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Abstract

We present an integrated vision architecture capable of incrementally

learning several visual categories based on natural hand-held objects. Ad-

ditionally we focus on interactive learning, which requires real-time image

processing methods and a fast learning algorithm. The overall system is

composed of a figure-ground segregation part, several feature extraction

methods and a life-long learning approach combining incremental learn-

ing with category-specific feature selection. In contrast to most visual

categorization approaches, where typically each view is assigned to a sin-

gle category, we allow labeling with an arbitrary number of shape and

color categories. We also impose no restrictions on the viewing angle of

presented objects, relaxing the common constraint on canonical views.



1 Introduction

An amazing capability of the human visual system is the ability to learn an
enormous repertoire of visual categories. This large amount of categories is ac-
quired incrementally during our life and requires at least partially the direct
interaction with a tutor. Inspired by the child-like knowledge acquisition we
propose an architecture for learning several visual categories in an incremen-
tal and interactive fashion. The architecture is composed of several building
blocks including figure-ground segregation, feature extraction, a category learn-
ing module and user interaction. All these modules together allow the training
of categories based on natural objects presented in hand.

The learning system proposed in this paper is partly based on earlier work
dealing with online object identification in cluttered scenes (Wersing et al.,
2007). For our learning system a novel incremental category learning method is
proposed that combines a learning vector quantization (LVQ) (Kohonen 1989)
network to approach the “stability-plasticity dilemma” with a category-specific
forward feature selection. Based on this combination we are able to interactively
learn a category-specific long-term memory (LTM) representation, where previ-
ous LTM models proposed by Kirstein, Wersing, & Körner (2008) could only be
learned offline. Other major contributions are the integration of an enhanced
figure-ground segregation method and the extraction of parts-based feature. In
the following further related work with respect to categorization frameworks,
online learning methods and life-long learning architectures is discussed in more
detail.

1.1 Visual Categorization Architectures

In the past few years many architectures dealing with object detection and
categorization tasks have been proposed in the computer vision community. In-
terestingly many of those approaches are based on local parts-based features,
which are extracted around some defined interest points e.g. (Leibe et al., 2004;
Willamowski et al., 2004; Agarwal et al., 2004) or on agglomerative clustering
(Mikolajczyk, Leibe, & Schiele 2006) to build up object models for categories
like faces or cars. The advantages of these approaches are their robustness
against partial occlusion, scale changes, and the ability to deal with cluttered
environments. One drawback is that such methods are typically restricted to
the canonical view of a certain category. Thomas et al. (2006) try to overcome
this limitation by training several pose-specific implicit shape models (ISM)
(Leibe, Leonardis, & Schiele 2004) for each category. Afterwards detected
parts from neighboring pose-dependent ISMs are linked by so-called “activa-
tion links”. This allows the detection of categories from many viewpoints. Such
categorization architectures, however, are designed for offline usage only, where
the required training time is not important. This makes them unsuitable for
our desired online and interactive training. A recent work of Fritz, Kruijff, &
Schiele (2007) addresses this issue and proposes a semi-supervised and incre-
mental clustering method for interactive category learning. This approach is,
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however, restricted to the canonical view of the categories.

1.2 Online and Interactive Learning Systems

The development of online and interactive learning systems became more and
more popular in the recent years, see e.g. (Roth et al., 2006), (Steels & Kaplan,
2001), (Arsenio, 2004) or (Wersing et al., 2007). All these systems are able
to identify several objects in cluttered environments, but are not applicable to
categorization tasks. This is because their learning methods can not extract a
more variable category representation. Nonetheless those models are useful as
a short-term memory (STM) representation. Afterwards this representation is
consolidated into a more abstract LTM representation of categories allowing a
higher generalization performance compared to the object-specific STM repre-
sentation. Of particular interest with respect to online and interactive learning
of categories is the work of Skočaj et al. (2007). It enables learning of several
simple color and shape categories by selecting a single feature which describes
the particular category most consistently. The category itself is then repre-
sented by the mean and variance of this selected feature (Skočaj et al., 2007)
or more recently by an incremental kernel density estimation using mixtures of
Gaussians (Skočaj et al., 2008). Especially this feature selection enhances the
categorization performance, but the restriction to a single feature allows only the
representation of simple categories with little appearance changes. Therefore we
propose a feature selection process that can incrementally select an arbitrary
number of features, if they are required for the representation of a particular
category.

1.3 Life-Long Learning Architectures

Based on the STM representation, which is assumed to be limited in capacity,
we propose an incremental and life-long learning method to acquire a category-
specific long-term memory (LTM) representation. For the LTM we approach
the so-called “stability-plasticity dilemma”. This dilemma occurs when neu-
ral networks are trained with a limited and changing training ensemble, causing
the well known “catastrophic forgetting effect” (French 1999). A common strat-
egy for life-long learning architectures e.g. (Hamker, 2001; Furao & Hasegawa,
2006; Kirstein et al., 2008) is the usage of a node specific learning rate com-
bined with an incremental node insertion rule. This permits plasticity of newly
inserted neurons, while the stability of matured neurons is preserved. The ma-
jor drawback of those architectures commonly used for identification tasks is
the inefficient separation of cooccuring categories. This means for natural ob-
jects, which typically belong to several different categories (e.g. red-white car),
a decoupled representation for each category (for category red, white and car)
should be learned. This decoupling leads to a more condensed representation
and higher generalization performance compared to object identification archi-
tectures. Another approach to the “stability-plasticity dilemma” was proposed
by Ozawa et al. (2005). Here representative input-output pairs are stored into
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Figure 1: Category Learning System. Based on an object hypothesis ex-
tracted from the depth map a figure-ground segregation is performed. The
detected foreground is used to extract color and shape features. Color fea-
tures are represented as histogram bins in the RGB color space. In contrast to
most other categorization approaches we combine general category independent
features obtained from a detection hierarchy with parts-based features. All ex-
tracted features are concatenated into a single structureless vector. This vector
together with the category labels provided by an human tutor, is the input to
the incremental category learning module.

a long-term memory for stabilizing an incremental learning radial basis func-
tion (RBF) like network. Additionally it also accounts for a feature selection
mechanism based on incremental principal component analysis, but no class-
specific feature selection is applied. Therefore this method it unsuitable for
categorization tasks without modification.

