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Learning from a tutor:
embodied speech acquisition and imitation learning

Miguel Vaz, Holger Brandl, Frank Joublin, and Christian Goerick

Abstract—This work presents a new developmentally inspired
data-driven framework to bootstrap speech perception and imi-
tation abilities in interaction with a tutor. The proposed system
architecture extends our work presented in [1], that implements
a cascade of interconnected layers to acquire the structure of
speech in terms of phones, syllables and words. Here, we show
how to couple such a perceptual model with a speech imitation
system that produces speech sounds with a child’s voice.

The speech imitation system has at its core a correspondence
model that links the tutor’s and the system’s voice. We present
an interaction scheme for learning this correspondence model,
where a human tutor provides the system with imitative feedback.
Through this scheme, the system links its own vocal primitives
with the tutor’s voice. The correspondence model can then be
used to map a tutor’s utterance into a continuous activity in the
system’s motor space. These motor activities can then be used to
imitate words.

Finally, we embed this architecture into an embodied au-
tonomous learning and interaction system to provide a grounding
for the speech models to be acquired and a perceptual input to
trigger speech production.

Index Terms—speech imitation, speech acquisition, robotics,
statistical language modeling

I. INTRODUCTION

Social interaction between human and robot requires the
robot to understand and to produce language. But these facul-
ties are by no means trivial and need to develop in interaction
with a caregiver. One important first element of speech and
language understanding is the ability to parse spoken utter-
ances into words. Another is mapping its perception of the
tutor’s speech to its own articulatory space to realize word
imitation abilities.

Whereas linguistics and psychology have provided some
insights about the way humans acquire the structure of
language by a multitude of highly coupled bootstrapping
processes, almost all speech processing systems neglected to
provide a computational explanation for this complex learning
process. Notable contributions to the problem of utterance
parsing are [2], [3] and [4], that provided first insights into
computational requirements and processes relevant for speech
acquisition.
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There is also a handful of models offering insights to the
infant’s acquisition of speech production skills and babbling
processes, [5] [6]. Most of them, however, do not account
for how infants address the correspondence problem: how
to map acoustic targets proposed by the caregiver into some
that are achievable by its different vocal tract. Recent work,
[7] [8], has started transferring the burden of judging the
phonological equivalence between caregiver’s and infant’s
utterances from the infant to the caregiver, suggesting that
the imitative response of the caregiver plays an important
role in guiding infants to phonetically clear and meaningful
utterances. This feedback is interpreted either as a reward [7]
or as an unconscious correction signal [8].

Previously, we have presented a developmentally inspired
purely data-driven model [1] for early infant word learning
that attempts to acquire the structure of speech within a lay-
ered architecture comprising phone, phonotactics and syllable
learning. Here, we extend this model with a scheme of how our
robot learns to imitate its tutor using its own voice (figure 2)
in a similar way to what we have already reported in [9].
The new model implements a tight coupling of perception and
production, namely a correspondence model between phones
acquired by the system and motor primitives innate to our
robot. This coupling is learned through an exploratory process,
in which the system learns the consequences of its vocal
actions, in terms of the tutor’s voice.

Fig. 1. Human tutor interacting with Honda’s ASIMO. This interaction would
be greatly improved by giving the robot the possibility of providing acoustic
feedback about the scene or itself, using the vocabulary learned in interaction
with the tutor.

Using statistical inference, our system converts a tutor
utterance into a probabilistic sequence over the system’s vocal
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Fig. 2. The proposed architecture for coupled speech acquisition and
production. All three acquisition layers have a very similar structure consisting
of a pool of unit-models, a statistical grammar (LM), and a recognizer that
detects learned units in the incoming feature stream. The coupling with the
imitation layer takes place at the phone-level. A correspondence mapping
transforms phone sequences into vocal primitives’ probabilities, which are
interpreted by the synergistic encoder as a continuous motor activation and
sent to the speech synthesizer.

repertoire, that is subsequently transformed into a synergistic
motor coding, used to imitate the tutor utterance. To evaluate
our integrated speech acquisition and production model, we
present an interaction experiment between a human tutor and
our robot.

This work is outlined as follows. We introduce all parts of
our system in II, comprising the speech acquisition module,
the correspondence model, the synergistic encoder, and the
synthesis module. In section III we describe the details of
the used interaction schemes between human and robot. We
present the results of our experiments in section IV, and
conclude with a short discussion in V.

