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Abstract 

This paper investigates the influence of regulation logic, together with the way in which negative and 
positive feedback loops are coupled, on the easiness of evolving typical regulatory dynamics such as 
limit cycles in a computational evolutionary system. Our simulation results suggest that the evolvability 
of such regulatory motifs depends not only on the regulation logic that combines different regulatory 
factors, but also on the way how the feedback loops are coupled. Our results indicate that probabilistic 
‘AND’ or summation logic facilitates the evolution of sustained oscillation for consistently regulated 
target genes. On the other hand, the probabilistic ‘OR’ and summation logic makes it easier to evolve 
sustained oscillation in case the target gene is regulated inconsistently. In addition, we find that when 
the target gene is consistently regulated, the sustainability of the oscillation is more vulnerable to 
perturbations in the initial state of the concentrations and the parameters of the regulatory motif.   
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Introduction
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In silico evolution of typical dynamics of gene 
regulatory networks has attracted much research attention 
in systems biology. For instance, Francois and Hakim 
(2004) evolved both bi-stable and oscillatory dynamics 
using a number of predefined basic biochemical reactions.  
Follow-up research indicated, however, that it is a 
daunting task to evolve sustained oscillation. One possible 
reason is that the target function, also known as the fitness 
function, used in the evolution may not be effective for the 
computational evolutionary system to find the proper 
structure or parameters. In Francois and Hakim (2004), the 
difference between output of the regulatory model and the 
desired amplitude at the half-integer and integer periods 
has been adopted as the fitness function. To facilitate the 
evolution of sustained logic, Paladugu et al (2006) 
employed a fitness function based on the condition for 
generating Hopf bifurcation. Chu (2007), on the other 
hand, suggested a correlation based fitness function. 
Unfortunately, no definite conclusion can be drawn on 

whether the suggested fitness functions have really 
facilitated the evolution of sustained oscillation.  

Jin et al (2008) have investigated the easiness, 
evolvability in a loose sense, of evolving oscillatory 
dynamics from a different perspective. Instead of trying 
new fitness functions, they looked into the influence of the 
genetic encoding scheme as well as the activation function 
used in the gene regulatory model of a relaxation 
oscillation circuit. It has been shown that it is much easier 
to evolve sustained oscillation with a step function than 
with a Hill function. When a higher Hill is used, a larger 
co-efficient is preferred for the evolution of sustained 
oscillation. However, the evolutionary system is not able 
to find a large Hill co-efficient automatically. 

Meanwhile, regulation control, particularly the 
regulation logic, is also attracting more and more research 
efforts. An experimental analysis of regulation control of 
the gene for development of the sea urchin has been 
conducted in Yuh et al (2000). A systematic investigation 



  
 
of control logic in gene regulation has been performed in 
Schilstra and Nehaniv (2008), which concludes, among 
others, that networks consisting of competitively binding 
activators and repressors can be controlled more robustly.   

This paper investigates in silico the role of regulation 
logic in evolving oscillatory dynamics on two regulatory 
motifs consisting of a negative feedback loop and a 
positive feedback loop. To this end, we employ an 
evolution strategy, one of the widely used artificial 
evolutionary algorithms (Bäck, 1996), to evolve the 
parameters of the given network motifs. Our results 
indicate that both regulation logic and the way how 
feedback loops are coupled play a substantial role in the 
evolvability of gene regulatory networks, and in the 
stability of the evolved dynamics as well.   

Regulatory Motifs and Regulation Logic  

This work considers two small regulatory motifs, each 
consisting of a positive feedback loop and a negative 
feedback loop, as shown in Figure 1. The only difference 
between the two motifs lies in the way how the two 
feedback loops are coupled in the target gene, g3. 
Hereafter, we term the motif on the left in Figure 1 
consistently regulated motif (CRM), whilst the one on the 
right inconsistently regulated motif (IRM). 
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Figure 1. Two regulatory motifs.                   (a) 
Consistently regulated motif (CRM)           (b) 

Inconsistently Regulated Motif (ICR) 

