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Abstract— In this paper we report the results of our research
on learning and developing cognitive systems. The results are
integrated into ALIS 3, our Autonomous Learning and Inter-
acting System version 3 realized the humanoid robot ASIMO.
The results presented address crucial issues in autonomously
acquiring mental concepts in artifacts. The major contributions
are the following: We researched distributed learning in various
modalities in which the local learning decisions mutually support
each other. Associations between the different modalities (speech,
vision, behavior) are learnt online, thus addressing the issue of
grounding semantics. The data from the different modalities
is uniformly represented in a hybrid data representation for
global decisions and local novelty detection. On the behavior
generation side proximity sensor driven reflexive grasping and
releasing have been integrated with a planning approach based
on whole body motion control. The feasibility of the chosen
approach is demonstrated in interactive experiments with the
integrated system. The system interactively learns visually defined
classes like ”left”, ”right”, ”up”, ”down”, ”large”, ”small”, learns
corresponding auditory labels and creates associations linking the
auditory labels to the visually defined classes or basic behaviors
for building internal concepts.

I. INTRODUCTION

The long term target of this research is a learning and
developing cognitive system. Since this is a demanding target
it can not be reached in one step but has to be approached as a
long term research endeavor. This target is shared with several
other researchers in the community of autonomous mental
development as well as humanoid robotics, that has already
lead to some interesting research activities and results.

Among others we would like to mention the research of
the iCub project exemplarily presented in [1]. It addresses a
complete humanoid infant including learning and mental de-
velopment mechanisms. After setting up the robotics platform
first experiments are being carried out. Some recent conceptu-
ally related work is presented in [2], where relations between
affordances given as tuples of actions, object properties, effects
and given words are learned offline. The approach presented in
[3] also aims at a comprehensive system dealing with bindings
between different modalities based on a working memory
concept.

Roy [4] introduces the concept of schemata as behavior
oriented scene description, bridging the gap between vision,
speech, and behavior representations. Their system is able
to discriminate between descriptive- and directive speech.

Descriptive speech is understood and translated to memory up-
dates as induced by perception. The interpretation of directive
speech utterances leads to changes in the robots goal state, thus
triggering the planning abilities to achieve the tutors wishing.
The focus of this work is clearly on language understanding
and not on learning. The lexicon and grammar of the speech
recognition system are pre-coded, as well as the effects of e. g.
the word “left” on the scene memory.
Iwahashi et al. [5] present a system which does not only
learn the speech labels, but also the grammar. In a carefully
controlled scenario, their system is able to learn words for
objects, movements and concepts (like toys or tools). Due to
the use of common belief propagation, the system requires a
closed world assumption in which the a priori probabilities
of words and objects are known. Furthermore the system can
only learn from synchronously perceived visual and auditory
stimuli.

We have chosen an iterative approach on the systems level
in order to advance towards our target. This has already lead
to a series of systems exemplifying the state of our research
wrt. the current elements and the architecture hypothesis of
cognitive systems [6], [7]. Our ongoing work is driven by a
long term strategy and characterized by increasing functional
performance under less constraints for the interaction and the
internal learning processes. The systems are integrated on the
humanoid robot ASIMO. For each research and integrated
system state we aim at a complete system instance with
sensory perceptions, an action repertoire, a global behavior
organizing architecture and internal bootstrapping and learning
mechanisms.

The system we present and evaluate within this paper is
called ALIS 3. ALIS 3 is a rather comprehensive system,
but here we will focus on the following scientific question:
How to learn new perceptual classes like object properties
and utterances and associate them as internal concepts during
interactions with a robot? For answering this question we had
to realize several crucial elements: The first is the local learn-
ing of sensory representations with possible top-down bias.
As a result the system can learn new classes independently
from each other without the strict need for co-occurrence. This
does not imply that learning has to proceed sequentially: New
classes as well as their association can be learned in parallel
within the same interaction. That means the system can learn



a new object property like large object size, a corresponding
utterance in any language and bind both together to the
concept representing ”large”. A second major contribution is
a hybrid data representation for supporting both local novelty
detection and global classification and generalization. These
representations facilitate the abstraction from locally defined
examples into classes that can be globally evaluated without
loosing the knowledge about which kind of data have already
been experienced. This allows for bootstrapping concepts like
”left” and ”right” from a few examples in front of the robot
but e.g. classifying the total left half space in front of the robot
correctly as ”left” afterwards. An additional contribution is the
mutual support between the learnt classes via the associations
for improving the local decisions for learning and updating
models. Other contributions are the integration of reflexive
grasping for being able to condition an auditory label for
command execution. This is being realized by the association
mechanism as stated above. The system also features binaural
far field audition for natural speech interaction without a close
talk microphone that works during both ego and interactor
motion, but this has already been reported in [8].

