the

corresponding subgoals [5].

This paper is concerned with the autonomous acquisition of

low-level sensorimotor schemata which may serve as a basis

for the build up of such schemata hierarchies. Schemata at

the lowest level of a hierarchy have to describe the spatio-

temporal sensorimotor patterns which an agent observes when

he interacts with its environment. They, thus, segment the

continuous stream of events into causal chunks. Here, we

consider a schema to be a compact representation of an

attractor dynamic where the attractor dynamic describes a

generic behavior serving a certain goal. We will discuss how

schemata, if embedded into the proposed architecture, can

be used for the execution, simulation, and recognition of
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the corresponding behaviors. Moreover, an implementation

of the framework is presented. The implementation does,

at its current state, not support a hierarchical organization

of schemata. It rather focuses on the learning of low-level

schemata as well as the incorporation of biologically plausible

processing principles in a coherent framework. Finally, we will

present first simulation results which show that the proposed

framework is able to autonomously develop sensorimotor

schemata which correspond to generic behaviors. Thereby, the

learned mapping between schemata and attractor dynamics

is topology preserving, i.e. neighboring schemata represent

similar behaviors. The schemata further feature properties

which are in accordance with biological findings.

The remainder of the paper in organized as follows. In

section II we will review existing work on the learning of sen-

sorimotor competencies. Motivated by biological evidence we

will next introduce our schemata-based architecture in section

III. After that, we will propose a detailed implementation of

the framework in section IV before we will present simulation

results in section V. Finally, we will give a summary, discuss

our approach with respect to existing work, and outline our

future work in section VI.

II. RELATED WORK

Based on the mixture of experts architecture [6] Wolpert

et al. proposed the MOSAIC model [7]. Central to MOSAIC

are multiple paired forward-inverse models, where the forward

models concurrently try to describe the observed sensorimotor

patterns and the inverse models cooperatively contribute to

the overall control of the agent depending on their forward

models’ prediction quality. The proposed framework results in

a concurrent learning scheme in which the different internal

models compete for competence in describing regularities in

the agent-environment interaction. Instances in time in which

the responsibility of the internal models switch consequently

signal behaviorally relevant events which segment the con-

tinuous stream of sensorimotor patterns into causal chunks.

Following a similar spirit, Tanigushi et al. proposed a multiple

module-based architecture which incrementally acquires its

internal models [8]. Based on Piaget’s theory [1] they proposed

to use techniques of statistical hypothesis testing in order to

decide whether a newly acquired experience should become

assimilated by existing models or should result in the creation

of a new model.

In contrast to the use of multiple internal modules, the

RNNPB model [9] proposes to represent sensorimotor ex-

periences within a single recurrent neural network (RNN),

thus, in a distributed fashion. Tani et al. used parametric bias

(PB) vectors as input to the RNN in order to determine the
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network’s behavior. PB vectors consequently act as switches

between the multitude of sensorimotor patterns represented by

the RNN. It has further been shown that during offline learning

the mapping between PB vectors and sensorimotor patterns

self-organizes. PB vectors, thus, serve as a compact description

of causal sensorimotor chunks. Finally, Tani et al. proposed to

use an inverse iterative search procedure to determine the PB

vector which best describes an observation.

Both, MOSAIC and RNNPB, provide means by which

an agent may acquire low-level sensorimotor competencies.

These competencies, here called schemata, can serve as a

basic behavior repertoire on which higher-level competencies

can be build on. More precisely, high-level schemata may

orchestrate the execution of low-level schemata by which more

complex behaviors can be obtained. However, the learning

of such motor programs is out of the scope of the present

paper. Existing approaches concerned with this topic include

HMOSAIC [10], HAMMER [11], Petitagé [12], and the

developmental assembler of Grupen [13].

III. SCHEMATA-BASED ARCHITECTURE

A. Schema Definition

We assume that schemata describe generic behaviors of an

agent. For this reason, we will use both terms interchangeably.

