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Global Shape with Morphogen Gradients and Motile Polarized Cells

Till Steiner, Jens Trommler, Martin Brenn, Yaochu Jin, Bernhard Sendhoff

Abstract— A new cellular model for evolving stable,
lightweight structures is presented in this paper. The focus
lies in enhancing the ability of the cellular system to create
complex 3D shapes with non self-similar regions. Compared to
our previous work [17], the model proposed in this paper is
composed of polarized cells that have directionally differential
force functions for cell adhesion and thus are able to follow
morphogen gradients (chemotaxis). We investigate the evolution
of global information in form of evolving morphogen gradients
that are created prior to development, which serve to guide
cellular and shape differentiation.

Our analysis shows that for a set of Pareto-optimal solutions
of lightweight stable structures, no unique gradient can be
evolved. Nevertheless, it is revealed that neighboring individuals
in the genotype space are also neighbored in the gradient
space. By contrast, neighborhood in the fitness space is not
maintained in the genotype space. These results suggest that
a hierarchical genetic formulation might be better than a
’common predefined spatial pattern’ in form of a predefined
gradient. In addition, our analysis also implies that some well-
known properties in direct-coding evolutionary algorithms may
be lost in developmental mappings.

I. INTRODUCTION

Biological multicellular development creates an organism
starting from one cell, the fertilized egg, also referred to as
the zygote. During the various phases of development, cells
change their fate and a coordinated growth takes place which
results in the formation of tissues and organs which eventu-
ally make up the complete organism. Cellular specialization
and the coordination of development is based on cell-cell
signaling and chemical gradients. One important develop-
mental step, which is virtually always the initial stage of
growth, is body axis determination. This stage yields polarity
of the embryo [8] represented by chemical gradients, which
enable differential gene expression at different positions
inside the growing organism. These so called morphogen
gradients or maternal effects are usually established prior
to organism growth and kept intact for a specified period of
developmental time.

Gradients have a great influence on development. Both the
developmental process and the morphogen gradient are under
the genetic control of the DNA belonging to the embryo or
the mother individual. Therefore, evolution must have found
a way to coordinate both, the developmental process and the
gradient such that an optimal growth of the organism can
take place.
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In artificial development, different aspects of natural devel-
opment for evolutionary optimization purposes are simulated.
A thorough overview is presented in [10]. Predefined signals
in terms of morphogen gradients have been used in many
evolutionary development approaches as guiding signals (see
e.g. [3], [6]). However, these signals were to our knowledge
always manually chosen and inserted as a starting condition
for the development of every individual throughout evolution.
Thus, the question remains, how a good choice for this
predefined signal can be determined. Of course, this depends
on the given problem, e.g. if the solution is known to be
symmetric, a symmetric gradient would clearly be beneficial.
Unfortunately, such prior knowledge is usually not given.
Also, it is not clear, whether there is a unique best signal
for a given problem, especially if two or more conflicting
objectives are present.

These questions are the basis for the research work pre-
sented in this paper. In the following, we want to investi-
gate the coevolution of predefined signals and the DNA as
the blueprint for growth. The objective of the evolutionary
run is the design of lightweight, stable structures, i.e. a
multiobjective optimization problem in 3D design space.
3D development has become more popular in the artificial
development community recently, see e.g., [1], [4], [6], [9],
[11], [12], [14], [17], [19].

Our paper is structured as follows: Firstly, we will give
a short introduction to predefined signals or morphogen
gradients in biology, and their role in development. This
motivates the simulation of predefined gradients in artificial
developmental systems. Then, we will describe our model
and the evolutionary scheme we use to investigate predefined
signals in simulated evolutionary development. A separate
section is devoted to the way we measure the distance
between two genotypes, since this is a nontrivial task in our
case. Experiments and results are presented, and based on
the findings given in the analysis section, we close with a
conclusion.

