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Abstract Many everyday human skills can be framed incentre of mass or the tilt of the torso of the climber to pre-
terms of performing some task subject to constraints imvent over-balancing. Alternatively, in problems that itwe
posed by the environment. Constraints are usually unobsereontrol of contacts such as manipulation or grasping solid
able and frequently change between contexts. In this papesbjects, the motion of fingers is constrained during thegras
we present a novel approach for learning (unconstrained)y the presence of the object (Sapio et al., 2006; Park and
control policies from movement data, where observation&hatib, 2006). In systems designed to be highly competent
come from movements under different constraints. As a keynd adaptive, such as humanoid robots, behaviour may be
ingredient, we introduce a small but highly effective modi-subject to a wide variety of constraints that are usually-non
fication to the standard risk functional, allowing us to makelinear in actuator space and often discontinuous (Sentls an
a meaningful comparison between the estimated policy ankhatib, 2006, 2005; Gienger et al., 2005; Sapio et al., 2005;
constrained observations. We demonstrate our approach @entis and Khatib, 2004). Consider the task of running or
systems of varying complexity, including kinematic datawalking on uneven terrain: the cyclic movement of the legs
from the ASIMO humanoid robot with 27 degrees of free-of the runner is constrained by the impact of the feet on the
dom, and present results for learning from human demonground in a dynamic, discontinuous and unpredictable way.

stration. A promising approach to providing robots with such
skills as running and opening doors is to take examples
of motion from existing demonstrators (e.g., from humans)
and attempt to learn a control policy that somehow captures
the desired behaviour (Calinon and Billard, 2007; Billard
) et al., 2007; Alissandrakis et al., 2007; Grimes et al., 2007
1 Introduction Chalodhorn et al., 2006; Grimes et al., 2006; Takano et al.,

] ) ] ~ 2006; Schaal et al., 2003; Inamura et al., 2004; ljspeelt,et a
A wide variety of everyday human skills can be framed iny403) An important component of this is the ability to deal

terms of performing some task subject to constraints iMyit, the effect of constraints and the apparent variabitity

posed by the physical environment (Ohta et al., 2004; Svinifyoyements induced by these constraints. For example, one
et al., 2005). Examples include opening a door, pulling 0Ufishes to learn a policy that allows one not only to open a
a drawer or stirring soup in a saucepan. specific door of a particular size (e.g. constraining thechan

~ In-a more generic setting, constraints may take a mucly 3 curve of a particular radius), but rather to open many
wider variety of forms (Udwadia and Kalaba, 1996). For ex-gqors of varying sizes (or radii).

ample, in climbing a ladder, the constraint may be on the
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tinuous model of the policy from motion data. While DPL 2.1 Direct Policy Learning

has been studied for a variety of control problems in recent

years, crucially these problems involved policies that are ei-Following Schaal et al. (2003), we consider the learning of
ther directly observable from motion data, i.e. unconstdi  autonomous policies

policies, or policies subject to identical constraints vemry

observation, in which case the constraints can be absorbdf?) = 7(x(t)) , 7 R" — R, 1)

into the policy itself. The difference here is that we coesid
! potcy ! ! ! W ! wherex € R™ andu € IR? are appropriatef/chosen

observations from policies projected into the nullspaca of at d acti ivelv. Th | of DPL i
set of dynamic, non-linear constraints, and that these corp 1€~ and action-spaces, respectively. the goal o IS

straints maychange between observations, or even during t(i a:ap;(ggr:gnatlf .the po':fyf(l) asl ctlotjely as poss@le éskta:haal
the course of a single observation. etal., ). It is usually formulated as a supervised learn

, i ing problem where it is assumed that we have observations
Our strategy is to attempt to consolidate movement ob

) . e . : of u(t), x(t) (often in the form of trajectories), and from
servations under different specific constraints to find the u (1), x(®) ( J )

derlvi <rained poli 0 all. L ing th these we wish to learn the mappimg In previous work
erlying unconstrained policy common 1o all. Learning € 5 a5 peen done by fitting parametrised models in the

Iatte_r enables generalisgtion_ since we can f’:\pply NEW COlg m of dynamical systems (ljspeert et al., 2003, 2002);non
stralnts to predict b_ehawour n novel scenarios. In gdne_raparametric modelling (Peters and Schaal, 2008; Calinon and
learning (unconstrained) policies from constrained mmotio Billard, 2007; D'Souza et al., 2001), probabilistic Bayesi

datais afor-m|dable task-. This is due to _(') thm-con\(g(lty approaches (Grimes et al., 2007, 2006) and hidden Markov
of observations under different constraints, and;dayen- models (Takano et al., 2006; Inamura et al., 2004)

eracy in the set of possible policies that could have produced An implicit assumption found in DPL approaches to date
the movement under the constraint (Howard et al., 2008;

. , Is that the data used for training comes from behavioural
Howard and Vijayakumar, 2007). However, despite thes%bservations of somenconstrained or consistently con-
hard analytical limits, we will show that it is still poss#l

. L . . strained policy (Calinon and Billard, 2007). By this it is
tq find a good_apprommaﬂon Qf the unc_o_nstrameql IOOIICymeant that the policy is observed either under no constraint
given qbservatlons_under the ”.ght cor_1d|t|ons. Noting thaze.g. movements in free space such as gestures or figure
the policy qbservatlons are pTOJected into the nullspace o rawing), or under constraints consistent over obseraatio
the const.ramts, our propqsal Is to refqrmulate the §tai1dar(e_g_ interacting with the same objects or obstacles in each
“Sk. functional by mtroduqng a projection of t-he estinate case). However, in many everyday behaviours, there is vari-
policy onto the observations before calculating errors. B

Kina this simole. but sianificant alterati how th tyability in the constraints, such as when opening doors of
making this simpie, but signiicant aiteration, we showtha varying sizes or walking on uneven terrain. Thariabil-

is possible to model the unconstrained policy (i) with no ex'ity in the constraints cannot be accounted for by standard
plicit knowledge of the constraints, and; (ii) without exqitl DPL approaches

access to unconstrained policy vectors. Furthermore, we
show that using this approach one can fully reconstruct the

unconstrained policy given observations under a suffitjent 2-1.1 Example: Finger Extension with Contact Constraints

rich set of constraints. To validate the approach we modify _ ) ) )
standard regression techniques to use the proposed object*S an €xample, consider the learning of a simple policy
function and demonstrate robust learning for several feglic 1© €xtend a jointed finger. In Fig. 1(a) the finger is uncon-
on complex, high-dimensional movement systems, subjecdrained and the policy simply moves the joints towards the
to realistic constraints. Finally, we demonstrate the use o?€re (outstretched) position. On the other hand, in Fig),1(b

our approach for learning from human demonstrations an@" obstacle lies in the path of the finger, so that the finger

transferring behaviour to the ASIMO humanoid robot. movement is constrained — it is not able to penetrate the ob-
stacle, so moves along the surface. The vector field repre-

sentation of the two behaviours is shown in Fig. 1(c).