ALIS 3 is the latest system within our series. It is based on
the architecture of ALIS 2 [7] and relies on following elements,
as can also be seen in the figures 1 and 2: There are temporally
stabilized basic visual, auditory, and tactile perceptions of the
world, as well as a self collision free online motion generation
and control system for the humanoid with an arbitration
between several reactive behaviors. Those sensing and acting
capabilities together provide favorable interactions between the
robot and its surrounding world and form the basis for the
learning and associations. The learning and the evaluation of
the acquired concepts is uniformly governed by an expectation
generation based behavior control mechanism. All learning is
online and happens during interaction with the robot. The
underlying capabilities and the architectural concepts have
been published in [7]–[10].

With the presented system human tutors can freely interact
without a close talk microphone. A tutor can teach interac-
tively visual classes of relative positions to the robot like
”left”, ”bottom”, ”near”, he can teach different object size like
”large” and ”small”, and some other classes for the motion
status of a proto-object or the height and orientation of planar
surfaces like tables. The tutor can freely teach corresponding
auditory classes, i.e. labels, and create associations linking the
auditory labels to visually defined classes or basic behaviors
for building internal concepts. The classes and labels can be
trained independently from each other and at different times.
The learned concepts can immediately be evaluated or used as
commands. All learning and interactions are performed online
during robot motions. To our knowledge this is the first time
such kind of performance has been achieved with a full size
biped humanoid.

The remainder of the paper is organized as follows: The next
sessions will focus on the global architecture and the major
elements. This is followed by a description of the learning
of new classes and associations as well as the evaluation of

Fig. 1. Abstract architecture graph of ALIS 3

the learnt knowledge within the interaction. The subseeding
section is concerned with the experiments performed in inter-
action showing the researched learning capabilities. The paper
ends with a short discussion and summary of the contribution.

II. ARCHITECTURE AND ELEMENTS

The global architecture of ALIS 3 is sketched in figure 1.
It can be subdivided into two main parts. The lower part is
indicated by the two arrows forming a circle. This part is
called the reactive layer. The remaining upper part is called
abstraction layer and comprises the feature classification, the
feature binding, and the expectation handling.

The reactive layer performs all basic sensory processing
and basic behavior generation. It keeps the robot balanced,
performs task level control, and establishes favorable interac-
tion situations for the system by approaching and attending to
selected Proto-objects. These Proto-objects are behaviorally
relevant entities, obtained from a continuous decomposition
of the world into basic sensory percepts without using any
information about the identity of the underlying object [10].
Feature vectors, denoted by f t

i , represent a feature for the
domain i at time t and serve as interface to the abstraction
layer. A domain i is a currently prescribed basic perception, the
ones considered in this work are: A combination of RASTA-
PLP and HIST features for speech recognition (i = 1) [8],
the visually determined 3D position (i = 2), the approximated
size (i = 3), the motion status (i = 4) and some planar surface
properties (i = 5) of a fixated proto-object as well as the
activations of the basic behaviors as described below (i = 6).
The system is equipped with several basic behaviors which
reactively close the loop from the basic sensory processing
back to the external world. The behaviors are arbitrated and
can internally be biased for execution without the necessity
of a corresponding external stimulus. The basic behaviors
are: approaching, fixating and pointing at a selected proto-
object, returning to the home position, grasping an object,
releasing a grasped object as well as nodding and shaking
the head. The behaviors have been described in detail in [7]
except for the newly integrated grasping and releasing. The
grasping behavior is based on the work presented in [11] and



is integrated in the following fashion. The hands of ASIMO
are equipped with proximity sensors on the inside of the
palm and on the outside. If the inside sensor is triggered
by an object close to the palm the fingers are reactively
closed. This represents a reflexive grasp like in little babies.
If the outside of the hand is approached the fingers are
opened. In order to start investigating physical manipulation
within a comprehensive architecture, we also include a more
powerful mode for grasping which is capable of planning and
executing whole body motions for approaching and picking up
previously defined objects. Nevertheless it must be activated
either by the tactile sensors or by the behavioral bias.