II. SYSTEM ARCHITECTURE

Our system architecture is driven by our previous research
towards embodied autonomous learning and interaction as
described in [10]. There we presented a system to associate
object properties and actions to auditory labels in interaction
with our humanoid robot ASIMO. Here, we aim to equip it
with the ability to describe a set of perceived object properties
(like size, position, motion state) to associated auditory labels
previously learned in interaction, that can be subsequently
imitated with a child’s voice. We focus on developing not only
a technical framework, but rather a (simplified) model of early
infant word learning and production. Therefore, we investigate
how to couple our developmentally inspired framework for
speech acquisition proposed in [1] with a speech mimicking
system started in [9].

A. Three-layered acquisition architecture

Most computational models for word acquisition suffer from
two major weaknesses. First, they tackle the problem of speech
acquisition in the symbolic domain only. However, it is not
clear how and whether these approaches can be generalized

to the acoustic domain. Second, most models rely on some
kind of innate representation, which is mostly at the level of
syllables. But since syllables strongly depend on the language
to be learned, it is not clear how these approaches can be
extended to become valid models for speech acquisition as
observed in infants.

In order to build a system that is able to learn words based
on developmental speech acquisition principles like phono-
tactically constrained syllable parsing, subtraction-learning,
metric segmentation or transitional probabilistic modeling (cf.
[11], [4]), we proposed a three-layered framework for speech
acquisition in [1]. The idea of this work was to bootstrap a
word representation incrementally based on the statistics of
raw acoustic input speech only. It is implemented as a cascade
of three HMM-based speech unit spotting instances that rely
on incomplete speech unit representations on phone, syllable
and word level. Each layer comprises a pool of speech unit
models, a detector and a statistical speech unit grammar that
is estimated from the layer’s recognition results.

Its first layer bootstraps a phone-representation and
provides phone recognition and segmentation results for
subsequent processing steps. Inspired by [2], Mel-frequency
cepstrum coefficients of a few minutes of input speech
are accumulated, providing the system with a sufficiently
large training sample. Single state HMMs with mixtures
of Gaussians, including 8 component densities as output
probability distribution functions (OPDF), are estimated
using k-means clustering. The actual phone models are
created from most frequent state-sequences, as obtained by a
Monte-Carlo-sampling between these single states embedded
into an ergodic HMM. These state sequences are concatenated
to 3-state phone-models with Bakis-topology and become
further refined using Baum-Welch training.

To allow the learning of syllables, phone recognition re-
sults are condensed into a phonotactic model, which aims
to describe the probabilistic phone structure of syllables in
the tutor’s language. This completely priors syllable learning,
because it is the only sufficiently reliable linguistic cue for
parsing utterances into syllables. Especially length of utter-
ances is not a reliable cue to decide what a syllable is. It is
technically implemented as a pair of Katz-smoothed trigram
models on phone symbol level to encode initial and final parts
of the syllabic structure. Both are estimated from phone results
from the initial and final parts of the input utterances, because
these are the only syllable boundaries that can be reliably
detected without assuming an innate syllable parser.

This phonotactic model provides a parsing into syllable
segments that found the basis for the second layer as
shown in figure 2. This layer implements an incremental
clustering scheme on syllable segment level, that bootstraps
a syllable representation. This involves a novelty detection
step and a subsequent model update or the creation of a
new syllable model in case that a segment does not match
sufficiently to any existing syllable model. Initially the
syllable representation does not contain any models.

Finally, our framework acquires a word lexicon using a
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bootstrapping scheme that combines the principle of subtrac-
tion [11], the finding that child directed speech is dominated
by short utterances, and statistical learning [4]. Because we
assume speech variability to be mainly bound to the level
of syllables, words models abstract from the acoustic domain
and are represented as syllable symbols sequences: Instead
of acoustic used as input for phone and syllable layer, the
sequence of spotted syllables defines the sole input to lexical
acquisition and word recognition (c.f. [1] for details).

B. Speech imitation layer

Finding own motor configurations that produce phonetical
equivalents of tutor’s words is crucial to speech imitation
and acquisition. This is called the correspondence problem
and is by no means a trivial task to solve, due to significant
differences between the voices of the caregiver and the infant.
Different lengths and proportions of their vocal tracts cause
these differences, which include higher pitch and formant
frequencies. Yet children are able to progressively solve this
problem, already showing regional-dependent phonetic prefer-
ences in their early babbling process and the ability to produce
simple words without any trace of foreign accent around the
age of 1 [12].