2 It should be noted that, as with all DPL approaches, the ehoic

2 Problem Formulation state- and action-space is problem specific (Schaal etG03)2and,
when used for imitation learning, depends on tberespondence be-

. . . . tween demonstrator and imitator. For example if we wish torighe

In this section, we characterise the problem of DPL in genpgjicy a human demonstrator uses to wash a window, and eatisit
eral, and discuss the problems encountered when variabbehaviour to an imitator robot, an appropriate choice ofould be the
constraints are applied to motion. Cartesian coordinates of the hand, which would corresporidet end-
effector coordinates of the robot. Transfer of behaviowoss non-
isomorphic state- and action-spaces, for example if theomsinator
1 For a review on DPL , please see (Billard et al., 2007) and+efe and imitator have different embodiments, is also possilyleédfining

ences therein. an appropriate state-action metric (Alissandrakis e&I07).




2.2 Constraint Model

In this paper we consider constraints which act as hard re-
strictions on actions available to the policy. Specificai
consider policies subject to a set/oddimensional £ < n)
Pfaffian constraints

A(x,t)u=0. (2

Under these constraints, the policy is projected into the
nullspace ofA (x, t):

u(x,t) = N(x,t)m(x(t)) 3)

kxd ; ; i
Fig. 1 lllustration of two apparently different behaviours froret whereA(x,?) € R is some matrix describing the con

; dxd - ; ; _
same policy: (a) unconstrained movement (b) movement mined ~ Straint, I € R *%is t_he 'de_nt't_y matrlx_ and\I(x_, t) =
by an obstacle (black box) (c) the unconstrained (red) ansteained (I — ATA) e IR?*? is projection matri%, that in gen-

(black) policy over two of the joints of the fingeg-axis: base joint;  eral has non-linear dependence on both time and state. Con-
z-axis: first knuckle). straints of the form (2) commonly appear in scenarios where
manipulators interact with solid objects, for example when
grasping a tool or turning a crank or a pedal, that is, contact
constraint scenarios (Park and Khatib, 2006; Murray et al.,
1994; Mattikalli and Khosla, 1992). Such constraints are
Given the task of learning in this scenario, applying tra-also common in the control of redundant degrees of freedom
ditional DPL approaches would result in one of two pos-in high-dimensional manipulators (Liégeois, 1977; Kbati
sibilities. The first is that if the observations dibelled 1987; Peters et al., 2008), where policies such as (3) are
with respect to the constraint (here, the orientation, position used, for example, to aid joint stabilisation (Peters et al.
and shape of the obstacle) one could learn a separate p@g08), or to avoid joint limits (Chaumette and Marchand,
icy model for the behaviour in each of the settings. Howevep001), kinematic singularities (Yoshikawa, 1985) or obsta
this is clearly unsatisfactory, since each model would onlytles (Choi and Kim, 2000; Khatib, 1985) under task con-
be valid for the specific setting, and we would need increasstraints. As an example: Settirgto the Jacobian that maps
ing numbers of models as we observed the policy under nefvom joint-space to end-effector position increments vaoul
constraints (for example different shaped obstacles &rdif allow any motion in the joint space provided that the end-
ent positions and orientations). The second possibiliyas  effector remained stationary. The formalism is generic and
the data isunlabelled with respect to the constraint. In this can also readily be applied to learning policies based on dy-
case, one might try to perform regression directly on the obnamic quantities such as torques or (angular and linear) mo-
servations, that is observations from both vector fields (cfmentum subject to constraints (e.g., see Peters et al. 2008
Fig. 1(c), black and red vectors). However, this preserds thand Kajita et al. 2003, respectively). Such constraints are
problem thatmodel averaging would occur across observa- also not limited to manipulator kinematics and dynamics,
tions under different constraints, resulting in a poor eepr for example Antonelli et al. (2005), apply it to team coordi-
sentation of the movement in terms of the magnitude an@ation in mobile robots.
direction of the predictions (see Sec. 2.3). In general, the effect of constraints (2)-(3) is to disal-
low motion in some sub-space of the system, specifically
) ) ) .. the space orthogonal to the imageN{x,t). In essence,
We can avoid the need for multiple policy models if 1, ca components of motion apeojected out of the ob-

we relax our assumptions on the form (1) of the ObserVe@erved movement. For example, as illustrated in Fig. 2(a), a

commands, and allow for an additional transformation Ofpolicyr is constrained in two different ways corresponding

7(x). We thus model both the red and black observationg, 4 gifferent projections of the unconstrained movement

as stemming from the same policy (‘extend the finger’), anqy, e first observation, , the constraint prevents movement
attribute its different appearance to the transformatiass

induced by the constraints. With a restriction on the class 3 A thorough treatment of the role of constraints such as &0
of possible transformations, as will be detailed in the nexthe dynamics of multibody systems can be found in many standa