The CRM can be described using the following 
ordinary differential equations (ODEs): 
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where ix ’s are the concentration of the protein product of 

the genes, 11a , 22a  and 33a  are the degradation rate of 

the proteins, 13a , 23a , and 3a are the parameters 

representing the strength of gene-protein interactions. In 
the CRM, there are three activating regulations and one 
repressive regulation distinguished by different Hill 

functions. An activating Hill function, e.g., 13H   can be 

described as follows: 
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where n is called the Hill coefficient. By contrast, a 

repressive Hill function, e.g., 23H , can be represented by 
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In Eq.(3), ))(),(( 232113 xHxHL  is a function 

describing the regulation logic combining the regulation of 
various transcription factors. In this work, we suppose that 
various transcription factors bind to the binding site of the 
target gene (g3) independently.  

We assume that different transcription factors bind to 
the binding site of a gene independently. We consider two 
situations. First, both transcription factors are needed to 
activate the expression of the target gene. Second, either 
the product of gene 1 (g1) or that of gene 2 (g2) will be 
able to activate the expression of the target gene. For the 
former case, we use the fuzzy logic ‘AND’, which can be 
described using either the Zadeh ‘AND’ or the 
probabilistic ‘AND’ (Jin, 2003): 
 
Zadeh ‘AND’: ),,min(),( yxyxL =              (6) 

Prob. ‘AND’:  .),( xyyxL =                                (7) 
 
Similarly, the following Zadeh ‘OR’ and probabilistic 
‘OR’ logic forms are adopted in case that the product of 
either gene 1 or gene 2 is able to activate the expression of 
gene 3 independently: 
 
Zadeh ‘OR’: ),,max(),( yxyxL =                 (8) 

Prob. ‘OR’:    .),( xyyxyxL −+=                (9)  
 
In addition, we also consider the case where a summation 
is used for the logic function, which can be seen as a 
combination of logic ‘AND’ and logic ‘OR’: 
 

summation: ),(
2
1),( yxyxL +=                  (10) 

A Computational Evolutionary System 

Since the late 1960s, a larger number of evolutionary 
algorithms have been developed in the field of artificial 
intelligence (Bäck, 1996). These algorithms are inspired 
by natural evolution, and have been widely used in solving 
scientific and engineering problems. An evolutionary 



  

algorithm usually consists of a population of individuals, 
each coding a potential solution to the problem. Genetic 
operators such as gene duplication or mutation can be 
applied to the individuals in a parent population to 
generate an offspring population. Then, a subset of the 
offspring population will be selected based on individuals’ 
fitness (quality) as the parent population of the next 
generation. This process repeats until a stop criterion is 
met. Figure 2 illustrates a generic evolutionary algorithm. 

 

 

Figure 2.   A generic evolutionary algorithm 

In this work, we employ a canonical evolution 
strategy (ES), (µ, λ)-ES, where µ and λ are the parent and 
offspring population size, respectively, to evolve the 
parameters in the regulatory motifs. The goal of the 
evolution is to produce oscillatory dynamics for gene 3. In 
the evolution strategy, the parameters are mutated by 
adding a random number generated by a normal 
distribution, whose variance is also subject to evolution. 
The reader is referred to Bäck (1996) for a detailed 
description of the ES. 

  
Simulation Studies 

Experimental Setups 

 The differential equations are solved using the 
modified Euler’s method with a step size of 0.1. The 
fitness function is as follows: 
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where N is the number of time steps simulated in solving 

the dynamics, 
dx3  is the desired output of the target gene 

defined by the following sinus function: 
 

,0.1)/2sin(3 += Ttxd π                              (12) 

 

where T is the desired period of the oscillation. In the 
simulations, all regulatory parameters are randomly 
initialized between 0 and 4, and the initial step-size of the 
ES is set to 1.0.  The parent and offspring population sizes 
are set to 30 and 200, respectively. Each evolution is run 
for 500 generations. 