II. GLOBALLY PREDEFINED SIGNALS IN BIOLOGICAL
DEVELOPMENT

A coarse ’global’ patterning precedes development of
multicellular organisms in biology [8]. This patterning is
defined by several chemicals, which spatially differ in con-
centration in the embryo, and thus form gradients. Such
gradients are known to specify the main body axes in early
development, (i.e. head-tail and front-back) and serve for
further segmentation of the embryo.

Gradients can arise autonomously, triggered by an event
such as the sperm entry into the egg cell during fertilization
(which e.g. is found in sea urchin development [8]), or be



created by cells of the body of the mother individual (e.g.
nurse cells, which surround the egg cell in Drosophila fruit
flies). Such gradients are therefore termed maternal effects.

The simulation of these maternal effects in artificial
development is mainly inspired by the knowledge gained
from Drosophila development: Cytoplasmic polarity yields
a head-tail orientation and facilitates further patterning of
the embryo. Subsequent subdivisions of the initial chem-
ically distinguishable head, center, and tail regions result
in segments, each defined by an increased concentration of
one or several specific proteins, regulating differential gene
expression in that area.

Patterning gradients can be observed not only in the fruit
fly, but also in virtually all other species. Several reasons exist
for simulating these gradients: Firstly, they can provide cells
with global positioning information. Since cells usually only
react to local information, this facilitates global patterning of
the embryo. Secondly, gradients can yield directional infor-
mation. Cells can move relative to the concentration gradient
of chemicals, e.g. following the gradient to the position
of a local maximum. This process is termed chemotaxis,
and can lead to cell sorting and organ separation. Thirdly,
the chemicals trigger the initial stage of development, and
therefore determine its starting point, i.e. they have temporal
influence on the process.

As briefly mentioned above, we see the hierarchical forma-
tion of gradients in biology, usually starting with few mono-
tonic gradients along one future body axis (e.g. head-tail),
and subsequent subdivisions of this gradient into segments
from coarse to fine. For our simulations, we choose to define
the ’coarseness’ of the gradient information beforehand and
keep the same level throughout development, although it
would certainly be worthwhile to simulate a gradual fine-
graining while development progresses.

III. THE MODEL

In this section, we will describe the simulation model.
It is an extension of a model we described earlier [18]
and contains two new features in the cellular representation:
polarization and chemotaxis. The section gives details on
the cellular model, the genetic model and the evolutionary
model. We also explain the mechanism used to simulate
evolution of chemical gradients and give the fitness function
used during evolutionary runs.

A. The cellular model

The cellular model presented here is derived from the
sphere cell model presented in [18]. In that model, a cell is
represented by a sphere with a constant radius and an arbi-
trary position in space. Cells interact physically by nonlinear
forces, i.e. depending on their distance, they adhere to each
other, and if they overlap, they repel each other. Adhesion
between cells can be differential, which may lead to cell
sorting.

The resulting outer surface of the shape of a cell aggrega-
tion always resembles a solid block, since this is the minimal
energy state for a heap of cells that adhere to each other,

independent of the strength of the adhesion. To enable the
model to create complex, globally differentiated shapes, we
add polarization to the cells.

B. Polarized cells

The inspiration for this extension to our model partly
comes from the way complex shapes are created by
molecules due to differentially charged regions, and partly
from observing cellular adhesion in biology, where cells form
sheets rather than heaps.

We implement polarized cells as spherical cells with an
arbitrary number of charges attached to an arbitrary position
on their surface. During our simulations, for computational
reasons, we restrict the number of charges per cell to 2,
attached to the equator of the cell. The magnitude of the
charges can be any real valued number between 0 and 1,
while one of the two charges is always treated as positive
charge and the other, multiplied by -1, as negative charge.
Charges with equal sign repel, charges with different sign
adhere, according to the force function

F = c1 · c2 · 4e
−d2

σ2 . (1)

Here, c1 and c2 are the respective charges, d is the distance
between these charges and σ is a constant calculated such
that the adhesion force F for maximum charge difference
(i.e. both charges have magnitude one and opposite sign) and
maximum distance (d =FR) equals to 0.01, and at smallest
distance equals to 4. FR is a value which is genetically
determined, and can take values between 2r and 10r, where
r is the cell radius. FR represents the region in which
neighboring cells exert forces on each other.