The current activation of the behaviors forms the feature
vector for i = 6. All feature vectors and the bias form
the interface between the reactive and the abstraction part.
The basic behavior generation as well as the generation of
the feature vectors is performed reactively and continuously
without the need of any cognitive control.

The abstraction layer derives and learns classes from the
raw feature vectors and forms internal concepts by learning
associations between the established classes. It generates and
evaluates expectations about the perceived world by means of
the associations. The match or mismatch of the expectations
on the perception as well as on the actions side determine the
external control flow wrt. actions and interactions. The novel
internals of this layer will be described in detail in the next
section.

The architecture has some important properties. The chosen
feature representation provides a uniform data representation
for all modalities (vision, speech, proprioception) and domains
within the modalities. This is a crucial prerequisite for learn-
ing associations between and building concepts comprising
arbitrary domains. The hierarchical subdivision into a reactive
and an abstraction layer facilitates the learning from the
viewpoint of complexity. The system is always responsive on
a fast time-scale without cognitive control or planning and
provides continuously the necessary features, representations
and controls.

III. LEARNING, ASSOCIATIONS AND EXPECTATIONS

The internals of the abstraction layer and the interfaces to
the reactive layer are depicted in figure 2. The abstraction
layer performs the local learning of classes x in the visual
and the speech domain based on novelty and a possible bias.
Behaviors are currently not learned but associated. This layer
also performs the learning of associations between class x
from domain i and class y from domain j for all domains
based on co-occurring observations. Which association is to
be learned has to be specified by a learning mask, which
currently has to be specified by the interactor. This eases
the solution of the research question which association to
learn in the case of several concurrently possible ones for
now. Based on the learned classes and associations the system
generates expectations and evaluates the match or mismatch
for controlling the behavior.

The processing within the different domains is homoge-
neous except for some deviations in the behavior domain.
The feature vectors are mapped to the classes yielding a
memory activation mt

i,x(Ti) of the class x of domain i based
on observations for the time span Ti. How the activations
are determined depends on the domain. For speech they are
derived from compounds of Hidden Markov Models, for vision
they are derived from Gaussian models over the feature space,
and for the behaviors they directly correspond to the current
activations of the basic behaviors.

The activations have in common that they are based on local
models. This is beneficial for representing observed data, but
may be limiting for creating hypotheses about novel data i.e.
for generalization. Therefore we distinguish between memory
of recent observations and hypothesized assignments hi,x of
features to classes. Those hypothesis activations are crucial for
building broad concepts generalizing well beyond experienced
observations. They are obtained by complete tessellation of the
feature space to all classes in one domain:

hi,x =

{
1 if x = argmax

y∈Di

(mt
i,y(Ti))

0 otherwise
. (1)

The effect is the following: imagine the system has learned
the association between the speech label ”near” and positions
60cm away from the robot and the speech label ”far” and
positions 120cm away from the robot. Without the hypotheses
only positions sufficiently close to the original positions would
be classified as ”near” or ”far”, but not positions closer or
further away from the originally learned ones. Based on the
tessellation the hypotheses perform this kind of generaliza-
tion. Diversifying and correcting wrong overgeneralizations is
always possible during interaction. The hypothesis activations
are used for evaluation purposes, the memory activations are
used for novelty detection during learning. Both activations
together are called hybrid data representation. The hypothesis
activation is actually more advanced than described. For one
domain several orthogonal groups can exist that can concur-
rently be activated. This means that an object can at the same
time be ”left” and ”far”. But further details are beyond the
scope of this paper. The associations between the different
classes are represented as 4-tuples (i x, j y).