Since a generic behavior only carries meaningful information

if its application results in a specific situation, a schema is

characterized by the goal which the application of such a

generic behavior entails. Thereby, the term generic refers to the

fact that the behavior can be applied in a variety of situations,

but always yields a situation corresponding to its goal. For

example a GazeAtHand schema should result in a situation

where the agent sees its hand in the fovea. However, the

spatio-temporal sensorimotor patterns the agent observes when

applying the schema might be very different (e.g. depending

on the initial gaze and hand position). A schema is, thus,

a compact representation of an attractor dynamic which for

various contexts describes how to reach a single equilibrium

point. Thereby, the dynamic’s equilibrium point represents the

schema’s goal.

B. System Components

Based on this definition of schemata we propose the ar-

chitecture shown in Fig. 1. Besides a schemata map, whose

activity reflects the current states of the generic behaviors

(e.g. active or inactive), the architecture is composed of

three integral parts. Firstly, given a situation (in terms of a

sensory state) and a schema an Inverse Model has to select

motor commands which are suitable for reaching the schema’s

goal. Secondly, given a situation an agent has to be able to

predict the sensory consequences of applying a schema in this

situation. This ability is implemented by the Forward Model.

Lastly, an agent has to be able to recognize the schemata

which best describe an observed stream of perceptual events.

The Schemata Recognizer thus maps observations onto own

experiences. The additionally shown Switch allows the agent

to either rely on current or predicted observations. By using

previously predicted consequences (imagined situations) as

Sensors

Predicted

Sensors

Inverse ModelForward Model

Motor

Commands

Schemata Recognizer

S
w

it
c
h

External

Input

Schemata Map

Fig. 1. The schemata-based architecture proposed in this paper. Thereby,
the use of hierarchically structured schemata require additional processing
pathways which are indicated by the dashed connections. These pathways may
include even more functional modules, rather than being direct connection
between the components shown in the figure.

input the forward modeling performs a look-ahead prediction

of arbitrary time. It thus allows an agent to mentally simulate

the application of schemata, which is a property being crucial

for planning.
Even though our current implementation does not support

the learning and use of schemata hierarchies, we will briefly

discuss how the framework could be adapted in order to do

so. When using schemata hierarchies an agent’s high-level

behavior can be decomposed into its subgoals. This means that

the Inverse Model not only has to specify the motor commands

to be executed, but it also has to select a schema’s subgoals

which can be achieved by other lower-level schemata. This

behavior control via goal decomposition is indicated by the

dashed arrow in Fig. 1. However, the arrow is not meant to

represent a direct connection. Goal decomposition may rather

include additional functional modules (e.g. a representation

of goals or a schemata selection module). Following a similar

argumentation, the Schemata Recognizer may not only rely on

the observed stream of sensory patterns, but also on a stream of

already recognized subgoals (at a lower level of the hierarchy).

Consequently, schemata hierarchies could be used to recognize

or infer the high-level goals of interaction partners even though

the agent did not observe the whole behavior.

C. Biological Evidence

Strong evidence for schemata-based behavior control in ver-

tebrates comes from studies on the spinal motor system of the

frog. Bizzi and co-workers showed that microstimulation of

neurons in the spinal cord evokes motor responses which can

be described in terms of force fields [14]. More precisely, these

force fields map the frog’s initial hindlimb position on motor

responses which direct the hindlimb towards an equilibrium

point in space [15]. Therefore, these force fields perfectly fit

our definition of schemata. It has further been shown that the

simultaneous activation of multiple motor primitives results

in force fields equivalent to a linear superposition of the

single synergies [16]. Fig. 2 exemplifies the motor primitive

theory by showing three force fields similar to those found

in vertebrates. There, the force field shown in (c) is the

summation of the force fields in (a) and (b).
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(a) (b) (c)

Fig. 2. The plots show force fields directed toward an equilibrium point in
space. Thereby, the force field in (c) is a linear superposition of the force
fields in (a) and (b).