Genetically encoded values are: the magnitude of the
charges, the positions of the charges on the equator of the
cell, and FR for every cell, respectively.

C. Chemotaxis

For the simulation of chemotaxis, we determine a direction
and a magnitude of a force that is applied to cell centers, in
addition to the force arising from cell-cell interaction. The
direction of this force is calculated by the local gradient at
the position of the cell. Since chemicals are distributed on
a fixed, equally spaced grid, and cells can have a position
independent of that grid, we calculate a local approximation
of the gradient in the following way: First, we take the 8
nodes of the diffusion grid that are closest to the cell. They
represent a cube in which the cell lies. Then we calculate
a first order approximation of the derivative on all edges of
that cube, which gives us four derivatives for each direction.
Then, we linearly interpolate the respective approximations
for x-, y- and z-directions to the actual position of the cell,
such that we receive an approximated gradient.

The magnitude of the force is genetically encoded and is
between 0 and 0.5, so that the maximum chemotaxis force
is much smaller (factor 8) than the maximum possible cell
adhesion/repulsion force due to polarization.



D. The GRN model

We use the same GRN model as described in [18]. There-
fore, we will only briefly outline it here. During development
of an individual, each cell contains the same genetic infor-
mation, a copy of the virtual DNA (vDNA) of the organism.
The vDNA is a vector of genetic units, which can have one of
the following two types: regulatory units (RUs) and structural
units (SUs). A gene is a collection of a number of RUs and
SUs adjacent to each other. Gene boundaries are given by
the vDNA-positions that have a SU to their left and a RU to
their right (see Figure 1).

Fig. 1. An illustrative vDNA with three genes, each consisting of one or
more structural subunits (SUs) and regulatory subunits (RUs). Two different
kinds of RUs exist: inhibitor (RU−) and activator (RU+). A SU coding
for the production of a transcription factor (TF) is denoted by SUTF, a SU
coding for a division by SUdiv and a polarity modification SU by SUpol.

RUs and SUs are themselves vectors of double precision
values. The first value of a SU encodes the respective SU-
type. Possible types are: cell division, production of an
inter/intra-cellular signal (so called transcription factor (TF)),
change of chemotactic behavior, or change of cell polariza-
tion. Depending on the SU-type, the remaining values of the
SU code for specific features, such as division angles for
division in 3D space, magnitudes of charges, or diffusion
and decay constants for diffusing signals, etc.

TFs are simulated chemicals that are either produced
by the cells or already present in the environment. Their
distribution is allocated on a 3D grid. If a cell produces a TF,
it retrieves a genetically encoded ’signal-type’, a diffusion
rate, a decay rate and a release magnitude from the respective
SU. Also, a factor in the SU encodes the share of TF which
is kept inside the cell and the share that is released into the
environment. These chemical signals, their concentration and
type at different positions and in different cells, regulate the
expression of genes in the cells. Gene activity for every gene
in every cell is calculated using the RUs of the gene, with
the mechanism outlined below. Note that depending on the
activity level of a gene coding for TF production, the amount
of released TF is varied. This creates regulatory networks
with intra- and inter-cellular signaling.

A RU can read chemical signals, either from the environ-
ment at the position of the respective cell, or from within the
cell. Depending on a threshold for the concentration of the

TF, the ’type-value’ of the TF, and an associated ’type-value’
inside the RU, an affinity between the TF and the RU can be
calculated. The larger the affinity, the stronger the activation
power of the respective TF on the RU. An overall activity of
a gene is calculated taking all RUs of the gene and all TFs
in the environment into account. This activity is then used
to regulate the expression of all SUs inside the gene.