In the following we describe step by step the building blocks of our learning
system illustrated in Fig. 1. The first processing block extracts the object
hypothesis from cluttered scenes. This hypothesis is further refined by a figure-
ground segregation method as described in Section 2. Additionally we describe
all used feature extraction methods in Section 3. The extracted shape and
color information is combined and used to train the proposed life-long learning
vector quantization approach described in Section 4, which is trained in direct
interaction with a human tutor. The target of our system is interactive and life-
long learning of categories. Therefore in Section 5 the learning results of our
proposed methods are shown for differently complex databases. Additionally we
show the interactive learning capability of the proposed learning system under
real-world constraints. Finally we discuss the results and related work in Section
6.
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2 Preprocessing and Figure-ground Segregation

One of the essential problems when dealing with learning in unconstrained en-
vironments is the definition of a shared attention concept between the learning
system and the human tutor. Specifically this is necessary to decide what and
when to learn. In our architecture we use the peri-personal space concept (Go-
erick et al., 2006), which basically is defined as the manipulation range around
an active vision system. Everything in this short distance range is of particular
interest to the system with respect to interaction and learning. Therefore we
use a stereo camera system with a pan-tilt unit and parallelly aligned cameras,
which deliver a stream of image pairs. Depth information is calculated after
the correction of lens distortions. This depth information is used to generate
an interaction hypothesis in cluttered scenes, which after its initial detection is
actively tracked until it disappears from the peri-personal attention range. Ad-
ditionally we apply a color constancy method (Pomierski & Gross 1996) and a
size normalization of the hypothesis. Both operations ensure invariances, which
are beneficial for any kind of recognition system, but are essential for fast on-
line and interactive learning in unconstrained environments. Finally a region of
interest (ROI) of an object view is extracted and scaled to a fixed segment size
of 144x144 pixel.

The extracted segment ji contains the object view, but also a substantial
amount of background clutter as can be seen in Fig. 2. For the incremental
build-up of category representations it is beneficial to suppress such clutter, oth-
erwise it would slow down the learning process and considerably more training
examples are necessary. Therefore we apply an additional figure-ground segre-
gation as proposed by Denecke et al. (2009) to reduce this influence. The basic
idea of this segregation method illustrated in Fig. 2 is to train for each segment
ji a learning vector quantization (LVQ) network based on a predefined number of
distinct prototypes for foreground and background. As an initial hypothesis for
the foreground the noisy depth information belonging to the extracted segment
is used. The noise of this hypothesis is caused by the ill-posed problem of dispar-
ity calculation and is basically located at the corner of the corresponding object
view. Furthermore also “holes” at textureless object parts are common. Due to
the fact that the objects are presented by hand, skin color parts in the segment
are systematic noise, which we remove from the initial foreground hypothesis
based on the detection method proposed by Fritsch et al. (2002). Due to this
skin color removal faces and gestures can not be learned with this preprocess-
ing. Nevertheless with a modified preprocessing as proposed in Wersing et al.
(2007) a combined learning of objects and faces can be achieved. The learning of
each LVQ prototype is based on feature maps consisting of RGB-color features
as well as the pixel positions. Instead of the standard Euclidean metrics for
the distance computation an extended version of the generalized matrix LVQ
(Schneider, Biehl, & Hammer 2007) approach is used. This metric adaptation is
used to learn relevance factors for each prototype and feature dimension. These
local relevance factors are adapted online and weight dynamically the differ-
ent feature maps to discriminate between foreground and background. For the
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Figure 2: Figure-ground Segregation. Based on the extracted segment, the
corresponding depth mask and a skin color removal a foreground hypothesis is
generated. This hypothesis includes a considerable amount of noise and clut-
ter, which the applied figure-ground segregation method strongly reduces. The
noise in the foreground hypothesis is a consequence of the ill-posed problem
of disparity calculation, which introduces noise mainly around the object or at
textureless parts of the object. After generating this hypothesis a generalized
matrix LVQ network is trained, based on a predefined number of prototypes and
prototype specific relevance factors. Based on the learned network the refined
foreground mask is calculated. Only the foreground pixels are used for feature
extraction in the following steps.

purpose of figure-ground segregation such local matrices lead to a significantly
better foreground classification (Denecke et al., 2009), which directly enhances
the category learning. Additionally these local relevance factors generate more
complex decision boundaries based on a small set of LVQ prototypes allowing
for figure-ground segregation in real-time. The output of this segregation step
is a binary mask ξi defining the foreground. In the following processing steps
only foreground pixels are used to extract features.

3 Feature Extraction

For our category learning system we use several feature extraction methods
providing shape and color information, but we do not give this qualitative sep-
aration of the extracted features to the learning system as a priori information.
For our categorization task we are particularly interested in discovering the
structure from the high-dimensional but sparse feature vectors by using a flexi-
ble metrical adaptation. Assume you want to learn the category “fire engine”,
where all training examples are mainly of red color. If the learning of this cat-
egory is restricted to shape features only, it would be difficult to distinguish it
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from other cars and trucks. This is because the most distinctive feature, the
red color, is not included in the feature representation. Therefore we let the
learning algorithm decide which feature combinations are most suitable to rep-
resent a category. As a consequence we concatenate all extracted features of
an object view into a single high-dimensional and structureless feature vector
xi = (xi

1, . . . , x
i
F ), where F denotes the total number of features. Although the

overall dimensionality F > 10000 is high, typically only a subset of 15-30% of
the features are activated with xi

f > 0. Additionally each vector xi is assigned

to a list of category labels ti = {ti1, . . . , t
i
C}. We use C to denote the current

number of represented color and shape categories, where each tic ∈ {−1, 0,+1}
labels an xi as positive or negative example of category c. The third state tc = 0
is interpreted as unknown category membership, which means that all vectors
xi with tic = 0 have no influence on the representation of category c.