. . . .. texts on analytical mechanics, for example see Udwadia aaldbé
section, we can model the unconstrained policy even if wi 1996)

only observed constrained movements, and we can applys Here At denotes the (unweighted) Moore-Penrose pseudoinverse
new constraints to adapt the policy to novel scenarios. of the matrixA




in the direction normal to the vertical plahéor the second recover more information about the unconstrained paticy
observatiorus, the constraint only allows movement in the For instance, observing, eliminates the possibility that’
horizontal plane. underlies the movements since it cannot project onto both
u; andus. Applying this strategy for increasing numbers
of observations, our model will not only generalise over the
2.3 Learning from Constrained Motion Data constraints seen, but also come closer to the unconstrained
policy 7.
From the viewpoint of learning, constraints as described in  Finally, it should be noted that if in all observations cer-
the previous section present problems for traditional DPLtain components of the policy are always constrained, then
approaches. Specifically there are two issues that must bwee can never hope to uncover those components. However,
dealt with; that ofhon-convexity of observations andegen-  in such cases it is reasonable to assume that, if these com-
eracy between policies (Howard et al., 2008). ponents are always eliminated by the constraints, then they
Thenon-convexity problem comes from the fact that be- are not relevant for the scenarios in which movements were
tween observations, or even during the course of a single olsecorded.
servation, constraints may change. For example, in Fig,2(b  In the following, we propose a method by which we
the two policy observations under the different constsgint can overcome these problems by reformulating the standard
u; andus, appear different depending on the constraint. TADPL problem. We will show that it is still possible to learn
the learner, this means that the data from the two scena& good model of the policyr, without need for explicit
ios will appeamon-convey, i.e. for any given poink in the  knowledge of the constrain¥¥(x, ), and that is, as a min-
input space, multiple outputsmay exist. This causes prob- imum, consistent with all constrained observations. In pre
lems for supervised learning algorithms since, for examplevious work, we demonstrated the feasibility of this and pro-
directly training on these observations may result in medelposed an algorithm that allowed us to learn potential-based
averaging. Here, averaging of;, u, results in the predic- policies from constrained motion data (Howard et al., 2008)
tion @ that clearly does not match the unconstrained policyHere we remove the restriction to potential-based policies
7, neither in direction nor magnitude (ref. Fig. 2(b)). allowing us to learn any generic policy that can be repre-
The degeneracy problem stems from the fact that for sented as a vector function of state. We turn to the details of
any given set of projected (constrained) policy observatjio the new method in the next section.
there exist multiple candidate policies that could have pro
duced that movement. This is due to the projection elimi-
nating components of the unconstrained policy that are o013 Method
thogonal to the image d¥ (x, t) so that the component af
in this direction is undetermined by the observation. Fer exOur method works on data that is given as tugiles, u,,) of
ample, consider the constrained observatignn Fig. 2(c), observed states and constrained actions. We assume that all
where the restriction of the motion in vertical direction-im commands: are generated from the same underlying policy
plies that we do not observe that specific component.of = (x), which for a particular observation might have been
Given onlyuy we cannot determine if the poliey or an al-  constrained, that is,, = N, 7 (x,) for some projection
ternative, such as’ (ref. Fig. 2(c)), produced the observa- matrix N,,. Furthermore, we assume that the projection ma-
tion. In effect, we are not given sufficient information abou trix for any given observation is not explicitly known, i.e.
the unconstrained policy to guarantee that it is fully recon our data is unlabelled with respect to the constraints indor
structed. at the time of observation.
Despite these restrictions, we wish to do the best we can  With only x,, andu,, given, one may be tempted to esti-
with the data available. We adopt a strategy whereby wenate a policyr(-) by simply minimising
look for policies that are, at the very least, consistenhwit
the constrained observatioms For example, returning to N
Fig. 2(c), if we only observau,, (that is the policy under a Enaive[F] = Z = 7 () [ (4)
single, specific constraint), the simplest (and safesdjesyy n=1
would be to use that same vector as our prediction. In thigiowever, this would ignore that constraints might have been
way, we can at least accurately predict the policy under thgh force and result in a naive averaging of commands from

constraint (albeit only under that particular constraititve  gifferent circumstances (cf. Fig. 2). This correspondsi t
are given further observations under new constraints, We Casisndard DPL approach.

5 It should be noted that in general the orientation of the tairg If we had access to samples of either (i) the (uncon-

plane onto which the policy is projected may vary both wititstpo-  Strained) policymr,, = (X, ), or (ii) the projection matrices
sition and time. N.,,, we could use standard regression techniques to estimate




7-‘- 1
@) (b) ©

Fig. 2 lllustration of the effect of constraints on the unconstea policy, the averaging effect of standard DPL and themimgey problem. Left:
Two constraints applied to the polieyresult in projected observations , uz. Centre: direct regression results in averaging of the tvwgements
u in a way that cannot explain the observations. Right: Twices w, v/ that both may be constrained in such a way as to produce tleevaib®on
us.

functional
N
Ei7] = ) [un — G0l 7 (x,)]|?
u,

With 7, = ||, G, = 2. (7)
T

n

Sinceu,, = N,m,, we can write|u, — N, 7(x,)||? =

N, (7, — 7(x,))||? and recognise that the CPE is always
less than or equal to the UPE, because the projectdns
can only decrease the norm of the difference between true
and predicted policy. The same argument holds for the in-
a policy7r(x) by minimising an appropriate risk functional. consistency error (7) where the projection onto the 1-D sub-

Specifically, in the former case, we could minimise space spanned hy,, possibly takes away even more of the
error. So we can establish the inequality

Fig. 3 lllustration of our learning scheme. The projection of tberect
policy = onto the observations matches those observations.

N
Eupe[ﬁ'] = Z ||7T7l - ﬂ'(Xn)H2 (5) Ez [7}] S Ecpe[ﬁ'] S Eupe [7}]

Naturally, for estimating the correct policy, we would rath
like to minimise anupper bound of E,,., but it is unclear
how such a bound could be derived from the data we are as-
N sumed given. Note that by framing our learning problem as a
Eepe[] =Y lup — Nyt (%)%, (6)  risk minimisation task, we can apply standard regularisati
n=1 techniques such as adding suitable penalty terms to prevent
over-fitting due to noise.
where we refer to the former as thuaconstrained policy The proposed risk functional can be used in conjunc-
error (UPE) and the latter as thepnstrained policy error  tion with many standard regression techniques. However,
(CPE), respectively. However, since by assumption samplefr the experiments in this paper, we restrict ourselves to
of m, andNN,, are not available, these functionals cannot bawo classes of function approximator for learning the (un-
used to estimate the policy. constrained) policy to demonstrate how the risk functional
Instead, we aim to estimate a poligy(-) that iscon-  can be used. The example function approximators we use
sistent with our observations, that is, a policy that can beare (i) simple parametric models with fixed basis functions
projected in a way that the observed commands are recoySec. 3.1), and (ii) locally linear models (Sec. 3.2). In the
ered. To this end, we repla®€, in (6) by a projection onto next section, we describe how these two models can be re-
u,, and minimise thénconsistency which we define as the formulated to take advantage of the new risk functional.