E. The evolutionary model

Similar to our previous work [17], we use a modified real
valued NSGA-II algorithm [5] with two objectives. We do
not use crossover and mutate individuals in an Evolution
Strategy-fashion with strategy parameter adaptation [15].
Also, we add gene duplication and transposition: with a prob-
ability of 0.1, a random number of consecutive RUs and SUs
are either cut out (transposition) or copied (duplication) and
then inserted into the vDNA at a new position. Population
size for all experiments is 100 and evolutions are run for 300
generations.

F. The gradient evolution scheme

We want to investigate the evolution of pre-defined chem-
ical gradients, in combination with the evolution of the
vDNA and the growth process. To achieve this, we define
several positions inside the cube shaped calculation area, on
which the center of different Gauss-shaped gradients can be
allocated. These positions are the center of the cube, the
centers of all faces and the corners of the cube, totaling a
number of 15.

Each Gauss gradient has a constant variance of σ2 =
0.5 · s with s being the side length of the calculation area.
Gaussians are scaled by σ

√
2π to reach a maximum possible

concentration of 1 at their center points. Additionally, the i-
th gradient is scaled by a respective value hi encoded in
an additional chromosome of length 15 in each individual.
Finally, the gradients are superposed and inserted into the
calculation area as one predefined TF (see the first panel in
Figure 7 for an illustrative example of a resulting distribu-
tion). Equation (2) gives the concentration c(~x) at every point
~x in the calculation area:

c(~x) =
∑

i

hi · e

„
− (~x−~µi)

2

2σ2

«
, (2)

where µi is the center of the i-th Gaussian.
The predefined TF is used for chemotaxis, and can also be

read by the cells for gene activation. Other TFs that may be
released by cells are not used for chemotaxis, and only serve
for intercellular communication and gene activity calculation.

G. Fitness function

Fitness calculation is based on two objectives: the mini-
mization of the overall weight of the grown structure, and the
maximization of the stability against a load which is applied
to the top of the structure after development. When cellular
development has finished, the resulting cellular design is
converted into a voxel-structure and a top plate is added
(see lower right panel in Figure 5). The overall weight of



the structure is then calculated by summation of the number
of voxels that build up this resulting design. To calculate
stability, the displacements resulting from application of a
constantly distributed force to each voxel of the top plate
are calculated using the Z88 FE-solver1. The maximal dis-
placement describes the ’weakest’ point of the design and
thus, minimization of this displacement represents the second
objective. There are several methods designed specifically to
solve this kind of problem. Two such methods are the Solid
Isotropic Material with Penalization method (SIMP) and the
Evolutionary Structural Optimization method (ESO) [2].

IV. GENE-NEIGHBORHOOD

To compare different individuals on the genotype level in
a generation and throughout evolution, it is necessary to be
able to measure how ”close” one genotype is to an arbitrary
other one. This is, in some cases, straight forward: e.g., in
the case of an evolution using a direct genotype-phenotype-
mapping with constant chromosome sizes, one can calculate
the Euclidean distance between the chromosomes.

Problems arise when individuals have complex repre-
sentations, especially for individuals whose genomes have
different lengths. Then, no clear assignment of elements
in one chromosome to elements in the other chromosome
is possible. Further complications arise when duplication
and transposition are possible mutation mechanisms, because
they can be the reason for some major realignments of the
chromosome.

We decided that for our case, it is possible to use a
measure based on a sequence alignment algorithm known
from bioinformatics. We use a modified Needleman-Wunsch-
Algorithm [13] and a dynamic programming approach for its
calculation. The algorithm tries to find a way to transform
one chromosome into an arbitrarily sized other chromosome.
At the same time, it measures the ”effort” that is necessary
to do so, in terms of mutation-, copy- and transposition-
operations. This effort can then be taken as a measure for
how ”close” the one chromosome is to the other.