Neuron populations featuring schemata-like properties were

not only reported for the spinal motor system, but also for

higher areas of the motor system, particularly the ventral

premotor cortex (vPMC). For example it has been shown that

neurons in area F4 of monkey vPMC code wrist movements

directed toward specific locations in space [17]. Moreover, in

area F5 neurons coding for action classes like ’grasping’ or

’holding’ have been reported [18]. These and other studies

suggest a hierarchical organization of behaviors, starting from

motor primitives coded in the spinal cord and the primary

motor cortex, through action classes represented in vPMC, up

to behavior plans stored in lateral prefrontal cortex [19].

Lastly, we would like to highlight the role of the parietal cor-

tex. Beside the fact that the inferior parietal lobe is part of the

mirror neuron circuit [20] the posterior parietal cortex plays

a pivotal role in sensorimotor integration [21]. It integrates

sensory information stemming from different modalities and in

turn provide strong input to frontal brain regions. This fronto-

parietal circuit carries out sensorimotor transformations related

to the control of different movements [22]. Recently, it has

been suggested that computational models for sensorimotor

transformation should use basis functions as flexible inter-

mediate representations since they best describe the response

characteristics of cortical neurons [23].

IV. IMPLEMENTATION

As previously noted our current implementation of the ar-

chitecture does not include hierarchical dependencies between

schemata. Therefore, the system presented in this section does,

at its current state, not include all the functionalities which

were discussed in the previous section. The focus of this work

rather lays on the online learning of low-level sensorimotor

schemata and the embedding of different processing principles

within a coherent framework (see Fig. 3).

A. Implementation of the System Components

One of the principles we apply here is that of population

coding [24]. More precisely, we assume that units distributed

in a 2-dimensional map represent schemata. We further con-

sider the activity within this map to code the multitude of

simultaneously active schemata. What the framework then

should achieve is to learn a topology preserving mapping

from sensorimotor pattern sequences to schemata. In other

words, schemata should be topographically organized such that

neighboring units represent similar behaviors and therewith

also serve similar goals.

Population Readout
Forward

Model

Inverse Model

Schemata
Recognizer

Schemata Map

context

context

hyperBFs

hyperBFs

hyperBFs

)1(ˆ tx

)1(ˆ tm

)1(tx

)(tx

)(ts

Fig. 3. The diagram illustrates the current implementation of our framework.

Secondly, we implemented the Forward Model by a single

recurrent neural network (RNN). Therefore, our approach for

sensory prediction is similar in spirit to the RNNPB model

[9]. There, Tani et al. proposed that sensorimotor patterns are

distributely represented within a single RNN, where paramet-

ric bias vectors determine the network’s dynamics. Tani et al.

further suggested that higher-level modules set these biases

and thereby drive the network in its corresponding mode. Here,

we propose that the active schemata determine the network’s

behavior. Thus, the schemata map activity acts as a parametric

bias. In summary, the forward prediction is modeled via an

RNN using one hidden layer and context units, where the

context unit activity at the output is fed back to the context unit

activity at the input. The sensory state x(t) and the schemata

map activity s(t) serve as input to the RNN which in turn

predicts the sensory state x(t + 1) at the next timestep.

Next, the Inverse Model has been implemented as a feed-

forward neural network with one hidden layer. Similar to

the Forward Model the sensory state x(t) as well as the

schemata map activity s(t), which represents the currently

applied behaviors, serve as input to the network. The Inverse

Model finally produces motor commands m(t) suitable for

reaching the schemata’s goals.

Lastly, the Schemata Recognizer has been modeled by an

additional RNN. One more time, the RNN consists of one

hidden layer and context units, where the output context

activity is used as input at the next timestep. The Schemata

Recognizer maps an observation x(t+1) onto own experiences

insofar as it activates the schemata s(t) which best describe the

observation. In order to ensure that hidden layer and context

unit activities reflect causalities in the observed sensory pattern

stream the Schemata Recognizer also predicts the observation

x(t + 2) at the next time step. This forward prediction thus

serves computational purposes and may be omitted in future.

Motivated by the existence of basis function-like neuron

discharges in parietal cortex [23] our architecture incorporates

basis functions as flexible intermediate representations in the

hidden layers. More precisely, we adopted the hyper basis

function (HyperBF) framework [25] in order to implement the

Forward Model, the Inverse Model, as well as the Schemata

Recognizer.