Easiness of Evolving Sustained Oscillations 

To check the easiness of evolving sustained 
oscillation for the CRM and the IRM with different 
regulation logics, we attempt to evolve oscillatory 
dynamics for 12 different periods, that is, T=1,2,…,12. 
For each desired period, we performed 10 independent 
runs. Then we count the number of runs in which 
sustained oscillation is evolved successfully. The 
evolution is said to be successful if the amplitude change 
of the oscillation is less than 1% within 400 time steps.  
The results for the CRM and IRM are presented in Figure 
3 and Figures 4, respectively. 
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Figure 3.  Success percentage of CRM 
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Figure 4.  Success percentage of IRM 

 
From Figures 3 and 4, we can see that the success 

percentage profiles for the CRM and IRM are quite 
different. CRMs with the probabilistic ‘AND’ logic and 
summation logic exhibit the highest and second highest 
success percentages on average. By contrast, IRMs with 
the summation and probabilistic ‘OR’ logic have the 
highest success percentage.  As a whole, the success 
percentage for evolving sustained oscillation is quite low. 
Nevertheless, different to the relaxation motif studied in 
Jin et al (2008), a high Hill coefficient is not required for 
the CRM and IRM.   
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Robustness of the Evolved Dynamics 

 In this section, we examine the stability of the 
evolved oscillatory dynamics when the initial 
concentrations vary or when the parameters of the 
regulatory motifs are perturbed.  

We first change the initial concentrations of the three 
proteins after evolution is complete for testing the stability 
of the evolved dynamics.  The initial states are set to 
(1,1,0) during the evolution. In the test, they are initialized 
randomly between 0 and 4. For the CRM with the 
probabilistic ‘AND’, sustained oscillation is evolved 
successfully in 16 runs out of 120 independent runs. When 
the initial states are re-initialized, some of the initial states 
converge to a point attractor instead of a limit cycle for all 
16 evolved motifs. For CRM with the summation logic, 
sustained oscillation has evolved in four runs. In these 
cases, all random initial states converge to a limit cycle. 
From these results, we can conclude that the sustained 
oscillation of CRMs with the summation logic is less 
sensible to perturbations in the initial concentrations than 
the CRM with the probabilistic ‘AND’ logic. For the IRM, 
the results are quite different. For all the 29 success cases 
with the summation logic and the 15 cases with the 
probabilistic ‘OR’ logic, all randomly initialized states 
converge to the evolved limit cycle. 

The sensitivity to perturbations in parameters shows 
also very different behaviors. It is found that for CRMs, 
with either the probabilistic logic or the summation logic, 
are vulnerable to noises in parameters. Figure 5 shows the 
50 state-space trajectories of a CRM with the summation 
logic under 1% (left panel) and 5% (right panel) noise 
level. The 50 initial states are generated randomly in the 
interval of [0, 4]. For a level of 1% noise, the regulatory 
system is still able to produce sustained oscillation for all 
the initial states. However, when the noise level rises to 
5%, the oscillation becomes damped, and finally 
converged to a point attractor.  

The results from IRM are quite different. For IRMs 
with either the probabilistic ‘OR’ logic or the summation 
logic, the regulatory system is able to generate    sustained 
oscillation under 1% or 5% noise level in the parameters. 
Fifty trajectories of an IRM with the summation logic are  
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Figure 5.  State-space trajectories of a CRM in presence of 
noise in the parameters, where the x-axis denotes x2 and 

the y-axis x3. Left panel: with 1% noise. Right panel: 5%. 
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Figure 6. State-space trajectories of an IRM in presence of 
noise in the parameters, where the x-axis denotes x2 and 

the y-axis x3. Left panel: with 1% noise. Right panel: 5%.  
 
presented in Figure 6, where the left panel shows the 
results with 1% noise and the right panel the results with 
5% noise. It can be seen that in both cases, the regulatory 
system is able to maintain a sustained oscillation. 

Conclusions 

Our results suggest that both regulation logic and the 
way for coupling the feedback loops in regulatory network 
motifs play a central role in evolving sustained dynamics. 
We also find that the sustained oscillation of the evolved 
IRMs is more robust to perturbations in the parameters of 
the regulatory model than the CRM. Our future work will 
examine if the more evolvable and robust regulatory 
motifs will emerge in evolution where the regulation logic 
and the coupling structure are not predefined. 
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