and in the latter case, we could minimise



3.1 Parametric Policy Models where we defined,,, = vec(B,,) andv,, = vec(,xL)

similarly to the parametric case. The factors
A particularly convenient model of the policy is given by
7 (x) = Wb(x), whereW e R”** is a matrix of weights, ,, ~ — exp(_i
andb(x) € R is a vector of fixed basis functions. This 20°
notably includes the case of (globally) linear models whergyeight the importance of each observatien , u,,), giving
we setb(x) =x = (x,1)", or the case of normalised ra- more weight to nearby samples. The optimal slaBesin
dial basis functions (RBFs);(x) = % calcu-  vector form are retrieved by
lated from Gaussian kernel§(-) around) pre-determined
centresc;, i = 1... M. With this model, thenconsistency
error from (7) becomes

llxn — CmHQ)

b2 = argmin F;(b,,) = H,'gmn ©)

withH,, =5 Wnm VeV andg,, = > o WnmTn V.
For predicting the global policy, we combine the local

N
. — — AT 2
Ei(W) = Z (T" u"Wb(x")) linear models using the convex combination

n

Il
—

Z%:l Wy, BmX

M
ZmZI W

wherew,, = exp (—ﬁ”x - CmH2)-

(rn — V,TLW)2 = E;(w), w(x) =

I
] =

3
—

where we definesv =vec(W) andv,, =vec(ti, b(x,)7) =
b(x,) ® 1, in order to retrieve a simpler functional form.
Since our objective function is quadraticwy we can solve
for the optimal weight vector easily:

E;(w) = Zri -2 ZTnVSW +wT Zvnvz;w
n n n To explore the performance of our algorithm, we per-

= FEy —2g’w + wlHw formed experiments on data from autonomous control poli-
cies (Schaal et al., 2003) applied to three plants. In our firs

4 Experiments

yielding X ' )

. . . set of experiments we illustrate the concepts involved on an
wo =argmin E;(w) =H g (8) artificial two-dimensional toy systeéinwe then demonstrate
with g = 3 r,v,, HessianH = 3" v,v? andE, = how our method can generalise across constraints on a phys-

r2. For regularisation, we use a simple weight-decaycally realistic simulation of the 7-DOF DLR lightweight
penalty term, that is, we seleat??! = argmin(E;(w) + &M (Sec. 4.2). Next, we apply our algorithm to whole body

reg

A|w|[2). This only requires modifying the Hessian to motion control of the humanoid robot ASIMO (Gienger

H™ =Y v,vl + L et al., 2005), where we learn policies in both a 6-D task
Please note that the projection ontdéntroduces a cou- SPace (Sec. 4-_3) and in the 27-DOF joint space (Sec. 4.4).
pling between the different components #f which pre- Having validated the approach on the data where the

vents us from learning those independently as is common ifound truth is known, we finally explore the utility of our

normal regression tasks. For the same reason, the size of tR@Proach forlearning in a real imitation learning settig
Hessian scales with(d?M?2). demonstrate an application of our approach to enable the

ASIMO robot to learn a car washing task from observed hu-

man movements (Sec. 4.5).
3.2 Locally Linear Policy Models

The basis function approach quickly becomes non-viablg 1 Toy Example

in high-dimensional input spaces. Alternatively, we can fit

multiple locally weighted linear modets,,(x) = B,,Xx =  Our first experiment demonstrates the learning of uncon-
B,.(x",1)" to the data, learning each local model indepenstrained policies from constrained trajectories in a sanpl
dently (Schaal and Atkeson, 1998). For a linear model centoy example consisting of a two-dimensional system with
tred atc,, with an isotropic Gaussian receptive field with discontinuously switching motion constraints. As an exam-

variances?, we would minimise ple policy, we used a limit cycle attractor (Fig. 4 (a)) of the
N 5 form
Ei(Bm) =Y wnm (rn — 0} ByX,) .
n=1 i =r(p—1r?), 0=uw (10)

Wim (Tn — ngm)Q = E;(b,,), 6_ In fact even these ‘simplified’ problems are relevant to ézy
policies in low dimensional task spaces, such as end-effsgiace.

I
WE

n=1



wherer, § are the polar representation of the Cartesian stateve contaminated the observed commangsvith Gaussian
space coordinates (i.e; = rsinf, z2 = rcos#), p is the  noise, the scale of which we varied to match up to 20% of
radius of the attractor anflis the angular velocity. For the the scale of the data. The resulting nUPE roughly follows
experiments, we sgi = 0.5 m andw = 1 rad s~ with  the noise level, as is plotted in Fig. 5 (right).

a sampling rate of 50 Hz. Dat,,, u,) (wherex,, is the

Cartesian position and,, = %x,, the Cartesian velocity) was

collected by recording 40 trajectories of length 40 tim@ste 4.2 Generalisation Over Unseen Constraints

each, generated by the policy from a random start state. Dur-

ing the movement the policy was subjected to random 1-DO'he two goals of our second set of experiments were (i) to

constraints characterise how well the algorithm scaled to more com-
plex, realistic constraints and (ii) to characterise howl we
A(x,t) = (a1,2) =« (11) the learnt policies generalised over unseen constraiots. F

this, we used a kinematic simulation of the 7-DOF DLR
where thea;,, were drawn from a normal distribution, |ightweight robot (LWR-IIl). The experimental procedure
a; = N(0,1). The constraints mean that motion is con-was as follows: We generated a random initial posture by
strained in the direction orthogonal to the vectoin state  drawing 7 joint angles uniformly from half the range of each
space. These were randomly switched by generating a neint, that isz; ~ U[—0.5z7*%%; 0.52/"**], where for exam-
a twice at regular intervals during the trajectory, inducingple % = 170°. We set up a joint limit avoidance type
sharp turns which can be seen in Fig. 4 (b-d). policy asm(x) = —0.05V(x), with the potential given by