3.1 Histogram Binning for Color Feature Extraction

For the representation of color information we use the common histogram bin-
ning method which combines robustness against view and scale changes with
computational efficiency (Swain & Ballard 1991). Overall Fco =6x6x6=216
histogram bins within the RGB color space are used, where typically a small
amount of features are specific for a complete color category.

3.2 Hierarchical Feed-Forward Shape Feature Extraction

We use a feed-forward feature extraction architecture inspired by the Neocog-
nitron (Fukushima 1980) to extract shape features. This architecture is based
on weight-sharing and a succession of feature detection and pooling stages (see
(Wersing & Körner 2003) for details). The feature detectors of this architecture
are obtained through unsupervised learning, providing a set of general but less
category-specific features. Starting point for the feature extracting process is the
segment ji and the foreground mask ξi. The first feature-matching layer S1 is
composed of four orientation sensitive Gabor filters zm

s1(x, y) with m = 1, . . . , 4
that perform a local orientation estimation. To compute the response P̂mi

s1 (x, y)
of a simple cell of this layer, responsive to feature type m at position (x, y) first
the segment ji is convolved with a Gabor filter zm

s1(x, y):

P̂mi
s1 (x, y) =

{

|ji ∗ zm
s1(x, y)| : ξi(x, y) > 0

0 : else
. (1)

This computation of local edge responses is restricted to the positions in the
foreground mask with ξi(x, y) > 0, whereas the ∗ denotes the inner product
of two vectors. Additionally a winners-take-most (WTM) mechanism between
features at the same position is performed and a simple threshold function with
a common threshold for all cells in layer S1 is applied. We denote the final
output of the S1 layer at position (x, y) as Pmi

s1 (x, y). The following C1 layer
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subsamples the S1 output Pmi
s1 by pooling down to a quarter in each direction

(e.g. 144x144 S1 features are pooled down to 36x36 C1 features):

Pmi
c1 (x, y) = tanh

(

Pmi
s1 ∗ zc1(x, y)

)

, (2)

where zc1(x, y) is a normalized Gaussian pooling kernel with width σc1, identical
for all features m, and tanh is the hyperbolic tangent function.

The S2 layer is sensitive to local combinations of the orientation estimation
features extracted from layer C1. The so-called combination features of this
S2 layer (for this experiment 50 different shape features with n = 1, . . . , 50 are
used) are trained with sparse coding (see (Wersing & Körner 2003) for details).
The response P̂ni

s2 (x, y) of one S2 cell is calculated in the following way:

P̂ni
s2 (x, y) =

∑

m

Pmi
c1 ∗ znm

s2 (x, y), (3)

where znm
s2 (x, y) is the receptive field vector of the S2 cell of feature n at position

(x, y), describing connections to the plane m of the previous C1 cells. Similar to
the S1 layer a WTM mechanism and a final threshold function are performed in
this S2 layer. The final C2 layer again performs a spatial integration and reduces
the resolution by half in each direction (i.e. 36x36 S2 features are down-sampled
to 18x18 C2 features). For this operation the same pooling mechanism as in
layer C1 is used, so that the final dimensionality is Fc2 =50x18x18=16200.

3.3 Parts-based Shape Feature Extraction

In contrast to the hierarchical feed-forward feature extraction architecture the
parts-based features are trained in a supervised manner with respect to category
specificity. We combine these different shape features to show the ability of the
category learning method to select appropriate features out of a large amount
of possible candidates. Such feature combinations are rare because most cate-
gorization methods rely on parts-features only.

3.3.1 Extraction of Parts-Based Features During Online Learning

The parts-based feature detection (see (Hasler, Wersing, & Körner 2007) for de-
tails) is based on a preselected set of SIFT-descriptors (Lowe 2004). Commonly
in categorization frameworks such descriptors are only extracted at a small num-
ber of interest points. In contrast to this in our approach they are extracted
at any location in the segment ji, with foreground mask ξi(x, y) > 0. For each
segment ji the similarity Pmi

a (x, y) (m = 1, . . . , 500) between the stored feature

detector zm
a and the SIFT-response P̂mi

a (x, y) corresponding to segment ji at
position (x, y) is calculated using the dot product:

Pmi
a (x, y) =

{

P̂mi
a (x, y) ∗ zm

a : ξ(x, y) > 0
0 : else

(4)
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a the corresponding response Pni
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a ≥ ǫn belong to the same

category and are assigned to a constant scoring value hni
a = 3. The scoring

values are used to guide the iterative selection process, by adding the feature
candidate wn

a to the list of selected features zm
a leading to the highest additional

gain.

The final response Pmi
a for the feature detector zm

a and the current segment ji

is defined as:
Pmi

a = max
x,y

(Pmi
a (x, y)). (5)

So that for each feature detector zm
a only the maximum response is used (Fa =

m = 500), neglecting all spatial and configurational information. Such informa-
tion is commonly included in categorization methods like in (Leibe, Leonardis, &
Schiele 2004), but requires a high amount of representational resources. Neglect-
ing this information leads to a more compact representation with an efficient
reuse and combination of parts, which enhances the learning speed for interac-
tive category learning tasks. Another important issue is that this parts-based
feature representation is invariant with respect to rotations in the image plane.
As a final step the non-sparse feature activations are transformed into a sparse
representation, by choosing only 10% of the features with highest detector re-
sponses for segment ji.

3.3.2 Scheme for Selecting Optimal Parts-Based Feature Detectors

In the following we describe how the feature detectors zm
a are determined.