B. Hyper Basis Function Networks

According to (1) a HyperBF network approximates a mul-

tivariate function f(z) by a weighted combination of basis

function activities as well as a bias b. Thereby, the weighted
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norm in (2), which incorporates the basis functions’ centers ξi

and weighting matrices Wi, serves as an activation function,

whereas the radial function G calculates the basis function

activities. Here, G has been chosen according to (3).

f(z) ≈ f̂(z) = b +
N∑

i=1

αi · G(‖z − ξi‖
2
Wi

) (1)

‖z − ξi‖
2
Wi

= (z − ξi)
T WT

i Wi(z − ξi) (2)

G(λ) = exp−λ (3)

It is known that given a sufficiently high number of hidden

units a HyperBF network can approximate any multivariate

continuous function arbitrary well. Since the receptive fields

of the basis functions are subject to change via some learning

algorithm (see section IV-E), HyperBF networks perform a

task-dependent clustering as well as dimensionality reduction

[25]. Together with the biological evidence for basis function-

like neuron discharges in parietal cortex these properties

let HyperBF networks become well suited for sensorimotor

transformations.

Theoretically the number of basis functions has to grow

exponentially in the number of input dimensions, a problem

known as the curse of dimensionality. Since HyperBF net-

works perform a dimensionality reduction, they are not as

prone to this problem as other networks are. Nevertheless,

we tried to minimize the number of input dimensions in

order to make our implementation computationally feasible.

Therefore, we do not feed the whole schemata map activity to

the HyperBF networks; we rather perform a population readout

on the schemata map and use the locations of the resulting

peaks as input. By doing so, a 2-dimensional rather than a

M-dimensional input is used to represent the schemata map

activity (where M is the number of schemata).

C. Population Readout Mechanism

Let pi = (px
i , py

i )T be the position of the schemata map’s

unit at grid index i. Furthermore, let Ii(t) be the input to that

unit at time t. Then we first apply a sigmoidal function on the

input in order to ensure positive activities of the units.

NIi(t) =
1

1 + exp(−Ii(t))
(4)

Next, we perform a population readout which is similar

in spirit to [26]. Thereby, the map units interact via two

types of lateral connections. Firstly, a pooling is accomplished

via excitatory lateral weights wexc
i,j and, secondly, inhibitory

weights winh
i,j implement divisive normalization. We set both

excitatory and inhibitory weights according to (5) where

⋆ ∈ {exc, inh} and σinh = 2 · σexp.

w⋆
i,j = exp

[
−

(
‖pj − pi||2

σ⋆

)2
]

(5)

Iterating equations (6) and (7) for K times let the map activity

(a) (b)

Fig. 4. The population readout mechanism let the initial schemata map
activity (a) evolve to smooth peaks (b). In (b) the local neighborhoods of the
units exhibiting peak responses are additionally shown.

ai(t) relax to smooth peaks.

uκ+1
i (t) =

∑

j

wexc
i,j · aκ

j (t) (6)

aκ+1
i (t) =

uκ+1
i (t)2

ηκ+1(t) + µ ·
∑

j winh
i,j · uκ+1

j (t)2
(7)

We set the initial activity a0
i (t) = NIi(t), the divisive

normalization weight µ = 1, and ηκ(t) = 4 ·
∑N

j uκ
j (t)/N .

Let P(t) be the set of map indices whose units exhibit peak

responses at time t. Then, the set of peak locations S(t) were

obtained by calculating the center of masses within the local

neighborhoods n of the units in P(t).

S(t) =

{
s(t) =

∑
j ni,j · pj · a

K
j (t)

∑
j ni,j · aK

j (t)
| ∀i ∈ P(t)

}
(8)

ni,j =

{
1 , if ‖pj − pi||2 ≤ r
0 , otherwise

(9)

Here, the radius r determining the size of the neighborhoods is

set to r = 3·σexp. Fig. 4 illustrates the result of the population

readout mechanism.