We used a parametric model to learn the policy throughy(x) = 21-721 |z;|P forp = 1.5,p = 1.8, orp = 2.0. We
minimisation of the inconsistency (7) as described in secti then generated 100 trajectories with 100 points eachello
3.1. We included the regularisation term and picked the paing the policy under 4 different constraints, which we refer
rameter\ by minimising the inconsistency on a validation to as 1-2-3, 4-5-6, 1-3-5, and 2-4-6. Here, the three num-
subset. For this toy problem, we chose our function modebers denote which end-effector coordinates in task space
as a set of 36 normalised RBFs centred @a6 grid, and  we kept fixed, that is, 1-2-3 means we constrained the end-
we simply fixed the kernel width to yield suitable overlap. effector position, but allowed arbitrary changes in theoi
We repeated this experiment on 100 data sets and evaluategtion (here, orientation was represented as yaw, pitch and
the normalised UPE, CPE and the inconsisténiiat is, the  roll angles in the inertial frame). Similarly, 2-4-6 meane w
functionals from (5), (6) and (7) divided by the number of constrained thg-coordinate and the orientation around the
data points and the variance of the policy on a subsetheld - andz-axis, while allowing movement in-= position and
out for testing. For comparison, we repeated the experimenfround they-axis. For all 4 constraint types, we estimated
using a naive approach that attempted to perform regressiafe policy from a training subset, and evaluated it on test
with the same RBF model directly on the constrained obserdata from the same constraint, as well as on trajectori@s fro
vations, i.e., the naive approach attempted to minimise thghe complementary constraint (e.g., 2-4-6 is complemgntar
functional (4). to 1-3-5).

Figure 4 shows the true policy, the trajectories we trained  For learning in the 7-D state space, we selected locally
on, the policies learnt using our and the naive approachinear models as described in Sec. 3.2, where we chose
and finally the error statistics below the plots. With an av-rather wide receptive fields (fixing?> = 3) and placed the
erage nUPE of 0.0027, our method outperforms the naiveentres{c,,} of the local models such that every training
approach by orders of magnitude. Notably, even with only ample(x,,, u,,) was weighted within at least one receptive
trajectories (Fig. 4(b)), the reconstructed policy alneagk  field with w,, (x,,) > 0.7. On average, this yielded about 50
sembles the limit cycle, although large errors still pergis  |ocal models.
some parts of the state space (e.g., the lower right corner). While the linear policyr(-) corresponding tg = 2.0
Further to this, the left panel of Fig. 5 depicts how the nUPBwyas learnt almost perfectly (all normalised errors were in
and nCPE evolve with increasing size of the training setthe order ofl0~?), the less linear policiep(= 1.8 and es-
showing a smooth decline (please note the log. scale). Ipeciallyp = 1.5) turned out to be a much harder problem.
order to further explore the performance of our algorithm,This can be seen when comparing both the nUPE and nCPE

T h - 1 uate the oert fthe aph for the two policies (ref. Table 1). Still, we recovered the
ere, since we wish to evaluate the performance of the approa . s }
we calculate errors in the model against the ground trughthe policy constrained policy m_ all cases to gO_Od gccuracy (ref. Ta
(10) and constraints (11) from which the data was samplete Nmt ~ Dl€ 1, 4th column), with good generalisation to the comple-
these quantities ameot made available to our algorithm during learn- mentary constraints (ref. Table 1, 5th column). We can also
ing.
8 Actually, foru € IR? the inconsistency is exactly equivalent tothe ° The numbers can also be read as row indices ofttieJacobian
CPE, since both necessarily involve the same 1-D projection matrix.




/T T T N Yl T S e
%/"\\ l/”\\\ §/,\\\ l\’ N
, oA P PR 7 , /oA
N ! b Na t v AN
\\\_/ \\\_,// \\\_./ \‘\_,\
XZ\\\—'/f ~N N~ — & \\\—'/1 ~ ~ s
e/ — - - - — e e o] S oo
X

a) true policy b) our method, trained on 4 traj.

0.3788 £ 0.2688
0.1276 £ 0.1140

c) our methtdifrajectories

0.0027 £ 0.0087
0.0002 £ 0.0002

d) naive method, 40 trajectories

nUPE:
nCPE:

0.5709 £ 0.0853
0.0010 £ 0.0363

Fig. 4 Results on 2D toy data. a) true limit cycle policy, b) learaligy trained on 4 constrained trajectories, c) learnt@ofrom 40 constr. traj.,
d) policy resulting from naive regression on observed comsaTrajectories are shown as dotted lines, black arropgtine policy evaluated
at a grid of points in the 2-D state space. The normalised GREME (meaits.d. over 100 data sets) are given below the figures.
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Fig. 5 Left: Normalised UPE and CPE versus data set size as a pageeaf the fullK = 40 trajectories of lengthV = 40. Right: Normalised
UPE and CPE for increasing noise levels in the obsetvgdror clarity, we do not report the (consistently high) esrof the naive method. Both
plots show the (meahs.d.) over 100 data sets (coloured area indicates one sthde@ation from the mean).

Potential | Constraint nUPE nCPE Compl. nCPE || Norm. Incon.
1-2-3 64.338+32.030 | 2.917+0.368 | 15.951+6.473 || 0.755+0.067
=15 4-5-6 34.753+19.125 | 2.491+0.228 | 15.478+7.755 || 0.388+0.036
1-3-5 16.179+ 3.813 | 3.204+0.276 | 5.108+1.079 || 0.706+ 0.067
2-4-6 10.355+ 1.827 | 2.723+0.237 | 4.749+0.956 || 0.401+0.039
1-2-3 8.096+ 5.766 | 0.477+0.088 | 2.278+1.133 || 0.1124+0.011
=18 4-5-6 5.364+ 2.961 | 0.352+0.038 | 2.221+0.984 || 0.051+0.006
1-3-5 2.275+ 0.645| 0.455+0.041 0.773+0.171 || 0.098+0.011
2-4-6 1421+ 0.314 | 0.401+0.042 | 0.729+0.174 || 0.058+0.007

Table 1 Normalised UPE, CPE on the training constraints, CPE on ¢emmgntary constraints and inconsistency error, for daienfthe DLR
arm (right). All errors normalised by the variance of theippl We report (meag: s.d.)x 10~2 over 100 trials with different data sets.