A. Learning of Classes

We will now describe the learning of classes. It is inter-
twined with the concept of a Learning Session. The session is
indicated by the tutor. It serves two purposes: First, it provides
an attentional mask ai depicting the domains of interest in a
way that ai > 0 for attended domains and ai ≤ 0 otherwise.
Second, the session specifies a time-frame [t0, t1] in which
feature vectors are assumed to belong to one distinct class per
domain only. For example, one Learning Session can contain
position-vectors for the left position and speech-features for
the label “left”, but it may not contain a combination of
left and right position vectors. In our unsupervised learning
approach, an essential part consists in deciding whether a



Fig. 2. Schematics of the abstraction layer including some elements from the reactive layer for exemplifying the interfaces.

presented stimuli belongs to a known class and should be
used to update the underlying model, or whether it is unknown
and should therefore be encapsulated in the model of a new
class. We call this process Novelty Detection, it is based on
two principles derived from biology. The first suggests basing
the decision about new or known stimuli on the activation
of the already learnt classes. A high class activation reflects
sufficient coverage of the current stimuli by the existing classes
-̇- the residual is low, no new classes should be created. A low
activation is an indication for insufficient representation, the
residual is high and new classes are necessary. The Hypothesis
Activations are not applicable here, because the tessellation of
the feature-space abstracts from similarity to the underlying
models. Therefore, this decision is based on the Memory
Activations mt

i,x(Ti). For higher reliability, these activations
are averaged over the complete Learning Session, so Ti =
t0 − t1, where t0 is the time the learning-session started and
t1 is the time it stopped.
The second principle suggests that we do not base the Novelty
Detection on the activations in domain i only, but rather incor-
porate the activation of all associated classes by introducing
the top-down activation m̃t

i,x:

m̃t
i,x =

∑
(j,y)|(i x,j y)∈RA

wj ·mt
j,y(Tj) , (2)

where wj ∈ [0, 1] is a weighting to steer the influence of
domain j. The weights are a-priori estimations of the stability
of the features from the different domains. They can be derived
individually for the different domains.

If the collected feature-vectors belong to a known class
they should be well represented, indicated by a significant
top-down activation m̃t

i,x > ΘK . In contrast, features of an

unknown class will rarely be associated to an existing model
and therefore result in a top-down activation m̃t

i,x ≤ ΘK .
For this binary classification between new or known classes,
an evaluation of all classes in one domain is unnecessary. The
investigation of the class l with the highest top-down activation
is sufficient. The result of this Novelty Detection is a teaching
signal e that either depicts the class to be adapted or indicates
the creation of a new class:

e =

{
argmax

x∈Di

m̃t
i,x if max

x∈Di

(m̃t
i,x) > ΘK

Ni + 1 otherwise
.

The number of currently existing classes for domain is denoted
with Ni. The adaptation of existing classes depends on the
implementation of the class representation and is not covered
here. The described learning mechanisms are conceptually
homogeneous for all domains, as can be also seen in figure 2.
This is a major step towards general cross modal learning.

B. Learning of Associations

We will now focus on the learning of associations based on
co-occurring observations. We prefer the term ”co-occurring”
to ”synchronous” because the different domains may operate
in different time scale without a strict synchronization. In
principle, there are many different ways in finding these
associations, but we require the system to learn from very few
examples. This prevents the use of purely statistical methods,
like e. g. Hebbian or correlation learning. Detecting corre-
lations between the Memory Activations during a Learning
Session is possible and would also work with few examples,
but feature vectors belonging to yet unrepresented classes will
show no activations and can therefore not be correlated.



To avoid these problems and master the mentioned require-
ments, we utilize the result of the Novelty Detection, depicting
the index of the best matching class or a new class. This index
exists in two different domains, the speech-domain and another
domain depicted by the attentional mask ai. To support the
learning between more then two domains, we collect the tuples
(i, e) for all unmasked domains i with ai > 0 and store them
in a set L. A combination of all tuples in L is then added to
the set RA to represent the connections between these classes:

RA = RA

⋃
(i, x) ∈ L
(j, y) ∈ L

(i x, j y) (3)

The presented method for learning associations can cope with
several different kinds of tuples L based on the abstracted
result of the Novelty Detection. There can be new associations
between know classes, new associations between know and
new classes and totally new classes and associations.

C. Evaluation and Expectations
After describing how the learning works we will now

look at the evaluation of the learnt classes and concepts.
The core mechanisms governing those internal processes are
called expectation generation, match evaluation, and mismatch
resolution. Similar to the learning they are conceptually ho-
mogeneous for all domains.