D. Handling Multiple Simultaneously Active Schemata

Let z(t) be the input to a HyperBF network. The input is

composed of the peak location s(t) of the schemata map as

well as other inputs i(t). Assuming the population readout

mechanism results in M peaks at time t the set of peak

locations is S(t) = {s1(t), s2(t), . . . , sM (t)}. Then we define

the set of inputs Z(t) at time t according to (10). Furthermore,

we define the activity Gj(t) of hyper basis function j at time

t according to (11).

Z(t) =
{
zi(t) = (si(t)

T , i(t)T )T |∀si(t) ∈ S(t)
}

(10)

Gj(t) = max
z∈Z(t)

G(‖z − ξj‖
2
Wj

) (11)

E. Learning Sensorimotor Schemata

For learning the parameters of the Forward Model, of the

Inverse Model, as well as of the Schemata Recognizer we

assume that the agent observes a stream of sensorimotor

patterns. Such a stream might be produced during an initial

motor babbling phase or through direct guidance.

Then the following strategy has been applied. Given the

observations the Schemata Recognizer activates the schemata
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which best describe the sensory pattern sequence. The recog-

nized schemata are in turn used by the Forward and Inverse

Model in order to predict the sensorimotor patterns. Finally,

we calculated the prediction error of the Forward Model as

well as the Inverse Model and applied the Backpropagation

Through Time (BPTT) algorithm in order to adjust all network

parameters [27]. In order to make the learning algorithm

capable for online operation the truncated version of the BPTT

algorithm can be used. The important derivatives for error

backpropagation are given in the appendix.

V. SIMULATION RESULTS

A. Experiment 1

As a first test of the proposed framework we produced

sensorimotor pattern sequences using a predefined controller

C(χ, x). The controller dynamically changes the values of the

state variables x = (x1, x2)
T according to (12) such that the

target values χ = (χ1, χ2)
T become reached. The target values

were randomly chosen from the interval [0, 10]2 and fed into

the controller. Thereby, we set ẋmax = ẍmax = 200 and

sampled the dynamics with dt = 0.01 s.

τ ẋ = −ẋmax ·



 2

1 + exp
(
− ẍmax

ẋmax
· (x − χ)

) − 1



 (12)

This collection of experiences should model an initial motor

babbling phase, where an agent randomly executes motor

commands and observes their consequences. Here, the system

observes the state variables x = (x1, x2)
T as well as motor

commands m which are assumed to equal the controller’s

parameters m = (χ1, χ2)
T .

The schemata map is composed of 100 units equally dis-

tributed on a 10x10 grid. Furthermore, each of the system

components feature 30 hyper basis functions in their hidden

layers. The RNNs of the Forward Model as well as the

Schemata Recognizer additionally consist of 2 context units,

respectively. The learning was carried out during online oper-

ation as described in section IV-E. Thereby, a truncation depth

of 8 samples has been used.

The learning algorithm outlined above should autonomously

develop sensorimotor schemata corresponding to generic be-

haviors. It should further self-organize a mapping between

schemata and attractor dynamics which is topology preserving.

Once the system acquired the schemata it can use them to

recognize, reproduce, or simulate the corresponding behaviors.

Here, we first show the results for the simulation of the

behaviors. Therefore, after learning the network parameters

were frozen. Next, we activated each schema in different initial

situations x(0) and recorded the sensory pattern sequences

(x(1), x(2), . . .) which the Forward Model produced using

look-ahead prediction (i.e. the prediction at time t has been

used as input to the Forward Model at time t + 1).

Given the predicted sensory pattern sequences we calculated

the equilibrium points which the applications of the different

schemata entail. The equilibrium points thus describe the goals

of the schemata. Fig. 5 shows these goals (blue circles) in the

x1-x2-plane as well as the sensory pattern sequences of five

0 10

0

10

x
1

x
2

Fig. 5. The attractor dynamics represented by the different schemata
are illustrated. Therefore, the white insets show sensory pattern sequences
produced by the Forward Model when activating one out of five exemplarily
chosen schemata in different situations, respectively. Blue circles correspond
to the equilibrium points of the dynamics represented by the schemata. They,
thus, illustrate the goals of the schemata. The plot further shows that the
learned mapping is topology preserving insofar as neighboring schemata serve
similar goals. Lastly, the gray insets show two attractor dynamics which were
obtained when simultaneously activating pairs of schemata. As can be seen,
the simultaneous activation of schemata entails goals (red circles) different
from those obtained when activating single schemata (blue circles).

exemplarily chosen schemata (white insets). As can be seen,

the learning algorithm developed generic behaviors insofar as

the application of a schema in different situations drives the

predictions to a single equilibrium point.