see that constraining the end-effector position (1-2-3)ena 4.3 Reaching for a Ball

it more difficult to recover the unconstrained policy com-

pared to constraining the orientation (4-5-6), or usingedix The goal of our next set of experiments was to illustrate the
constraints (1-3-5 and 2-4-6). It should also be noted thattility of our approach for learning from observations of an
running the same experiment using the naive approach (reéveryday task with realistic constraints. For this, we &hos
Sec.4.1) gave consistently poor results; for example, whean example scenario, in which a set of observations of a
training on data under the (1-2-3) constraint, the naive apdemonstrator performing the task of reaching for a ball on a
proach gave nUPE df3.44 + 1.20x 1072 for thep = 1.5 table are given, and the student is expected to learn a policy
policy,80.94+1.37x10~2for p=1.8and79.62+1.39x10~%  to enable it to reproduce this task. The learning problem is
for p=2.0. complicated however, by the presence of different obstacle



on the table for each of the example trajectories, constrairnwith 1, %2 1/|ugg]). Here, the full constraint matrix
ing the possible motions of the hands. The goal is to uncoveA (x, t) e IR *® was constructed by assigning 3-vectors to
a policy that accurately predicts the demonstrator’s (maco the appropriate matrix block&; ;, according to the system
strained) behaviour and generalises to predict the bebaviostate. For example, if the left hand £ 1) approached the
under novel constraints. left barrier (j = 1) to a distance ofl; 1 < dy.n, and if the
The example scenario was implemented using the wholeext commanded movement would bring the hand toward
body motion (WBM) controller of the 27-DOF humanoid that barrier (i.eqx nl > 0), then the elements of the con-
robot ASIMO (for details see Gienger et al. 2005). For this,straint matrix correspondlng to that hand/barrier pairever
data was recorded from a ‘demonstrator’ robot that followedupdated (in this example the first row of the matrix would

a policy defined by an inverted Gaussian potential be updatedA ; . = (AT, 0,0, 0), constraining the left hand).
Note that under this setup the constraints are highly non-
w(x) = —Vxo(x); ¢(x) =« (1 - e”x*xc”z/%z) , linear (due to the complex dependence on state) and have

(12) discontinuously switching dimensionality (i.e. the rank o
A(x,t) switches) when either of the hands approaches or
wherex e IR® corresponds to the Cartesian position ofrecedes from the barrier.
the two hands (hereafter, the ‘task space’) and the actions Data was collected by recordirfg = 100 trajectories of
u = x = 7(x) correspond to the hand velocities. We chosdength2s at 50 Hz, (i.e/N =100 points per trajectory) from
2 = 2, o = 0.25 and the target point. € IR® to corre-  the demonstrator following the policy (12) under the con-
spond to a reaching position, with the two hands positionedtraints (13). Start states were sampled from a Gaussian dis
on either side of the ball. Following the policy (12) withghi tribution over joint configurationg ~ N(qg, 0.1I) (where
set of parameters, the demonstrator was able to reach the bgh corresponds to the default standing position) and using
under each of the constraints considered in this experimefiorward kinematics to calculate the corresponding hand po-
(see below). Inverse kinematics via the WBM controller wassitions. The joint vectory was clipped where necessary to
used to map the desired task space policy motion into the ajgvoid joint limits and self collisions, and to ensure thetsta
propriate joint-space velocity commands for sending to thgostures looked natural.
robot. For each trajectory the constraints were varied by ran-
The demonstrator’s movements were constrained by thdomly changing the width of the gap in the barriers. The gap
presence of a barrier on the table with a gap in it, placed swidths were sampled from a Gaussian distributibp, ~
that the demonstrator robot had to reach through the gap ¥ (itgap, 0gap) Where pigep = 0.25m, 0g4qp = 0.1m and
get the ball (ref. Fig. 6). The barriers acted as inequabity-c  the diameter of the ball wa®.15m. The hand-barrier dis-
straints on each of the hands so that motion in the directiotance at which the constraints came into force was fixed at
normal to the barrier surface was prevented if a hand camé,..;,, = 0.05m. Fig. 6 shows an example trajectory under

too close. Specifically, the constraints took the form this set-up.
Apy| O — . .
A 0 onstraint Naive Non-naive
A(x,t) = —%LA (13) Training | 0.1940 £ 0.0153 | 0.0056 % 0.0022
- 2a] Unseen Barrier| 0.4678 £ 0.0264 | 0.0057 + 0.0023
0 A[Q’Q] Unconstrained| 0.7014 4+ 0.0430 | 0.0058 =+ 0.0023
where Table2 Normalised policy errors for predicting the policy undergé
constraint conditions from the ball-reaching data for ta&ve and non-
Ap g (x,t) = n;f i dij < dmin and ﬁf’;] n; >0 naive methods. Values are messd. over 50 data sets.
Ajj(x,t) =0 ;  otherwise.
Here,d; ; is the distance of théh hand (where € {1,2}, We used our algorithm to perform learning 66 such

L.e. left and right hands respectively) to the closest pomt  gata sets using50 local linear models, with centres placed
the jth barrier (wherej < {1,2}, i.e. left and right barri-  ysing k-means. For comparison, we also repeated the ex-
ers respectively)i; € R” is the normal to the barrier sur- periment on the same data with the same local linear model

face!” at that point and;; € IR is the normalised com- (j.e. same number and placement of centres), but using the
mand for theith hand (|e theith 3-vector block of the naive approach for training (|e training (ﬁﬂivui = 5(1)’

command vecton corresponding to that hand; for example ; — 1 . K x N directly, using the risk functional (4)).
for the right hand { = 2) this wasupy = (u4,us,ue)” To assess the performance for both methods we eval-

10 Note that in order to ensure smooth, natural-looking ttajec uated the errors in predicting the policy subject to (i) the

fies the barriers were modelled as planes with smooth ‘seppere’  training data constraints (nCPE), (ii) no constraints (&P
edges, similar to those described in Sugiura et al. (2007). and (iii) a novel constraint, unseen in the training dataaon




Fig. 6 Example constrained trajectory used as training data irb#tlereaching experiment. Starting with hands at the sities demonstrator
robot reaches between the barriers to get the ball. Notetkatidth of the gap in the barriers was randomly altered &nhetrajectory recorded.