The core mechanism is based on the comparison of features
from different domains. This is for example necessary to let
the system decide if an understood speech-label matches any
of the perceived visual classes. The explanation given here is
based on our work presented in [9]. A comparison between the
different domains at the level of feature-vectors is impossible
due to the qualitative difference, or more precisely: the feature-
space, dimension, and time-representation. For this reason
the system utilizes the introduced Hypothesis Activations to
compare whether for example the active speech-class matches
one or more visual classes. In a first step the Hypothesis
Activations hi,x are computed for each domain i using the
current feature-vector fi according to (1). In the next step,
the activity of all classes in one domain must be compared
with the activity of all associated classes. This comparison
should result in a “match” if for an active class x in domain i
the associated class y in domain j is also active. In contrast, it
should result in a mismatch, if for an active class x in domain i
the associated class y in domain j is inactive and additionally,
there exists an active class l in domain j which is associated
to a class k in domain i, with k 6= x.

Let us assume, for example, there are two position classes,
one representing the left position, and the other one represent-
ing the right position. Let us further assume, that the position-
class left is associated to the speech-class left and the position-
class right is associated to the speech-class right. If position-
class left is active the comparison results in a match, if the
speech-class left is active, too. It results in a mismatch, if in
contrast the speech-class right is active.

Mathematically this comparison can be formalized as a
similarity measure between two activation vectors. The first

vector hi is a concatenation of Hypothesis Activations in
domain i:

hi = (hi,1, . . . , hi,Ni
)T . (4)

The second vector is the top-down hypothesis vector h̃i:

h̃i = (h̃i,1, . . . , h̃i,Ni
)T , (5)

with

h̃i,x =
∑

(j, y)|(i x, j y) ∈ RA

∧ (j, y) 6= (i, x)

hj,y . (6)

The top-down Hypothesis Activation h̃i,x is a summation of
all Hypothesis Activations associated with hi,x via a 4-tuple
in RA, but excluding hi,x itself. In a match situation, the
top-down hypothesis vector can thus have a different length,
but point in the same direction as the hypothesis vector
hi. Hence, a suited measure of similarity is e. g. the scalar
product d(hi, h̃i)S between hi and h̃i. If the similarity
between these two vectors falls below a significance threshold
ΘC , the system treats this as a mismatch in domain i, and if
the similarity raises above ΘC , this is interpreted as match in
domain i.

The match / mismatch computation is local to the domains.
The top-down influence is currently directly computed via the
association. For the current state of the system this is sufficient,
because the focus is here on the learning of classes and the
building of concepts. But the architecture is already prepared
for receiving top-down influences form other sources than
the associations. Those top-down influences then represent
higher cognitive expectations or goals. Such a next level of the
architecture that autonomously controls the creation of such
expectations or goals is subject to current research.

Currently the set of all match evaluations can directly
be used for evaluating the learnt classes and concepts or
employing them as commands. Here we have to distinguish
between mismatches in the perceptive domains and the be-
havior domain. For both the mechanisms are rather straight
forward.

A perceptual match or mismatch occurs if the tutor presents
the system something with a learnt visual property class and
utters a label. If they match a bias for the nod behavior for
ASIMO’s head is generated and the evaluation is finished. If
they don’t match a bias for the shake behavior for ASIMO’s
head is generated and the reactive layer is forced to attend to
something different while keeping the expectation raised by
the label. This kind of behavior is called conflict resolution.
Please note that in principle any kind of conflict resolution
could be triggered including the active search for a specific
object with the verbally specified visual property. For now the
systems just communicates the state of the match by means
of gestures for ”yes” (nod) and ”no” (shake) and relies on the
interaction in order to experience a match.

A behavioral match or mismatch occurs if the tutor utters
a label that is associated with a specific behavior. If the



(a) After teaching left. (b) After teaching right.

(c) After teaching bottom. (d) After teaching top.

Fig. 3. Models of learned positions left, right, bottom and top. Please refer
to text for details.

associated behavior is already active it is match and the
evaluation finishes. If it is a mismatch a bias for the corre-
sponding behavior is generated by the conflict resolution and
communicated to the behavior arbitration for activating the
corresponding behavior controller.

A deeper understanding of the described learning and
control mechanisms should be gained from the following
description of the interactive experiments.