Some speech acquisition models do not account for
it [13] [5], while others [12] argue that this ability is innate.
However, a set of acoustic features where phonetically similar
speech sounds share the same representations is yet to be
found. This raises the question as to whether children use
other information to address the correspondence problem.
Recent work indicates that extra knowledge is unconsciously
offered by the tutor, while interacting and imitating with the
child: [8] shows how the phonological bias of the tutor can
guide the infant to clearer vowel sounds during a mutual
imitation game, and [7] suggests a reinforcement learning
interpretation of the acquisition of vocal skills, under which
parental feedback constitutes a reward signal, and where
increasingly demanding parental standards constitutes the
necessary force for the infant to improve its vocal speech
skills.

Recently [9], we have shown how a correspondence can
be found between vowel sounds from a system with a child’s
voice and the equivalent vowels from its tutor, making no
assumptions on the language of interaction or the phonetical
properties of the tutor or system’s voice, and relying solely
on an imitative response of the tutor. We hereby adapt this
previous work to integrate with the aforementioned speech
acquisition system. As shown in figure 2, the new imitation
subsystem consists of three main modules: a probabilistic
mapping between the phone models acquired by the system
and its own vocal repertoire, a synergistic encoder that converts
a probabilistic distribution over the set of motor primitives into
a motor activation, and a synthesis module that synthesizes
motor activation into speech.

We will make use of the following notation throughout this
work: λpi represents phone model i, [λp] a sequence of phone
models, P the set of all possible phone sequences, Xtutor

an acoustic observation from the tutor, mj stands for motor
primitive j. The terms vocal and motor primitive will be used
interchangeably.

C. Probabilistic phone correspondence

The probabilistic phone mapping C here presented is learned
using a similar interpretation of the role of the tutor feedback
as the one described in [9]. The difference lies in the tutor
feedback being now a sequence of recognized phone models,
instead of acoustic features. This represents a significant
improvement in several aspects. One of them is robustness,
because phone models are trained with better perceptual
features and their classification is performed using a state-of-
the-art method. The model is also more plausible, because it
provides a tight coupling between perception and production.
Furthermore, interaction with the system is also more natural,
because both perceptual and production skills can be trained in
a unified scenario, without hard boundaries between training
and testing phases.

The correspondence mapping C represents, for each phone
model λpi , a probability distribution over the space of motor
primitives.

Cij = P (mj |λpi ) (1)

In section III-B we describe how this mapping is learned.

D. Synergistic encoder

Given an utterance to be imitated, the synergistic encoder
computes a vocal output from a sequence of recognized phone
model hypotheses, provided by the phone recognizer (c.f.
figure 2). Each segment hypothesis λpi has an associated
time span ([t0, t1]) and a probability distribution over the
vocal primitives, given by the correspondence mapping C.
The synergistic encoder uses these probabilities to compute an
activation curve for each vocal primitive, which takes the form
of a gaussian with mean in the middle of the activation interval,
standard deviation proportional to its width, and magnitude
given by the correspondence mapping Cij . To compute the
overall activation of each motor primitive, Wmj

, we sum the
activation contours from all segment hypotheses:

Wmj
(t) =

∑
λp

i

Cij G
(
t ; µ =

t1 + t0
2

, σ = k (t1− t0)
)

(2)

The reason behind the choice of a gaussian form for the
individual activation contours is that it enables the simulation
of some coarticulation effects, namely smooth transitions
between consecutive segments.

E. Synthesis module

For the synthesis of speech, we use a vocoder-like scheme
developed for equipping the system with the possibility of
synthesizing high-pitched voices, like children’s. In spite of
recent developments, articulatory models do not yet offer this
possibility. Also, traditional speech coding techniques show
limitations with high-pitched voices, although recent work has
shown child speech with good quality [14].
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This algorithm, described in more detail in [9], makes use
of a gammatone filter bank at its core, which allows for an
optimal tradeoff between spectral and temporal resolution. As
a consequence, high and low pitched voices can be synthesized
with similar quality and without the need of any special
speaker-dependent model.

For this synthesizer, motor primitives have the form of
spectral vectors, annotated with their formant frequencies for
use of morphing algorithm. The set of motor primitives and
their activations is transformed into a unique spectral output
with a speech morphing algorithm, and sent to the synthesizer.

pc

qc

p1

q1 q2

p2

1

S(α, c)
α

0 p3 p4p0

q0 q3 q4

c3c2c
c1

Fig. 3. The morphing algorithm computes the spectral value S(α, c) for
a channel c at an intermediary position α given an initial and final spectral
vectors p and q, and a correspondence matrix associating (pi, qi).