In general this offline feature selection scheme tries to find an optimal set of
detectors with respect to robust redetection of features and category speci-
ficity (Hasler, Wersing, & Körner 2007). As a first step of this scheme SIFT-
descriptors are calculated for each location in the training image i with ξ(x, y)i >
0. Based on these SIFT-descriptors a k-means clustering with 100 components
is applied for each image i. This clustering step is done to improve the gener-
alization performance and to reduce the number of descriptors. Based on all
obtained k-means clusters, used as candidate descriptors wn

a with n = 1, .., N ,
the feature responses Pni

a are calculated. Afterwards the minimal thresholds
ǫn are computed in a way that all segments i with Pni

a ≥ ǫn belong to the
same category. Each image i satisfying this constraint is assigned to a constant
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scoring value hni
a = 3, which is illustrated in Fig. 3 for a single wn

a . The itera-
tive feature selection determines a predefined number of features by selecting at
each iteration the best feature candidate wn

a that leads to the highest additional
gain. This selection is therefore based on the scoring values hni

a , already selected
features zm

a with m = 1, . . . ,M and all remaining candidates wn
a :

n = arg max
n∈N

(

∑

i

Φ

(

hni
a +

∑

m∈M

hmi
a

))

, (6)

where Φ(z) is defined as Fermi function. Finally the determined candidate
feature wn

a is added to the set of selected features zM+1
a = wn

a . Afterwards
the collection of further candidate features wn

a is repeated until a predefined
number of selected features is reached. Overall this scheme selects parts-based
detectors, which describe the known categories best. Additionally the selected
features are general enough to represent arbitrary unknown shape categories,
that are not included in the set of training images.

4 Incremental and Interactive Category Learn-

ing

Similar to the human brain different memory concepts (see Fig. 4) are used
to interactively learn several visual categories. Therefore labeled training vec-
tors are first stored into an intermediate short-term memory (STM), which
is assumed to be limited in capacity. This object-specific STM performs fast
one-shot learning and typically strongly reduces the number of necessary repre-
sentatives r, by performing a kind of novelty detection. Based on this limited
and changing STM a knowledge transfer method is proposed that is able to it-
eratively consolidate the object-specific STM information into a more abstract
category-specific long-term memory (LTM) illustrated in Fig. 4. For this trans-
fer we focus on life-long learning and interactive training of arbitrary categories,
which require a compact and efficient LTM representation.

4.1 Online Vector Quantization to Build a Short-Term

Memory

The online vector quantization (oVQ) model developed by Kirstein, Wersing,
& Körner (2008) provides fast appearance-based learning of complex-shaped
objects. The proposed model stores exemplar-based representatives rl with
l = 1, . . . , L in a so-called short-term memory representation, providing a lim-
ited and changing object-specific memory. Each representative rl is labeled
with a class o, which corresponds to a specific pattern of category labels to =
{t1, . . . , tC}. The acquisition of representatives is based on a similarity thresh-
old ǫstm. We denote the similarity of feature vector xi and representative rl by
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Figure 4: Category Learning with a Coupled Short and Long-Term

Memory Concept. Object views are first buffered into the sensory memory
using the online vector quantization (oVQ) method until label information is
provided by the tutor. Due to our assumption that only views of a single
object are collected into this memory, all collected views have the same label
information, even if they are collected before the labeling. After labeling this
knowledge is transferred into the STM using the same oVQ learning method.
The object-specific STM is limited in capacity allowing only to store the latest
presented objects. Therefore we use the life-long learning cLVQ method to
deal with the “stability-plasticity dilemma” and iteratively transfer the STM
information into the category-specific LTM.

Ail:

Ail = exp

(

−
||xi − rl||2

σ

)

, (7)

where σ is chosen for convenience such that the average similarity is approxi-
mately equal to 0.5.

We define Ro as set of all representatives rl that belong to the same class o.
For one learning step the similarity Ail between the current feature vector xi

and all representatives rl ∈ Ro is calculated and the maximum value is selected
as:

Ai
max = max

l∈Ro

Ail. (8)

The feature vector xi is added to the representation of class o, if Ai
max < ǫstm.

Otherwise we assume that the vector xi is already sufficiently well represented.
Based on the selected STM representatives rl object identification with good
detection performance is possible using a simple nearest neighbor classifier
(Kirstein, Wersing, & Körner 2008).

Compared to the naive approach, where each xi is stored as representative
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rl Kirstein, Wersing, & Körner (2008) could show that the number of repre-
sentatives rl can be considerably reduced by about 30% without losing gener-
alization performance. Additionally we assume a limited memory size of the
STM, requiring a deletion strategy of feature vectors if the capacity limit is
reached. Therefore STM vectors are removed that belong to the same class o of
a particular category label list for which almost no categorization errors occur.
Such vectors are already successfully transferred to the LTM and can be deleted
without information loss.

4.1.1 Short-Term Memory with Additional Sensory Memory

For interactive learning scenarios usually only few object views are presented
to the system. Additionally learning systems are typically separated into a
train and test phase, where commonly distinctive views are used. To relax this
separation and to make the most efficient use of object views, we introduce a
sensory memory concept for temporarily remembering views of the currently
attended object, by using the same one-shot learning method as used for the
STM. The basic assumption behind this memory concept is that only views
of a single object are inserted and that the memory is cleared if the object
identity changes. For this we use the disappearance of the object from peri-
personal space to detect an identity change. This allows that object views
can be first used to test the STM and LTM representation and after providing
confirmed labels the same views can also be used to enhance the representation
by transferring them into the STM, even if they where recorded before the
confirmation.

4.2 Category Learning Vector Quantization to Build a

Long-Term Memory

The learning method for the memory consolidation from the STM into the
LTM is the most complex part of our architectures. Therefore a more detailed
description is given in the following. For this learning method we propose a
combination of an incremental exemplar-based network and a forward feature
selection method (see (Guyon & Elissee 2003) for an introduction to feature
selection methods). We call this combination category LVQ (cLVQ) in the
following. The proposed cLVQ allows life-long learning and also enables a sepa-
ration of cooccuring visual categories, which most exemplar-based networks can
not handle. Both parts are optimized together to ensure a compact and efficient
category representation, which is necessary for fast and interactive learning.