We will now outline the algorithm by means of an illustra-
tive example. Imagine we want to transform the chromosome
ABC into the chromosome ABABC. First, we need to define
all distances between single elements. The element distance d
we use in this example is for simplicity based on the position
of the characters in the alphabet, e.g. d(A,B)=1, d(A,C)=2.
Second, we create an alignment matrix R in Figure 2(b),
where every column is labeled with one element of the first
chromosome, and every row is labeled according to the ele-
ment in the target chromosome. A first row, initialized with
zeros is added. The entries in this matrix, once computed,
will allow us to find the best alignment. The elements of
the matrix are calculated row by row in the following way:
For each element in row i, column j, perform the following
minimization, looking at row i− 1:

min
k

(di,j + ri−1,k + Vk), (3)

1http://www.z88.org

where k ∈ [1..N ], and N is the size of the first chromosome.
ri−1,k is the entry in row i − 1 and column k of matrix R,
and Vk represents a gap penalty, being Vk = 0 for k = j−1
and Vk = p else. The choice of p is done manually, and will
be discussed later. In this example, we set it to 0.5. Vk and
d are depicted exemplary as small numbers in Figure 2(a).

(a) (b)

Fig. 2. (a) An illustrative example for the computation of an element of the
back-trace matrix: Elements that make up the new entry are the minimum
of the values of the previous row plus the distance between the actual row-
element and the actual column element, plus the gap penalty where it applies.
The minimum for the depicted case is emphasized by a bold arrow. (b) The
resulting back-trace matrix for the example. The circle denotes the starting
point for back-tracing, and the arrows give the alignment of the two vectors
(ABC) and (ABABC).

We insert the found minimum into the respective position
(i, j) in R and create a pointer from that position to the cell
(i−1, k) where the value was taken from (denoted by a bold
arrow in Figure 2(a)). Doing the same for the whole row, we
end up with a value and a pointer in each cell.

This scheme is continued until the whole alignment matrix
is filled. The best alignment can be found by starting in the
cell containing the lowest value in the last row (denoted by
the circle in Figure 2(b) ) and following its pointer to the
penultimate row and from there onwards until the first row is
reached (indicated by arrows in the same Figure). The visited
positions in the matrix give the alignment. We calculate the
effort E for the alignment of two chromosomes Chr1 and
Chr2 by

E(Chr1, Chr2) =
∑

d∗
M

+
∑

Vk∗, (4)

where M is the size of the target chromosome, d∗ are the
element distances d on the way and Vk∗ are the gap penalties
on the way. E taken from the alignment of chromosome
1 (Chr1) with chromosome 2 (Chr2) may differ from E
taken from the alignment of Chr2 with Chr1. We therefore
define the distance D between the two chromosomes as
D(Chr1, Chr2) = E(Chr1, Chr2) + E(Chr2, Chr1).

The characters ABC in the example represent gene parts,
i.e. RUs and SUs. The distance d between two RUs or two
SUs is given by ||v1−v2||2

N where v1 and v2 are the element
vectors respectively, and N is the length of the vectors, || · ||2
denotes the 2-norm. The distance between a RU and a SU is
set to 10000, such that this alignment will never be chosen.

Note that the resulting alignment depends on the penalty
value p. If the value is very low, the algorithm tries to match



elements which are close in element-wise distance d and
uses many transposition steps for this. If the penalty value is
high, the algorithm matches values with an eventually high
element-wise distance to receive long local alignments which
avoids duplications or transpositions.

The choice of the gap penalty is in itself a multi-objective
optimization problem, because depending on the choice of
this parameter, an alignment with more or less transpositions
will be created. Since there is no ”one correct alignment”
we need to choose one gap penalty and keep it as reference
for the analysis. The way we choose this penalty will be
described in the analysis section.