For each pair of neighboring schemata (where the neigh-

borhood is given by the 2D-grid topology of the schemata

map) we additionally connected the corresponding goals. As

can be seen, the goals of the different schemata adequately

sample the target space [0, 10]2. Moreover, the resulting map is

nicely ordered which means that the learned mapping between

attractor dynamics and schemata is topology preserving, i.e.

neighboring schemata represent similar attractor dynamics.

When activating multiple schemata simultaneously, attractor

dynamics different from those obtained by activating single

schemata can be produced. This fact is also illustrated in

Fig. 5. There, we exemplarily show the sensory pattern se-

quences (gray insets) as well as the corresponding goals (red

circles) for two pairs of simultaneously activated schemata, re-

spectively. These examples illustrate that the learned schemata

form a basis set of attractor dynamics. By differently combin-

ing schemata other attractor dynamics, which might be even

more complex, can be produced. The learned schemata, thus,

nicely resemble the motor primitives found in vertebrates (see

Section III-C).

Next, we demonstrate the performance of the Schemata

Recognizer. The recognizer should activate the schemata

which best describe an observed sensory pattern sequence.

Therefore, we produced an example sensor trajectory which

is shown in the top panel of Fig. 6. Thereby, the vertical bars

indicate instances in time where we switched the attractor

dynamic. This sensory pattern sequence was fed into the

Schemata Recognizer. Fig. 6 shows the resulting locations of
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x1 x2 x̂1 x̂2 s
x

1 s
y

1
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x

2 s
y

2

Fig. 6. The recognition of schemata is illustrated. The top panel shows
an example trajectory of sensor patterns x where vertical bars indicate time
instances when the attractor dynamic has been switched. The bottom panel
shows the peak locations s1 and s2 in the schemata map as produced by the
recognition module. Furthermore, the insets at the bottom show the schemata
map activity corresponding to the shown peak locations for three instances in
time. Finally, by using the recognized schemata as input the Forward Model

predicted a sequence of sensor patterns x̂. This predicted sequence is shown in
the mid panel. As can be seen, the observed and predicted sensor trajectories
are very similar which demonstrates that the schemata were correctly identified
by the Schemata Recognizer.

the peaks in the schemata map (bottom panel) as well as the

corresponding schemata map activity for three instances in

time (insets at the bottom). Finally, the peak locations were

used as input to the Forward Model which in turn predicted

the sensory pattern sequence shown in the mid panel of Fig. 6.

Since the predicted sensor trajectory nicely resembles the

observations, the Schemata Recognizer correctly identified the

applied attractor dynamic. More precisely, the peaks in the

schemata map are adjusted during the initial time steps after

the attractor dynamic has been switched. This is indicated by

the observed discontinuities in peak locations (bottom panel)

and corresponds to an initial guess of which schemata have

been applied. Later on, when more patterns of the dynamic

have been observed, the initial guess is just slightly adjusted

insofar as peak locations just slightly change.

B. Experiment 2

In a second experiment we increased the complexity of

the task insofar as an agent capable of performing gaze and

hand movements (in two dimensions) has been simulated.

Both types of movements were controlled according to (12).

Consequently, the agent observed the hand and gaze positions

via its sensory variables x = (xgaze
1 , xgaze

2 , xhand
1 , xhand

2 )T as

well as the corresponding motor commands. Similar to the first

experiment we trained the system components during an initial

motor babbling phase and performed a post-training analysis

in order to evaluate the acquired schemata.
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Fig. 7. The activation of a specific schema resulted in gaze and hand
movement dynamics depicted in (a) and (c), respectively. The correlation
matrices in (b) and (d) show that the schema participates in both, the execution
of gaze movements directed towards the center as well as the execution of
hand movements towards the lower left corner.