IV. EXPERIMENTS

In this chapter we will demonstrate the feasibility of the
presented system in two representative experiments. These
experiments are documented in an accompanying video.
The experiments focus on the learning capabilities of the
system, putting special emphasize on the visual learning
and the overall system performance. In other experiments
we evaluated the stability of the visual perception and the
speech learning capabilities [10], the robustness of the far
field audition [8], and the coupling of reactive and cognitive
layer [9].
In the first experiment, we will focus on the visual learning
of position classes, namely left, right, bottom and top. This
experiment will demonstrate the autonomous learning of
classes and handling of orthogonal groups. The second
experiment gives a global system view by monitoring the
system states during the learning of audio-visual concept
for small and large, as well as audio-behavior concepts for
“take” and “release”. It also demonstrates the ability to learn
independently for each modality based on the individual
Novelty Detection. Both experiments are carried out using a
Honda ASIMO robot.

Description Experiment 1: In the first experiment a tutor steps
in front of the robot, utters a predefined speech command
to start the learning session for position learning and teaches
the robot the position left by presenting an object in the left

visual viewfield of the robot. To cover a representative area
of valid stimuli for left, the tutor moves the object around. In
Figure 3(a) the red crosses indicate the presented positions in
the robots heel coordinates, with the x-axis pointing forward,
y-axis pointing left, and z-axis pointing upwards. After this
learning session, the tutor moves to the right side of the
robot and repeats the steps described above for the learning
of “right”. Again the presented stimuli are visualized as red
crosses in Figure 3(b). The Figures 3(c) and 3(d) contain the
learning samples for the learning of bottom and top.
Results Experiment 1: At the end of each learning session,
the system creates a local model to approximate the presented
stimuli by approximating mean and covariance. These models
are visualized in the Figures 3(a)-3(d) after each learning
session, where the blue dot presents the mean and the blue
ellipsoid the covariance. As described in section III the system
estimates hypothesized assignments based on the local models,
leading to a tessellation of the feature space. The discrim-
ination border is visualized as a black line in the Figures
above. Estimating a discrimination border requires at least two
models, therefore it is not visible in Figure 3(a). However,
learning “bottom” does obviously not affect the discrimination
border for left and right. In contrast, an additional classification
border is visible in Figure 3(d). This independent treatment of
left and right from bottom and top shows the systems ability to
detect the independence of horizontal- from vertical positions.
Description Experiment 2: A visualization of the tutor’s and
robot’s actions in this experiment is given by the images in
the top-row of Figure 4. To demonstrate the systems ability
to learn independently for each modality, the tutor starts
teaching the visual class for small by presenting a small cup
but without saying anything(t = 1). Afterwards, he teaches
ASIMO the word “small” but without showing him something
small(t = 2). In the following step he lets the system learn the
association between the two, by presenting something small
and uttering the word small simultaneously(t = 3). Here,
the Novelty Detection should classify the presented stimuli
as known and adapt the existing classes for small.
In the next step the tutor teaches the system the concept of
“large” by uttering the word while presenting a jar (t = 4).
Afterwards he evaluates the learned concepts by presenting
the jar and saying “large”, as well as presenting the cup and
saying “small”(t = 5). In the next step he examines the
systems ability to generalize by placing a table in front of
the robot and evaluating it as “large” (t = 6). Subsequently
the reflexive release and grasp is demonstrated by touching
the proximity sensors at the outside of the hand(t = 7) and
on the inside(t = 8). To teach the coupling between the word
“release” and the releasing action, the tutor starts the action-
learning, activates the outside proximity sensor to trigger the
release action and utters the word “release” several times
(t = 9). He then repeats the process for the word “take” by
activating the inside proximity sensor (t = 10). Finally he
uses the thus created associations to let Asimo take a basket
(t = 11) and release it(t = 12).
Results Experiment 2: Row (2) of the plot in Figure 4



Fig. 4. Plot of system states. Please refer to text for details.