The forward feature selection method is used to find low dimensional subsets
of category-specific features by predominately selecting features, which occur
almost exclusively for a certain category. For guiding this selection process a
feature scoring value hcf for each category c and feature f is calculated. This
scoring is only based on previously seen examples of a certain category and can
strongly change if further information is encountered. Therefore a continuous
update of the hcf values is required to follow this change. The exemplar-based
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network part of the cLVQ method is used to approach the ”stability-plasticity
dilemma” of life-long learning problems. In general the exemplar-based network
of our learning system represents the variations of different category members
(e.g. normal car and cabriolet) and object poses (e.g. front and side view of
cars). Although there are several neural network models for incremental learning
available like the growing neural gas (Fritzke 1995) or growing cell structures
(Fritzke 1994) those methods typically can not be used for life-long learning
tasks without modification.

4.2.1 Distance Computation and Learning Rule

The LTM representative vectors wk with k = 1, . . . ,K are built up incremen-
tally, where K denotes the current number of allocated vectors w. Each wk is
assigned to a label vector uk where uk

c ∈ {−1, 0,+1} is the model target output
for category c, representing positive, negative, and missing label output, respec-
tively. Each cLVQ node wk can therefore represent several categories c. For the
category-specific distance computation dc we use a weighting Euclidean metrics
with specific weight factors λcf related to the work of Hammer & Villmann
(2002):

dc(r
l,wk) =

F
∑

f=1

λcf (rl
f − wk

f )2, (9)

where the category-specific weights λcf are updated continuously. We denote
the set of selected features for a category c ∈ C as Sc. We choose λcf = 0 for all
f 6∈ Sc, and otherwise adjust it according to a scoring procedure explained later.
The winning nodes wkmin(c)(rl) are calculated independently for each category
c, where kmin(c) is determined in the following way:

kmin(c) = arg min
k

dc(r
l,wk) ∀k with uk

c 6= 0. (10)

Each wkmin(c)(rl) is updated based on the standard LVQ learning rule (Kohonen
1989), but is restricted to feature dimensions f ∈ Sc:

w
kmin(c)
f := w

kmin(c)
f + µ Θkmin(c)(rl

f − w
kmin(c)
f ) ∀f ∈ Sc, (11)

where µ = 1 if the categorization decision for rl was correct, otherwise µ = −1
and the winning node wkmin(c) will be shifted away from rl. Additionally Θkmin(c)

is the node-dependent learning rate as proposed in (Kirstein, Wersing, & Körner
2008).

4.2.2 Feature Scoring and Category Initialization

The scoring value hcf is updated for every new STM representative rl that was
inserted for the last presented object:

hcf = Hcf/(Hcf + H̄cf ). (12)
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The Hcf and H̄cf are the number of previously seen positive and negative
training examples of category c, where the corresponding feature f was ac-
tive (rf > 0). For computational efficiency of the learning dynamics, explained
in the next section, it is beneficial to make the feature scoring update step only
if the training object disappeared from the peri-personal space and not for every
newly inserted rl. For each newly inserted rl of the last presented object, the
counter values Hcf and H̄cf are updated with Hcf := Hcf + 1 if rl is labeled
with tlc = +1 and rl

f > 0 and H̄cf := H̄cf + 1 if tlc = −1 and rl
f > 0. The score

hcf defines the metrical weighting in the cLVQ representation space. We thus
choose λcf = hcf for all f ∈ Sc and λcf = 0 otherwise.

For each category c with STM vectors rl and corresponding category label
tlc = +1 that occurred the first time for the last presented object, we initialize
this category c with a single feature and one cLVQ node. We select the feature
vc = arg maxf (hcf ) with the largest score value and initialize Sc = {vc}. As the
initial cLVQ node the training vector rl is selected, where the selected feature
vc has the highest activation, i.e. wK+1 = rq with rq

vc
≥ rl

vc
for all l. The

attached label vector is chosen as uK+1
c = +1 and zero for all other categories.

4.2.3 Learning Dynamics

The learning dynamics of the cLVQ memory architecture is based on an op-
timization loop (see Fig. 5), which applies iteratively small changes to the
representation of erroneous categories in the following steps:

Step 1: Feature Testing. The target of this step is the addition or removal
of features for the category-specific metrics, based on the available STM rep-
resentatives rl and the corresponding training errors. For each category c we

determine the set of positive errors E+
c = {l|tlc = +1 ∧ tlc 6= u

kmin(c)
c (rl)} and

negative errors E−
c = {l|tlc = −1∧tlc 6= u

kmin(c)
c (rl)}. Afterwards we compare the

total number of positive errors #E+
c with the corresponding number of negative

ones #E−
c . If #E+

c ≥ #E−
c then we compute e+

cf =
∑

l∈E
+
c

Φltm(rl
f )/
∑

l∈E
+
c

1,
where Φltm is a Heaviside function.

The score e+
cf is the ratio of active feature entries for feature f in the pos-

itive training errors of class c. We want to add now a feature to the category
feature set Sc, which both contributes to c by having a high scoring value hcf

and also is very active for the encountered error set E+
c . Therefore we choose

vc = arg maxf 6∈Sc
(e+

cf + hcf ) and add Sc := Sc ∪ {vc}. The added feature di-
mension modifies the cLVQ metrics by changing the decision boundaries of all
Voronoi clusters assigned to category c, which potentially reduces the remain-
ing categorization errors. Therefore the change of the categorization error is
calculated based on the newly added feature vc. If the performance increase for
category c is larger than a threshold ǫ1ltm, then vc is permanently added. Oth-
erwise it is removed and excluded for further training iterations until the hcf

values of category c are updated. An analog step is performed, if the number of
negative errors is larger than the number of positive errors (#E+

c < #E−
c ). In
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errors for category call errors solved for
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Figure 5: Illustration of the cLVQ Optimization Loop. The basic idea
of this loop is to make small modifications to the representation of erroneous
categories. If the gain in categorization performance based on all available
training examples of category c is above the insertion threshold the modification
is kept and otherwise retracted.

such cases a feature is removed and then again the performance gain is computed
for the final decision on the removal.