Data when both hands approached the barrier. The width of the

m— Naive new barrier was fixed dt.5m.
= = = Expert

As expected, learning using the proposed risk functional
(7) (the ‘non-naive’ approach) performed several orders of
magnitude better than the naive approach in terms of the nu-
merical error measures (ref. Table 2). However, the real dif
ference in the methods is best highlighted if we compare tra-
jectories generated by the two policies under differentcon
straint settings.

Firstly, Fig. 7 shows example trajectories for tiveon-
strained reaching movements produced by the demonstra-
tor (‘expert’), and the policies learnt by (i) the naive ap-
Data .. .
s NN proach, and; (ii) the non-naive approach; from a number of
= = = Expert start states. In the former the hands always take a curved
path to the ball (Fig. 7, top), reproducing the average be-
haviour of the (constrained) demonstrated trajectorié® T
naive method is unable to extract the underlying task (pol-
icy) from the observed paths around the obstacles. In con-
trast, the policy learnt with the non-naive approach better
predicts the unconstrained policy, enabling it to take adatir
route to the ball that closely matches that of the demonstra-
tor (Fig. 7, bottom).

Secondly, Fig. 8 shows example trajectories when the
policies are again constrained. Figure 8 (top) shows the
Fig. 7 Reaching movements produced by the policies learnt by thengvement from the non-naive policy under a similar con-
naive approach (top) and by optimisation of the inconsistebot-  gyaint a5 in the training data. Under this constraint both
tom) when unconstrained. Shown are trajectories of the $idirmn . . L .
five start states, with one example highlighted (thick liféje demon-  N@ive and non-naive policies ta_‘ke_ a similar path as the
strator (‘expert’) trajectory corresponding to the higfiited exampleis  demonstrator: The hands move in first, then forward to the
overlaid (black dashed line). Twenty example training deetectories  hall. Note that under this constraint the movement of the
are also shown (thin grey lines). naive policy is noticeably slower due to averaging of the

constrained observations.

Finally, under the unseen barrier constraint, there is a
set of test data. For the latter, a barrier was placed céntralmarked difference in behaviour. Under this constraint, the
between the robot and the ball, so that the robot had to reaatemonstrator (still following the policy (12)) reachesand
around the barrier to reach the ball (see Fig. 8). Specificall the barrier to get the ball. This behaviour is reproduced by
the constraint took a form similar to (13) but this time with the policy learnt with the proposed approach (Fig. 8, mid-
only one barrier present (i.g. = 1), so that the constraint dle). In contrast however, the naive policy does not gen-
matrix A (x, ) € IR**% attained a maximumrank éf= 2  eralise to the new constraint and gets trapped behind the



Fig. 8 Reaching movements produced by the learnt policies unfferetit constraints. Shown are trajectories from (i) tha-maive policy under
a similar constraint as in the training data (top row); (fietnon-naive policy under a new, unseen barrier constraiitdle row), and; (iii) the
naive policy under the new constraint.

barrier, eventually dislodging'it (Fig. 8, bottom). The be-
haviour of the three policies (demonstrator, naive and non-
naive policies) can be examined in detail in the accompany-
ing video.

4.4 Learning from High-dimensional Joint-space Data

In our next experiment we tested the scalability of our ap-
proach for learning in very high dimensions. For this we
chose a policy defined by a quadratic potential in the joint ’
space (i.ex = q € R*") Fig. 9 Data collection for the joint space policy under wall coasits.
Left: Start states for two example reaching movements vhighrtall at

7(x) = — V. o(x): %) = (x — x)TWi(x — x 14 different distances and orientations with respect to th®toRight:
(x) x¢(x); - P(x) = ( e} WI o) (14) Side view after reaching.

wherex, € R*" is a target posture an¥V is a weight-
ing matrix. The policy (14) represents an attractor in joint
space that pulls the robot into a desired posture at=or During data collection, the policy was constrained by the
the experimentsg. was chosen to correspond to a reachingpresence of obstacles which took the form of a vertical wall
posture with both arms outstretched (ref. Fig. 9, right) anchjaced directly in front of the robot at different orientatis
we choséWw = 0.05L. and distances (ref. Fig. 9, left). Specifically, the coristra
matrix, A (x, t) € IR***", took the form

11 Note that the collision of the hands with the barrier in faiclates
the constraint. The reason for this is that on the real raboder this
constraint, the naive policy forces the robot into a selfision (of the
robot’s arms with the torso). To prevent damage to the roaoton- Ai(x,t) =0 ©d>0
board safety mechanism then kicks in and pushes the hangsfimma T ’ t
the body, causing collision with the barrier. Ai(x,t) =0aTJ;(x) ; otherwise. (15)



Here,i € IR? is the normaP to the wall surfaced; is the  to learn a policy that captured the periodic nature of the
perpendicular distance of thigh hand from the wall sur- movements, while eliminating artifacts induced by the con-
face (withi € {1, 2}, i.e. left and right hands respectively), straints.

Ji(x) € R**?" is the Jacobian mapping from joint-space  The experimental setup was as follows. Seven demon-
to the lateral (i.e. horizontal planar) coordinates of thetd  strations of a human wiping different surfaces with a sponge
andA;(x,t) € R"**" is the corresponding row of the con- were given to the robot. To simulate observations of wash-
straint matrix. At the start of each trajectory, the origitta  ing different surfaces of the car, the wiping was performed
of the wall was drawn from a uniform random distribution on a perspex sheet placed at different tilts and rotatiotts wi

6 ~ U[-g™*, g™*] wheref is the angle of the wall with  respect to the robot (see Fig. 10). Specifically, the shest wa
respect to the left-right axis of the robot heel frame (hori-oriented to be flat (horizontal), tilte¢t16° and=+27° about
zontal axis in Fig. 9, left), and we chog&“* = 27°. The  the z-axis (horizontal axis pointing directly ahead from
distance of the wall was adjusted at the start of each trajeche robot) and-16° about they-axis (horizontal right-left
tory to ensure that the the hands were a minimum distancaxis). The three-dimensional coordinates of the sponge wer
of 0.15m from the wall before the onset of movement. tracked using the on-board stereo cameras of the ASIMO

The effect of the constraints was to restrict the moverobot at a rate of 20 frames per second (for details on the
ment of the hands when they approached the wall. This corASIMO vision system please see Bolder et al. 2007). The
straint was projected back into the joint space where the potecorded trajectories are shown in Fig. 11 (left).
icy was operating via the Jacobian. This causes the policy
to appear highly complex and non-linear in the state space
(joint space), with discontinuous changes to the dimensio
ality of the constraints as the hands of the robot approache
the wall.