V. EXPERIMENTS AND RESULTS

Our simulation comprises two different experiments: The
first is an evolutionary run with a predefined, manually
chosen gradient. The spatial function of the concentration
c is given in Equation (5). Note that the calculation area
extends from -8 to 8 in each spatial direction.

c(~x) = 1 − e

„
− (~x−~µ)2

2σ2

«
, µ = (0, 0,−8). (5)

σ2 is chosen similar to Equation (2). The choice of this
gradient is inspired by the shapes that typically result from
the SIMP-Algorithm, where ’table-legs’ are created at the
corners and centers of side-boundaries, Figure 3(a). Fig-
ure 3(b) gives a typical solution from the ESO algorithm.
Using the gradient in Equation (5), even without evolutionary
optimization we can generate a table-like structure 3(d). A
simple chemotaxis along the manually defined gradient and
continued cell division seems to be sufficient to create the
four-legged table. For comparison, we also depict a typical
solution from the previous model on which this work is
based [17] in Figure 3(c). There, only dark cells are used as
structure, while white cells represent spacers and are removed
prior to fitness calculation. By comparison, Figure 3(e) and
(f) show an evolved design using this manually chosen
gradient, and the voxelization of the resulting design.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) A typical solution using the SIMP algorithm. (b) A typical
solution using the ESO algorithm. (c) A typical solution created by the old
model, presented in [17], where white cells are spacer cells and removed for
FE-calculation. (d) An un-evolved, hand-coded genome yields this solution
with motile polarized cells and a predefined gradient. (e) An evolved solution
with motile polarized cells using a predefined gradient, and (f) the resulting
voxel grid.

The second experiment uses a superposition of Gaussian
distributions as described in section III-F. For all develop-
ments, 4 cells are initially placed at the four upper corners
of the calculation area. Evolution starts with a random
genome of 5 SUs and 5 RUs, and the evolution runs for
300 generations. The gradient is created in the calculation
domain before the development of the individual starts, and
does not change during the developmental time.

Figure 4 shows the Pareto-optimal solutions at generation
500 achieved by five different models, where “old model”
means the results obtained by a simplified cellular model
used in [17]. It is clearly visible that the new model has
a greater ability to reach better results on the Pareto-front,
especially solutions with less than 1300 voxels are reachable.
Also, a wider variety of designs emerge, which can be seen
in Figure 6, giving sample phenotypes.

Fig. 4. The populations of typical evolutionary runs after 300 generations.
Depicted are individuals of the old model, the model using a fixed,
predefined gradient, the model using evolving gradients, and for reference
solutions from the SIMP- and ESO-algorithms. Note: the whole generation
is plotted, not only individuals on the Pareto-front. Also note that for
computational reasons, the cell number of the polarized sphere-cell model
was restricted to 500 cells, such that a maximum of 5100 voxels will not
be exceeded.

Fig. 5. Excerpts from a sample growth of an individual and the resulting
voxel grid. Note the added top plate. Sequence starts at upper left and ends
at lower right.

Comparing individuals with evolved and predefined gra-
dient, Figure 6(a) and 6(b), we can see that in the latter
case, phenotypes are all built up using a common principle:
Cells use the clue given by the predefined gradient and
move towards the outer area of the cube. The center remains



(a)

(b)

Fig. 6. (a) Individuals taken from generation 300 from a fixed, predefined
gradient evolution run. Number of voxels for the individuals (from left to
right): 755, 1361, 2027, 2866. (b) Individuals taken from generation 300 of
an evolving gradient run. Number of voxels (from left to right): 758, 1420,
1665, 2331.

sparsely occupied by cells. Designs only differ by the number
of cellular divisions and resulting ’compactness’ of the
design.

The evolving gradient simulations show a wider range
of different designs and growth processes. Both chemotaxis
and polarized adhesion can be observed during the growth
process of several individuals. Heavy solutions are created by
similar design processes: Cells possess equal charges, such
that they repel each other. Due to the restricted calculation
area, a sponge-like distribution occurs. Most light solutions
are built up from a central stem, which branches towards the
top of the calculation area. Figure 5 gives snapshots of a
growth sequence for such a design.