Step 2: cLVQ Node Testing. We test new cLVQ nodes similar to Step 1
only for erroneous categories. In previous work nodes are inserted for training
vectors with smallest distance to wrong winning nodes (Kirstein, Wersing, &
Körner 2008). In this paper we propose to insert new cLVQ nodes based on

training vectors rl with the most categorization errors tlc 6= u
kmin(c)
c (rl) for

all categories C, until for each erroneous category c at least one new node is
inserted. This leads to a more compact representation, because a single node
typically improves the representation of several categories.

Again we calculate the performance increase based on all currently available
training vectors. If this increase for category c is above the threshold ǫ2ltm, we
make no modifications to the cLVQ node labels of the corresponding newly in-
serted nodes. Otherwise we set the corresponding labels uk

c of the newly inserted
nodes wk to zero, so that node k does not contribute to the representation of
category c. Finally we remove nodes where all uk

c are zero.
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Step 3: Stop condition. Iterate Step 1 and Step 2 until all remaining cat-
egorization errors are resolved or all possible features f of erroneous categories
c are tested.

4.3 User Interaction

For interactively providing label information to the STM and LTM we use a
simple state-based user interface. This user interface is based on a list of pre-
defined audio labels. This list additionally includes some wild card labels (e.g.
“property one”), to allow the labeling of categories for which no category la-
bel is defined. All labels can be provided to the system in an arbitrary order
and combination. In general the user interaction is composed of two operation
modes. For the default user interaction mode the learning system first integrates

the category decisions over 5 seconds (≈ 20-30 segments), where u
kmin(c)
c = +1

attached to the winning node wkmin(c) means that the category c was detected

and u
kmin(c)
c = −1 that the category c was not detected. To generate the hypoth-

esis list for the currently presented object we calculate for all categories c ∈ C

the ratio between segments assigned to u
kmin(c)
c = +1 and the total number of

already integrated category decisions. If this ratio for category c is above the
empirically determined threshold 0.65 the category c is added to the hypothe-
sis list. Finally all categories added to this hypothesis list are communicated
to the user. In cases where the detection certainty of all categories c is below
0.65 the system respond with “unknown category”. Additionally the hypothesis
list is repeatedly communicated to the user (in 5 second intervals), while newly
acquired segments are also used to refine this list. As a reaction to this commu-
nicated hypothesis the human tutor can confirm or correct this list. After the
human response new training views are collected to enhance the category rep-
resentation in the LTM. Furthermore it is also possible for the user to directly
provide category labels, in order to label previously unknown categories.

5 Experimental Results

The proposed category learning approach is the most critical part and defines
the overall system performance. Therefore in the following section several of-
fline and interactive learning experiments are performed. For the interactive
learning experiment complex-shaped objects are freely rotated by hand in front
of our active camera system. Based on the extracted segment and the corre-
sponding foreground mask, color, parts-based, and hierarchical shape features
(C2 features) are extracted and concatenated into a single high-dimensional but
sparse feature vector xi. These xi together with the corresponding category
labels ti are used to incrementally learn the category-specific LTM represen-
tation under real-world conditions. For the offline experiments two databases
with the same objects but different experimental setups are used. Additionally
we investigated the effect of using different shape feature sets. The first set is
composed of color and parts-based features with F = Fco + Fa = 716, while for
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Test ObjectsTraining Objects

Rotation Examples of the Unconstrained Database 

Rotation Examples of the Restricted Database 

Figure 6: Categorization Database. Training and test objects used for the
offline categorization experiments based on two different databases collected
under different experimental settings. The objects are aligned so that each row
corresponds to one of the five shape categories. For the restricted database all
objects where shown in front of a black background and are rotated around
the vertical axis. For the unconstrained database the same training and test
objects are used, but the objects are shown in a cluttered office environment
and are freely rotated by hand covering almost the complete viewing sphere.
Additionally some rotation examples are shown for each database, where for
the examples of the unconstrained database also the corresponding foreground
mask is applied to show the segment part used for feature extraction.

the second set C2 features are added. These C2 features are obtained with the
feature extraction hierarchy, so that the overall feature dimensionality increases
to F = Fco + Fa + Fc2 = 16916. The major difference between the offline and
interactive learning experiments is that no sensory memory is required for the
offline experiments. Additionally a simplified STM concept for the offline ex-
periments is used, where all collected object views are stored into the limited
STM, similar to the experiments described in (Kirstein et al., 2008).

5.1 Offline Categorization Experiments

We compare the categorization performance of our proposed cLVQ method with
a single layer perceptron (SLP) for different databases and feature sets summa-
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rized in Fig. 7. We use the SLP for comparison because it is the simplest
architecture for this category learning task. Therefore it characterizes the diffi-
culty and the baseline performance of this learning task. Although the SLP is
only a linear method for high-dimensional and sparse feature vectors it reaches
similar results compared to more complex learning methods, at least if the STM
is not limited (Kirstein, Wersing, & Körner 2008). The SLP output for each
category is given as outslp

c (xi) = 1/(1 + exp(−wslp
c ∗ xi − θc)), where wslp

c is a
single linearly separating weight vector with bias θc for each category c. Train-
ing of the SLP consists of standard stochastic gradient descent in the sum of
quadratic difference errors between training target and model output. In con-
trast to the more commonly used receiver operating characteristic (ROC) curves
we estimate the rejection thresholds during the learning process to allow cate-
gorization of new object views at any time. This is an essential requirement for
interactive learning tasks. The estimation of rejection thresholds is based on
the average SLP output of category c calculated for training vectors xi labeled
with tic = +1 and also for xi labeled with tic = −1. The rejection threshold for
category c is then set to the mean value of both calculated values.