1) Spectral morphing algorithm: For a target utterance,
there will probably be more than one vocal primitive mj

with a positive activation at a given time instant, Wmj
(t),

as defined by equation 2 It is therefore necessary to transform
the activate vocal primitives into a single spectral output to be
fed to the synthesis algorithm. This is accomplished by means
of a morphing algorithm, M. Morphing two spectral vectors,
mj and mk, results in a third spectral vector representing an
intermediate state, where the value of each spectral channel is
given by

M(mj ,mk, αj , c) = (1− αj)mj(pc) + αmk(qc)

αj =
Wmj

Wmj +Wmk

(3)

Here, mj(c) refers to channel c of mj , and pc and qc are
calculated by maintaining the proportion of the distance from
channel c to the immediately inferior qc, respectively part of
the initial and final spectral vectors. recursively morphing each
of the motor primitives, as shown in figure II-E.

III. INTERACTION

In [10] we described an embodied system running on
Honda’s ASIMO robot where it learns to associate different
acoustic labels to various object properties like color, planarity
or position. Our motivation since then has been to extend it
with the ability to describe a presented object. For example,
when presented with a red apple on the right side, our system
should be able to provide an acoustic scene description like
”right red apple”.

For this, the system needs to be able to project the acoustic
targets of the learned labels into its own articulatory space.
In our system, this correspondence model C is encoded on
the a phonemic level, and is learned through interaction with
the tutor. We integrated this learning in the overall interaction

scheme, by making our system to initiate interaction after a
given period of inactivity: The system produces one of its basic
vocalic sounds, and uses the tutor’s imitative response to train
the probabilistic correspondence mapping.

A. Tutor imitates system
In the training phase the system learns a correspondence

between its motor primitives and imitative responses from the
tutor. It produces vowel utterances with constant timbre by
synthesizing spectral vectors from its repertoire. The tutor then
imitates the system, which determines the best matching phone
sequence

[λp1, ..., λ
p
n] = arg max

[λp]∈P
P ([λp]|Xtutor) (4)

The experience mapping M representing the probability of
perceiving phone model λpi given a vocal primitive mj

Mij = P (λpi |mj , Dj) (5)

is then updated in proportion to the segment length of each
detected phone model λpi . This procedure is schematized in
figure 4.

λp
5λp

4λp
2 λp

3λp
1

m2

m3

m1

vocal
primitives

tutor
imitation

update
probabilistic
mapping

Fig. 4. Example for correspondence model learning. A randomly picked
vocal primitive m2 is synthesized with constant timbre. The tutor imitates
the vowel sound and the response is used to update the experience mapping
in proportion to amount of activation of each phone.

B. System imitates the tutor
In order to imitate, the system maps phone model likeli-

hoods to activations of vocal actions, using the probabilistic
correspondence mapping described in equation 2.

The correspondence mapping is inferred from the experi-
ence mapping, see equation 5.

Cij = P (mj |λpi ) =
P (λpi |mj , Dj)P (λpi )

P (mj)
(6)

Because we assume a flat prior over all motor primitives, and
values of the mapping are only computed considering a single
phone model at a time, the correspondence mapping can be
represented as

Cij = Mij (7)

The likelihood of each motor primitive is passed onto the
synergistic encoder, which computes a time sequence of mo-
tor primitive activations as described in section II-D. This
sequence is then recursively morphed into a single vocal
output for each time instant, according to the motor primitives’
relative strength of activation, and passed onto the synthesis
algorithm that generates the imitation signal.
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Fig. 5. A tutor utterance to be imitated is parsed into a sequence phone
segments. Using the correspondence mapping, the probability of each motor
primitive for the phone models most active in the different segments is
computed and used by the synergistic encoder to generate the motor activation.

Fig. 6. An instance of a correspondence model learned in interaction with
a tutor. The phone OPFs conditioned with the different motor primitives are
shown in the rows. The vowel phones (represented using IPA notation) are
marked.

IV. EXPERIMENTAL RESULTS

Given a learned phone representation, we evaluated the
correspondence model bootstrapping as described in section
III-A. We grounded the system’s voice in a set of 8 spectral
vectors, selected from cluster centers computed with the K-
Means algorithm over the spectrograms of utterances spoken
by a 10 year old male child, from the TIDIGITS corpus [15].
Each spectral vector, 100 channels with center frequencies
from 40Hz to 8KHz, represents one of the following vowels
(IPA alphabet): O, e, @, o, a, E, i, U.

Each of the vocal primitives was synthesized and played
15 times to a male adult speaker, who imitated them (cf.
sec. II-C). We synthesized each robot’s utterance with a
random duration (between 0.25 to 0.3 seconds), and different
pitch contours. The resulting correspondence model can be
seen in figure 6.