As before the single schemata were activated in different

initial situations x(0) and fed to the Forward Model which

predicted sensory pattern sequences (x(1), x(2), . . .). This

analysis allowed us to assess the attractor dynamics which

are represented by the different schemata. However, this type

of analysis is not valid for cases in which a behavior is

distributedly represented, i.e. represented by the simultaneous

activation of multiple schemata. For this reason we addition-

ally produced goal-directed sensory pattern sequences and

recorded the schemata activities as produced by feeding the

observations into the Schemata Recognizer. After that, we

calculated the correlation between the activity of the different

schemata and the target locations of either gaze or hand

movements. By doing so, we were able to assess which

schemata participate in the execution of which behavior.

Fig. 7 summarizes the results obtained for one particular

schema. As shown in (a), the activation of the schema produces

goal-directed gaze movements similar to those obtained in the

first experiment. Furthermore, the correlation matrix shown

in (b) nicely matches the dynamic of (a), insofar as the

target location with maximum correlation coincides with the

equilibrium point of the dynamic. However, this schema not

only participates in the execution of a particular gaze behavior,

but also in the execution of hand movements directed toward

the lower left corner. This is indicated by the attractor dynamic

and correlation matrix shown in (c) and (d), respectively.

From these results we can derive two hypotheses: Firstly,

schemata seem to represent a continuum between gaze and

hand movement dynamics rather than being related to either a

gaze or a hand movement. And secondly, the results suggest a

distributed representation of behaviors since only the schemata

map activity as a whole may decide whether a gaze or a hand

movement will be executed.

In order to prove the former hypothesis we calculated the
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Fig. 8. The maximum correlation of each schema with gaze and hand
movements is plotted in (a). Thereby, the color coding indicates that blue-
colored schemata are more related to the execution of gaze movements
whereas red-colored schemata are more related to the execution of hand
movements. In (b) we projected the color code onto the schemata map.

maximum correlations of schemata with the target locations

of both types of movements and plotted them in Fig. 8 (a).

We further applied a color coding which indicates that blue-

colored schemata are more related to gaze movements than

hand movements whereas the contrary holds for red-colored

schemata. The plot confirms our hypothesis insofar as a

clear distinction between the two movement classes cannot

be observed. We rather found a multitude of schemata (white-

colored) which participate in both, gazing and reaching be-

haviors. In Fig. 8 (b) we additionally applied the color coding

on the schemata map. As can be seen, schemata located in the

upper right of the map mainly participate in the execution

of hand movements whereas gaze movements are mainly

represented by schemata located in the lower left of the map.

We could confirm our second hypothesis regarding the

distributed representation of behaviors via visual inspection.

Here, we want to illustrate this fact on the example of a

gaze movement to the upper right corner. Therefore, Fig. 9

shows the correlation matrices of the three schemata whose

simultaneous activation resulted in such a movement. As

can be seen, a distributed representation has been learned

insofar as a movement to the upper right is represented via

a combination of movements to the top and a movement to

the right. This finding provides even stronger evidence for our

proposal that the architecture is able to acquire a combinatorial

code composed of behavior primitives which can be flexibly

combined to yield other behaviors.

VI. DISCUSSION & FUTURE WORK

In this paper we presented our efforts towards an implemen-

tation of a schemata-based architecture. Therefore, we first in-

troduced the concept of a schema and discussed how schemata,

if embedded into an adequate architecture, can be used for

goal-directed behavior control, planning, as well as action

understanding. As a first step we implemented the proposed

architecture for non-hierarchically organized schemata where

we applied two well-founded biological principles: population

coding for the representation of schemata in a neural map

as well as basis functions as intermediate representations for

sensorimotor transformations. We presented simulation results
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Fig. 9. The correlation matrices of three schemata, whose simultaneous
activation produced a gaze movement to the upper right corner, are shown.
This plot indicates that a distributed representation of behaviors has been
learned. More precisely, the gaze movement to the upper right is represented
by a combination of movements to the top and a movement to the right.

which showed that the framework autonomously develops

schemata during an initial motor babbling phase. Addition-

ally, the learning resulted in a topologically ordered map of

schemata insofar as neighboring units represent similar generic

behaviors. We further highlighted the fact that the learned

schemata form a set of behavior primitives. The architecture

consequently applies a combinatorial code in which behaviors

are represented by a combination of synergies. The schemata

therefore feature properties similar to the motor primitives

reported for vertebrates.