The quality of designs using evolving gradients, especially
for design weights smaller than 2500 voxels, is clearly
closer to the reference curves created by the SIMP and ESO
algorithms as compared to the old model. Figure 7 gives two
more interesting phenotypes from the evolving gradients run.

To understand the role of predefined gradients for evolu-
tion, we performed several analysis of the evolutionary run
with evolving gradients, which we present in the following
section.

Fig. 7. Equipotential surfaces of a sample gradient from the gradient
evolution run is depicted. Also, two interesting designs that emerged during
evolution in the evolving gradient run.

VI. ANALYSIS

We look at the evolved TF-gradients along the Pareto-
front. At first glance, gradients of the individuals look quite
different from each other. What is of interest is, (a) is there a
common ’best’ gradient evolving, and (b) whether and how
are genetic neighborhood and gradient similarity related?

Also, we want to investigate whether individuals neighboring
on the Pareto-front possess more similar gradient information
compared to individuals with a larger distance on the Pareto-
front.

Figure 8 shows the standard deviations for each of the
15 h-values (compare Equation 2) of the individuals in the
respective generation. Clearly, no common distribution is
evolving, rather a large spread can be seen. Therefore, we
direct our attention towards the neighborhoods, both in the
genotype space as well as on the Pareto-front.

Fig. 8. Each line represents the evolution of the standard deviation in each
generation of hi, the i-th Gaussian height encoded in the genome of the
individuals.

Figure 9(a) gives first information about the neighborhood
for the population of generation 300: we distribute solutions
on the circle according to their total number of voxels, i.e.
their weight. Note that this sorting gives a good represen-
tation of neighborhood in fitness-space since the Pareto-
curve in the fitness-plot (Figure 4) is almost monotonic.
Thus, the plots in Figure 9 would look similar using the
the maximum bilinear energy instead of the weight. We
calculate the Euclidean distance between the h-values in
the respective chromosomes. This gives us a measure for
the difference in predefined Gaussians for the individuals.
For each individual, we look for the nearest neighbor, i.e.
the individual with the smallest distance in h-values. We
then draw a line between these points to indicate the closest
neighbor, and scale line width by the inverse distance. Note
that if individual A has individual B as its closest neighbor,
this does not necessarily indicate that the closest neighbor
of individual B is individual A. Therefore, some individuals
have more than one line attached to them. Minimal and
maximal values of these minimal distances are given in
Figure 10. If a local neighborhood rule would apply here,
only points are neighbors on the circle should be connected.
This is not the case. The only region where this can partly be
observed is the region around 3000 voxels, where individuals
are highly clustered in fitness-space. Interestingly, feasible
solutions in the first generation originated from this area.
We also investigated the same plot throughout evolution and
did not find a local neighborhood rule to be applicable in any
generation. For comparison, we now look at the same plot
for the chromosomes controlling growth, using the previously
described gene neighborhood. The first consideration lies in
choosing a suitable gap penalty p. We performed our analysis
for several gap penalties between 0.0 and 1.1, representing



(a)

(b)

Fig. 9. (a) All individuals from the 300th generation are depicted, where
individuals are sorted on the circle by their weight, i.e. by the first objective.
Nearest neighbors in terms of evolving gradient are connected with a line.
The line width is scaled with the inverse distance of the nearest neighbors.
The same plot is depicted in (b) for nearest neighbors in terms of genome-
distance.

Fig. 10. The minimal and maximal values for nearest neighbors distance for
both, the pre-diffused gradient neighborhood, and the genome neighborhood.

the extreme cases of no gap penalty and a gap penalty that is
higher than the maximal element wise distance. Interestingly,
we found qualitatively similar results for penalty values
between 0.1 and 0.4. We also found that the overall distances
seem to get smallest for p = 0.2 and thus we chose this gap
penalty for the investigation.