5.1.1 Experimental Setup

For the offline experiments two databases of the same training and test objects
shown in Fig. 6 are collected using different experimental setups. Overall 24
objects for training and a complementary set of 24 test objects are collected for
both databases. The objects of the first database are collected in front of a black
background making foreground masks unnecessary. For each object 300 views
are collected by rotating it around the vertical axis. We refer to this database in
the following as restricted database. Although we call this a restricted database

it already contains more appearance variations than databases of most other
categorization approaches where typically only the canonical views are consid-
ered. Additionally some objects are multi-colored (e.g. some cars or boxes)
where not only the base color should be detected, but also all other prominent
colors, covering more than about one third of the visible object surface. This
multi-detection constraint complicates the categorization task compared to the
case where only the best matching category or the best matching category of
a specified group of visual attributes (e.g. one for color and one for shape)
must be detected. For the second database, called unconstrained database in
the following, each object was freely rotated around three axes in front of our
active camera system covering almost the complete viewing sphere. For the col-
lection of this database we used the same preprocessing as proposed in Section
2. In contrast to the interactive learning the objects are shown by two differ-
ent persons. This additionally increases the variability of object presentation.
Overall 1200 segments and their corresponding foreground masks are collected
for each object. Compared to the restricted database it is more complex because
of much higher appearance variations of objects. The categorization task is also
more challenging due to brightness variation, segmentation errors and imprecise
foreground masks. All these effects cause additional fluctuations to the feature
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responses and therefore complicate the learning process. We refer to errors as
segmentation errors if some foreground parts are missing in the correspond-
ing segment, while imprecise foreground masks are related to background parts
that are assigned to the foreground. Based on both categorization databases
we incrementally learn and test five different color (red, green, blue, yellow, and
white) categories and five different shape (rubber duck, cup, car, cell phone,
box) categories. Finally it should be mentioned that all these effects causing
strong fluctuations in the feature responses. These instable responses combined
with very little training examples pose a considerable problem for any kind of
category learning approach.

For the offline experiments we subdivided the learning of the category-
specific LTM into learning epochs. At each epoch only the feature vectors
of three different objects are visible to the learning architecture, emulating a
capacity-limited STM. At the beginning of each epoch a randomly selected ob-
ject is added to the STM, while the oldest object in the memory is removed.
Based on the currently available feature vectors, the learning methods are used
to incorporate this STM knowledge into the LTM by applying the learning dy-
namics of the cLVQ method described in Section 4.2.3. Additionally gradient
descent with a predefined number of learning steps was performed for the SLP
networks. Note that the SLP is trained based on the full feature vector xi,
without any additional feature selection. After this training phase the current
categorization performance is calculated based on all test objects to show the
effect of the newly presented object to the categorization performance. Finally
new learning epochs are started until all training objects were presented once to
the learning system. Each object is shown only once during the training epochs,
and does not reappear during training. In this way we investigate the life-long
learning capability of our cLVQ architecture and its ability to approach the
“stability-plasticity dilemma”. For all experiments, the training set is changing
over time due to the incremental learning task. For evaluation, however, the
categorization performance is computed on the stationary set of all test objects
with their target category labels. Additionally the categorization performance is
averaged over all individual categories belonging to the group of color or shape
categories respectly.

5.1.2 Categorization Results

The comparison of cLVQ and SLP for the restricted database is shown in the up-
per row of Fig. 7. For the evaluations, we show the categorization performance
averaged over 10 runs. It can be seen that at the beginning of the training the
SLP is superior to our proposed cLVQ method, but after presenting all training
objects the cLVQ performs distinctly better for the color categories, while for
the shape categories cLVQ is slightly better than the SLP architecture. Al-
though the SLP performs worse than cLVQ it still performs surprisingly well,
which is somehow contrary to classification tasks with a one-out-of-n class selec-
tion where the SLP approach is known for the “catastrophic forgetting effect”
(French 1999). It seems to be that for our categorization task the indepen-
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dent representation of categories somehow weakens the forgetting effect of SLP
networks. For a larger number of shape categories and training objects the
performance improvement of cLVQ over SLP is clearly visible, as was shown in
earlier experiments (Kirstein et al., 2008).

The addition of the C2 features to the vectors xi increases the categorization
performance of shape categories for the cLVQ and SLP method. Although the
C2 feature representation is less category-specific, at least some of the local and
topographically organized C2 features can be used to stabilize the representa-
tion of shape categories. However, for the color categories C2 features have the
opposite effect causing a slight performance decrease for the cLVQ architecture.
This basically results from C2 features that are dominantly active for many
views of a certain object and therefore are selected to represent the color cate-
gories belonging to this object. Such general and object-specific C2 features are
most probably also the reason for the strong performance loss of about 20% for
the SLP color categories.

Also for the unconstrained database (see lower row of Fig. 7) the SLP is
superior at earlier learning epochs where only a few objects were trained, while
the cLVQ performs better at later learning stages. The cLVQ learning method
is again distinctly better than SLP for color categories and slightly better for
shape categories. The most distinctive difference to the restricted database ex-
periments is the slow learning progress of shape categories resulting in poor cat-
egorization results. This is basically caused by the strong appearance variations
of the objects under almost full in-depth rotation. Also segmentation errors
make the learning of shape categories harder, because some parts of the objects
are missing in those object views. Additionally also imprecise foreground masks
cause problems for the category learning, because potentially also features ex-
tracted next to the object are used to incrementally learn the representations of
categories. The appearance variations caused by full 3D object rotation induce
strong fluctuations to the detection of shape features, complicating the forward
feature selection process. This is caused by the fact that if there are almost
no features with high scoring values the selection methods has to test many
different features. Additionally the feature selection tends in such cases to se-
lect color features for the representation of shape categories, because they are
the most frequent and stable ones. This is maybe also one reason for the poor
generalization performance of shape categories. As a consequence the training
takes typically much longer compared to the experiments with the restricted

database, but also many more cLVQ nodes are allocated.
In contrast to this the categorization performance of color categories is equal