shows the measured 3D-size of the presented object. A zero-
line indicates phases of the interaction, where no object is
presented to the robot. Row (3) contains the activation of the
visual size models, the lines represent the memory activations
and the filled areas the hypothesis activations. The activations
of the model small are visualized in red, the ones for large in
blue. Additionally, this plot visualizes the learning session as
white striped area.
At time (t = 1) the learning session is active, but no model
is learned yet. From row (2) we can infer the presentation
of a ca 8cm big object. Row (4), visualizing the activation
of the speech classes, shows the active learning session, but
otherwise no speech activity, because the tutor is not speaking.
Consequently after this learning only a new visual class is cre-
ated, indicated by the raising size-activity. At time (t = 2) row
(4) contains a lot of unrecognized speech activity (visualized
as red cross), but no object is presented and therefore no size-
activity is visible in row (3). During the learning session at

time (t = 3) the visual class for small is active as well as the
speech class for “small”, with the memory activation of the
latter visualized as square in row (4). Please note, that after
this session, only the number of associations changes from 0
to 2 ( two, because associations are symmetrical ), but neither
new visual classes nor new speech classes emerge.
The learning of “large“ using a ca 14cm big jar leads to the
creation of a new visual- and a new speech class and their
association. During the evaluation of ”large“ and ”small“(t =
5), the recognized speech classes match the visually perceived
sizes. While the tutor evaluates the table as ”large“ at (t =
6), the memory activations for small and large in row (3)
drop close to zero, caused by the relatively large size of the
table (ca. 68cm) compared to the previously taught objects.
However, the hypothesis activation of the class large remains
active.
Row (8) contains the activations of the robot behavior. Note
the correlation of the behavior ”return“ in the latter row with



the 0-line of the object size: If no object is presented, the
robot returns to his starting position. In contrast, whenever
he perceives an object, he approaches it. In row (6) the
activation of the palm proximity sensor is visualized as a blue
line and the outside sensor as red line. At time(t = 7) the
reactive triggering of the ”release“ behavior using the outside
proximity sensor is visible. The same holds for the reactive
grasping triggered by the inside sensor at time (t = 8). During
the learning of the words ”release“(t = 9) and ”take“(t = 10)
the learning session is again visualized as striped area in row
(7) and row(5). Observe the raising number of associations
after each learning step. The effect of uttering the words ”take“
(t = 11) and ”release“ is visible in the plot: The respective
behaviors are activated from the recognized speech commands,
without the presence of any sensor signals.

V. DISCUSSION

Together with functional evaluations in previous work [7]–
[10], the results presented in the previous section close the loop
of evaluating our system. We demonstrated the feasibility of
learning visual models to approximate experienced perception,
and showed the reliability of these models to classify stimuli
as new or known.
As demonstrated in Experiment 2, the combination of local
and global class-representations enables the system to gener-
alize learned concepts to completely new situations. Obviously
this might lead to overgeneralization whereas relying purely
on observed data appears relatively safe. However, we prefer
using the generalizing global representations, because they
meet our understanding of intelligence as the application of
known concepts to new situations.

We also presented our systems ability to learn syn-
chronously in multiple domains, e.g. learning new words and
new visual models. In this sense our system is superior to
state-of-the-art systems as the one presented by Roy et al. [4].
In contrast to Iwahashi [5] we showed that our system does
not require this kind of synchronous presentation, because it
can learn individually in all domains and associate concepts,
once it observed them together.
Finally, we demonstrated that the learning of concepts is not
limited to audio-visual associations but also reliably works for
the learning of actions. This multimodal integration of vision,
audition, and actions is the prerequisite for the learning of
behavior oriented representations.
One drawback of the presented learning mechanism lies in the
fixed associations, which can not be changed once they are
learned. Changing this would require continuous reevaluation
of associations based on statistical observations, which would
lead to a much higher number of training samples.
From a developmental point of view, there are two major
aspects of our system design, which are pre-determined and
not learned by the system: Triggering a learning session using
a predefined speech command and class representations of the
robots behavior. Both aspects are focus of our current research.

VI. SUMMARY

In this paper we presented the current instance of our ALIS
architecture, which is addressing the long term goal of creating
a developing cognitive system. We also presented our latest
research results wrt. learning and associating learnt knowledge
to concepts. The approach we have presented performs in real-
time in interaction with a tutor. The learning can proceed
sequentially or in parallel for new visual properties, auditory
labels and associations between the acquired classes. The
newly introduced hybrid representations of the classes yield
a broad grounding and permit stable mutual support between
the classes for global decisions. Future work will cover the
learning of behaviors as well as a more cognitively oriented
control of the evaluation of the acquired concepts including
more manipulation skills.
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