The resulting neighborhood plot is given in Figure 9(b)
for generation 300. On closer inspection, it resembles the
neighborhood distribution given in Fig. 9(a) for the evolving
gradients, if line widths are not taken into account. This can
be done because we are primarily interested in neighborhood
relations and not the actual distance between neighboring

individuals. To investigate the similarity, we depict the per-
centage of individuals, in which the nearest genetic neighbor
also is the nearest neighbor in terms of evolving gradient
in Figure 11 (neighborhood 1). Neighborhood 2 denotes the
case where the two nearest neighbors in terms of genes and
gradients are taken into account for finding an overlap. For
this increased neighborhood, we see that 80 percent of the
neighborhoods match, with a slightly decreasing trend as
evolution progresses. It seems that the gradients evolve with
the genes and vice versa. Thus, ’growth programs’ encoded
in the genes seems to be fine-tuned to their predefined
gradient (and vice versa).

Fig. 11. The percentage of nearest neighbors match between gradient
neighborhood and genome neighborhood throughout evolution. The two
curves give the result for a neighborhood size of 1 and 2 respectively.

Considering Figure 9(b), we also see that genetic neigh-
bors are not necessarily close in fitness space. We also
monitor this fact throughout evolution and present it in
Figure 12. Each point in this plot gives the difference in
phenotype weight, i.e. the difference in one of the fitness
criteria between an individual and its nearest genetic neigh-
bor. Note that due to the monotonic curve of the Pareto-
front, we would obtain the same results for the second
fitness criterion. It is clearly visible that throughout evolution
the distribution of these points does not vary qualitatively.
Thus, the evolutionary algorithm has to deal with a complex
genotype-phenotype map in every generation, which may
prevent it from evolving towards a more ’evolvable’ map.

VII. CONCLUSION

We found that the cellular model using chemotaxis and
polarization yields the ability to evolve complex shapes,
with globally differentiated parts. Evolution reaches a set of
solutions that is better than the simplified model presented
in [17] for the given task. Using evolving predefined gra-
dients, phenotypes seem to follow different developmental
strategies, although a central development pattern seems to
be chosen by most lighter variations.

Evolution results in many genetically different solutions
for the problem and a distribution in fitness space. The pre-
diffused gradients seem to align with their respective ge-
netic program, such that genetic and gradient neighborhoods
overlap, although this effect decreases slightly throughout
evolution. Overall, we can say that no ’one best’ gradient
for the given evolutionary task exists. Rather, it seems that



Fig. 12. Each dot represents the design weight difference from one
individual to its nearest genetic neighbor. This plot shows that throughout
evolution, neighbors in fitness space do not come closer together on the
genetic level and vice versa.

individuals use the evolving gradient as a coarse-grained
prestructuring part of their own developmental program:
The gradient defines regions and coarse cell movements in
design space, and tightly coevolves with the developmental
programs of the cells which then use this information during
growth.

These findings imply that it is not advisable to simply pick
a ’best’ gradient for a given problem. A manual gradient
choice could reduce evolutionary diversity.

Therefore, we suggest that a hierarchical genetic formu-
lation should be used for developmental systems, rather
than a complex, problem-specific predefined gradient for all
individuals. In the hierarchical formulation, genomes could
be separated into parts dedicated to a resolution level, such
that the first part creates a coarse structuring of the individual,
and the following parts do a subsequent fine-graining of the
respective previous level. This seems reasonable, since com-
plexification has been shown to be useful for developmental
systems ([7], [16]), although realized in a different way.

Neighborhood on the Pareto curve does not equal neigh-
borhood in genotype space. This fact does not change signif-
icantly at any time in evolution. Therefore, an evolutionary
method like the NSGA-II, which tries to fill gaps in the
Pareto-front by favoring individuals that have a low number
of close neighbors, is not adequate.
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