Despite the fact that existing work on the learning and

segmentation of sensorimotor sequences does not incorporate

the concept of a schema, the differences of our framework

compared to these approaches are manifold. Firstly, compared

to MOSAIC we do not use multiple internal models. Rather

our framework strives for a distributed representation of the

different dynamics and therefore follows the spirit of RNNPB.

We think that a distributed representation of dynamics will

ultimately be more advantageous than the memorization of

them in local modules. This may particularly be the case with

respect to generalization capabilities. However, in contrast

to RNNPB our framework uses schemata (behaviors) instead

of PB vectors in order to switch between the different dy-

namics. Next, our architecture incorporates a module for the

recognition of schemata which therefore replaces the iterative

inverse search procedure of RNNBP. Most importantly, our

model allows multiple schemata to be simultaneously active.

These schemata cooperatively predict the consequences of

their application as well as cooperatively contribute to the

overall control of the system. The architecture consequently

allows us to apply a distributed coding of behaviors which

results in a compact yet flexible representation. The implicit

redundancy within the representation may further contribute

to an increased robustness of the system.

Our future work will include the testing of our framework in

more complex scenarios. Furthermore, we will extend our cur-

rent implementation of the architecture such that hierarchies

of schemata can be learned and used. The incorporation of

such hierarchical structures is fundamental for the organization

of behavior in order to let the approach scale up to more

complex scenarios. Different approaches for the extension of

behaviors based on a basic repertoire of control routines have

been proposed [10], [11], [12], [13]. Most of these methods

rely on the assumption that single behaviors are encapsulated
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in local modules. They therefore may not be able to cope with

a distributed representation. Finally, we strive for an embodied

implementation on a robot where we would like to exploit the

use of schemata for goal-directed behavior control and situated

language understanding.

APPENDIX

For a hyper basis function network according to (1)-(2)

we define the error functional E to be E = 1
2

∑M

j=1 e2
j

where e = f(z) − f̂(z) denotes the prediction error. Then the

important derivatives for learning via error backpropagation

are:

∂E

∂b
= e (13)

∂E

∂αi

= −eG(‖z − ξi‖
2
Wi

) (14)

∂E

∂ξi

= 2 (eT αi) G′(‖z − ξi‖
2
Wi

) WT
i Wi(z − ξi) (15)

∂E

∂Wi

= −2 (eT αi) G′(‖z − ξi‖
2
Wi

) Wi(z − ξi)(z − ξi)
T(16)

∂E

∂z
= −2

N∑

i=1

(eT αi) G′(‖z − ξi‖
2
Wi

) Wi(z − ξi) (17)

Let δsi,t = ∂E/∂si(t) be the error backpropagated to the

peak location si(t) at time t which corresponds to the peak

response at unit i of the schemata map. Then the important

derivatives for the population readout mechanism (4)-(9) are:

∂E

∂aK
j (t)

=
ni,j · (pj − si(t))

T

∑
k ni,k · aK

k (t)
δsi,t (18)

∂aκ
i (t)

∂uκ
j (t)

=






2uκ
j (t)−uκ

j (t)aκ
i (t)·( 4

N
+2winh

i,j )

ηκ(t)+µ·
∑

k winh
i,k

·uκ
k
(t)2

, i = j

−uκ
j (t)aκ

i (t)·( 4

N
+2winh

i,j )

ηκ(t)+µ·
∑

k winh
i,k

·uκ
k
(t)2

, i 6= j
(19)

∂uκ
i (t)

∂aκ−1
j (t)

= wexc
i,j (20)

∂a0
i (t)

∂Ii(t)
= a0

i (t) · (1 − a0
i (t)) (21)
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