to the experiments with the restricted database, because color histograms as fea-
ture representation for such categories are robust with respect to object rotation.
The representation of color categories is additionally unaffected by segmenta-
tion errors, because even if object parts are missing in a segment the basic
colors are typically still visible. For color categories the effect of imprecise fore-
ground masks on the categorization performance seems also to be only minor,
otherwise the performance would be considerably lower. This basically means
that the occurrence of category related color features is more stable than de-
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Figure 7: Average Results of Offline Categorization Experiments. The
performance of our proposed cLVQ method and the SLP networks are compared
for the restricted database and the unconstrained database using the same set of
training and test objects (averaged over 10 runs). All results show the catego-
rization performance on the test set, which was never seen during the training.
The difference between both databases is that the objects for the restricted

database are rotated around the vertical axis in front of a black background,
while the unconstrained database was collected under relaxed constraints with
cluttered background and full in-depth rotation of objects. Additionally we
tested the effect of C2 features with respect to the categorization performance
of shape categories. For all offline experiments the SLP method is superior at
earlier learning stages, while the cLVQ is better at later learning steps. After the
presentation of all training objects the cLVQ method performs distinctly bet-
ter for the color categories compared to the SLP networks, while for the shape
categories it is slightly better. The addition of C2 features to the feature rep-
resentation increases the performance of shape categories only for the restricted

database, while for the unconstrained database with much higher appearance
variations no such performance changes could be measured.

20



tected features at background parts from the surrounding scene. For the shape
categories this effect is very unlikely, because of much higher variations in the
extracted shape features. Therefore the effect of imprecise foreground masks
is for those categories most probable much stronger. If selected background
features are reoccurring in both positive and negative category examples, then
such features are weakened by the feature scoring mechanism or can be com-
pletely removed by the cLVQ learning dynamics. Although both mechanisms in
general reduce the effect of wrongly selected features this typically require the
presentation of a considerable amount of additional training examples. Finally
for the unconstrained database no performance gain with respect to the shape
categories could be found by additionally using C2 features. The reason is that
a C2 feature is sensitive to a flexible shape primitive around one particular loca-
tion in the segment (Wersing & Körner 2003), while the parts-based features are
not tuned to a particular location. Therefore a single C2 feature can not provide
object or category-specific information if the objects are rotated in depth.

5.2 Interactive Category Learning under Real-world Con-

straints

In comparison to the previously performed offline experiments an interactive
learning scenario has the possibility of directly correcting errors based on tutor
feedback, even if the object was already presented before. Although we do
not impose any restrictions on the viewing angle of objects the appearance
variations are less compared to the unconstrained database. This is basically
because such variations can not be produced in a typical training session where
the object is presented for about 30 seconds. The learning system with its
different building blocks is distributed on four 3 GHz CPUs. The overall system
including preprocessing, figure-ground segregation, feature extraction, category
learning and user interaction runs roughly at the frame rate of our current digital
camera system of approximately 6-8 Hz. This is fast enough to show the desired
incremental and life-long learning ability of our categorization system.

In Fig. 8 a normal learning session is shown, where a representation of
three different color and three different shape categories is learned in less than
8 minutes. We start with a completely empty STM and LTM representation,
therefore the system responds for the first presented object with “unknown cat-
egory”. After the training of the first object it only knows the categories yellow

and duck but at this state it can not separate both categories. Thus the system
responds with “yellow duck” to the next presented green duck. Afterwards suc-
cessively new objects are presented and trained. Usually after the presentation
of 2-3 examples of a specific category the system can generalize to previously
unseen objects, while still being able to correctly categorize already known ob-
jects. To check this, the yellow duck is also shown at a later learning stage,
followed by two previously unseen toy cars. The presented white toy car is la-
beled as “toy car” because the category white is so far not known. It also shows
that at this learning stage the different color and shape categories are automat-
ically separated by the learning algorithm, which is a necessary precondition to
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Figure 8: Incremental Learning of Visual Categories. The incremental
selection of features for each category is shown over time, while presenting dif-
ferent objects. The model starts from a completely blank memory. Additionally
the total number of cLVQ representatives is plotted, which are allocated during
the interactive learning session. We also added the categorization decisions of
the learning system, communicated to the user on top of the figure with sloped
text. Furthermore the confirmed category labels provided by the user are de-
noted underneath. Note that “ok” means the confirmation of the categorization
decisions on top of the figure and that not every time confirmed labels are pro-
vided. Additionally the intervals where new training vectors are collected into
the STM are marked with <>. The transfer of the STM to the LTM occurs
gradually according to the parallely running cLVQ and is not fully synchronized
to the speech labels.

achieve a higher generalization performance compared to object identification.
After the presentation of the white toy car the category cell phone is trained.
It should be mentioned that the learning system responded in most cases with
“unknown category”, while the rejection of unknown objects typically cause
major problems for object identification systems.

6 Discussion

We have presented a learning system able to interactively learn general visual
categories in a life-long learning fashion. To our knowledge this is the first online
learning system that allows category learning based on complex-shaped objects
held in hand. In offline experiments we could show the difficulty of the learn-
ing of categories under real-world conditions by comparing the categorization
performance of the same object set taken under different experimental setups.
Nevertheless we are able to learn categories under such conditions in an inter-
active and life-long learning fashion. Comparable architectures as proposed by
(Skočaj et al., 2007) or (Fritz, Kruijff, & Schiele 2007) learn categories based on
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objects placed on a table, which simplifies the ROI detection and figure-ground
segregation. Additionally this constraint strongly reduces the appearance vari-
ations of the presented objects and therefore makes the category learning task
much easier. We also allow different categories for a single object, while in
related work typically the categories are trained independently.

We could show that our learning system can efficiently perform all necessary
processing steps including figure-ground segregation, feature extraction and in-
cremental learning. Especially the ability to handle high-dimensional but sparse
feature vectors is necessary to allow interactive and incremental learning, where
often additional dimension reduction techniques like the principal component
analysis are required to allow online learning. This high feature dimensionality
is also challenging for the used feature selection method, because of the large
amount of possible feature candidates. Nevertheless the learning system is able
to extract small sets of category-specific features out of many possible feature
candidates.
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