The following aspects can be observed from the data. Firstly
the imitative response of the tutor only covers a subset of the
set of phone models. This was expected, because the system

Fig. 7. Mean word classification performance with respect to the number of
training samples

is limited to the production of vowel sounds, and the phone
models are trained using unconstrained speech containing both
vowels and consonants.

Secondly, phone model with index 1 has a very strong
response for all tutor responses; this is an artifact due to our
voice activity detection that includes short noise parts in the
beginning and at the end of the detected speech segments.

Thirdly, the models for the different vocal primitives
vary considerably: primitives for vowels O, e, U have a very
unimodal response, while others like e have a more disperse
response. Several factors might be contributing to this, the
most likely being either a non-uniform imitative response
of the tutor to the vocal primitive or the inexistence of any
phone model fully representing the imitative response. One
reason supporting the first might be that, although the vocal
primitives were selected with care to correspond to one
vowel, synthesizing a sound with constant timbre presents
limitations to its naturalness, not necessarily affecting all
vowel sounds equally. One reason supporting the second, is
that the phone models are trained using different data, even
if originating from the same speaker. We tried to compensate
this effect by balancing the words in the training corpus
according to the vowels contained, but issues with over-
or under-representation are seldom avoided in unsupervised
learning systems. Another possibility would be to (at least
partially) overlap the phone model learning phase with the
learning of the correspondence model, so that the phone
models can be estimated using similar data. The disadvantage
would be that the interaction phase would take longer.

An example of the different stages of processing can be
seen in figure 8, where the word mama is imitated. As already
explained, only the vowel segments are being imitated. Thus,
the words the system produces can be distinguished if the
vowel constituent’s sequence is different.

Additionally, we also evaluated the learning of new words,
performed as follows. Given an object, the tutor focuses the
system attention to an object property that should be labeled
(e.g. size or relative position to the robot) (see [10] for details).
The tutor then provides a few (2-5) isolated samples for
each word. The temporal grouping of these speech segments
is given to the system as an additional cue, in order to
ease learning. The system was presented with a total of 20
different words, predominantly mono- or bisyllabic, like red,
green, bottle, duck, among others. As expected, the more the
speech segments provided in a learning session, the better the
classification results (as shown in figure 7)
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Fig. 8. An example of an utterance imitation performed by our system.
For an input utterance (enhanced spectrogram in the upper figure), the most
likely phone model sequence is determined, dividing the utterance in different
segments (delimited by the green vertical lines). The posterior probability of
the motor primitives for each phone hypothesis in the sequence is computed,
and used as a strength of activation (middle figure). The output spectrum,
used for the synthesis, is shown in the bottom figure.

V. CONCLUSION

We presented and tested an integrated approach for infant-
inspired speech acquisition and production by coupling an
embodied data-driven perception system with an imitation
system. By assuming a cooperative tutor that imitates
monophonic utterances of the system, we’ve shown how to
bootstrap a probabilistic correspondence model of the tutor’s
imitative response to each of the system’s motor primitives.
We’ve also presented how such a model equips our humanoid
robot with the ability to describe its environment in terms of
labels for various object properties that have been associated
with arbitrary words in interaction with a tutor.

Our approach extends previous attempts [9] for sensory-
motor coupling, because it involves more and more plausible
training data to estimate the perceptual part of the system:
the phone models are estimated not only from the examples
collected during the imitation learning, but also from the
whole history of interaction. This way, the models are
learned not only from isolated phone-instances from the
tutor-imitation, but also from a continuous speech context.
Although the vocal repertoire of the system contains only
vowels, which obviously impairs the complete imitation of
words containing consonantal sounds, we consider this to
be an important step towards embodied online learning of
speech and language abilities.

Our next steps are three-fold. Firstly, we plan to investigate
an even tighter coupling of production and perception. This
includes a more elaborate utterance generation, in the case
of several words, and the possibility of learning production
models of perceptual syllable models in interaction with a
caregiver. For bootstrapping this process, the phone-activation
signal could be used, and then changed through interaction.

Secondly, we would like to add consonant sounds to the

system’s repertoire; namely steady-state consonants like frica-
tives or nasals could be learned using a similar interaction
scheme as the one hereby used for vowel sounds.

Thirdly, it would also be interesting to ease the strict as-
sumption of the cooperative tutor, even though the frequentist
nature of the probabilistic correspondence model gives it some
robustness. Namely, that the system can discriminate between
imitative and non-imitative tutor responses.
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