Using the formalism from Sec. 3.1 with(z) = X,
we fitted linear models to 100 data sets, each consistiny
OT 100 ,tra]e,CtorleS of 100 data points. Desp!te the hlgr‘I:ig. 10 Human wiping demonstrations on surfaces of varying tilt and
dimensionality, our method reached a normalised UPE Ofyations. The ASIMO stereo vision system was used to traek3:
0.291 4+ 0.313 x 10~2. It is important to point out that this D coordinates of the sponge (coloured rectangles show tiaed
result can not only be explained by our choice of a lineaosition). Tilts of£16° and+27° about ther-axis are shown.
model where we knew that the true policy (14) was also lin-

ear: Direct (naive) linear regression on the observed com- h i delied HE 3 )
mands resulted in a normalised UPE6Sf9 4+ 3.1 x 102 The policy was modelled as t — IR” mapping

(NCPE was7.98 + 0.66 x 10—2), which again is orders of from hand (sponge) positions to velocities. Since this is a
' ' ' relatively low-dimensional problem, and for ease of compar

ison with the toy problem (Sec. 4.1), we used RBFs to model
the policy. For each of the experiments described below, we
used a set of 300 RBFs with centres placedchyeans as
our policy model.

Having validated our approach on data where the ground Sw:jcehthe ground truth (|.g. t?e trug uncol?straln(:d p;)l-
truth (true unconstrained policy) was known, in this sattio icy and the exact constraints in force) is not known for the

we report experiments on learning from human demonstr human data, performance was evaluated on a behavioural

tions for seeding the robot motion. For this experiment, wi evel. In particular, we looked at how the movements pro-

chose to investigate the problem of learning to wash a caguceOl by the Ie_arnt policies compared with those O.f the hu-
This is an example of a task which can be intuitively de-Man when subject to (what we assumed to be) a similar set

scribed in terms of a simple movement policy (‘wiping’) of iﬁnsgg;::;é Eor thls,_;ve gnfler:lente? tge Ieartnt _p?ﬂi(tlrl]et
subject to contact constraints that vary depending on the gion the umanoid robot and applied constraints tha

ferent surfaces of the car to be wiped. Due to the diﬁeren§pprOX|m§te63those contained in the demon;tratlons.
shapes and orientations of the car surfaces, complex, non- SPecifically, we assumed the constraints in the car wash

linear constraints are imposed on the motion. The resultarfSk 0 &rise from two sources, namely (i) environmental (i.
trajectories appear periodic, but are perturbed in difiere physical) constraints and (ii) constraints self-imposgttte

ways by the constraints. The goal of our experiments wademonstrator to ensure task success. In this experiment, th
former can be clearly identified as an inequality constraint

.

magnitude higher and similar to our results on toy data.

4.5 Washing a Car

12 Note that since the wall was vertical in all example trajée®
(and thus did not affect vertical movements) only the normathe 13 please note that for training the policy models, the coimsavere
horizontal plane is relevant to calculation of the consitisi not explicitly modelled.
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Fig. 11 Learning from human wiping demonstrations. Left: Trajeies of the sponge when wiping on the surface when flat (blaited +16°
and +27° about thez-axis (red),—16° and —27° about thez-axis (blue), andt16° about they-axis (grey). Centre and right: Reproduced
trajectories using the policies (black arrows) learnt witb non-naive and naive approaches respectively. In eaehtba same example trajectory
is highlighted (thick black). The top and front views arewhdqtop and bottom rows).

preventing the hand from penetrating the wiping surfaee, i. The first model was trained with the approach described in
. . Sec. 3.1, the second with the standard (naive) approach to
A(x,t) = 0s(x) 5 d=0 and 0 hAs(x) >0 (16) regression. We then used the policies learnt by the two ap-
whered is the distance of the hand from the surface an(froaches to repro_duce the mpvements under each of the sur-
N . ) I, ace constraints (i.e. constraint (18) for=1,--- ,7). The
i;(x) is the normal to the surfaceat pointx. In addition, A
. . ) . results are shown in Fig. 11, where we show the demon-
we can also identify a self-imposed constraint in force. In . . .
: . strated trajectories (left), those produced by the norenai
the car wash setting, successful performance of the taesk (i.

wiping) requires the sponge to maintain contact with the surpOIICy (centre) and those learnt by the naive approachirigh

. . under the different constraints (tilts of the surface).
face at all times so that motion of the hand away from the ) .
Looking at the learnt policies, we see that our approach

surface (i.e. lifting the sponge) is not permitted. To capt _ .
u (i.e. lifing ponge) permit i learns a smooth policy that resembles the limit cycle of Sec-
this, we therefore assumed a further constraint of the form ! . .
tion 4.1. The trajectories under each of the constraints are
A(x,t) =0y(x) ; d=0 and 0"h,(x) < 0. (17)  smooth periodic movements, similar to those of the human.
These were implemented on the ASIMO robot to produce
Note that in combination, the effect of the two constraintsnatural wiping movements (see Fig. 12). The policy learnt
(16)-(17), when considered on the wiping surfage<{ 0),  with the naive approach also captures the periodicity toesom

amounts to the single equality constraint extent. However, it appears highly irregular in several re-
) gions and the trajectories are unstable, with some spigalli
Alx,t) = s(x) 5 d=0. (18) " in to the centre, and others diverging to other parts of the

state space. By attempting to learn all of the artifacts aedu

gy the constraints, the naive approach learns an unstable po
&y that cannot be safely used for movement reproduction on
the robot*.

This constraint was applied to the learnt policies as a reaso
able approximation of the true constraints contained in th
data, in order to compare the demonstrated and reproduc

movements for any given surfageand assess the generali- Finallv. t firm that his able t
sation across constraints. inally, to confirm that our approach is able to gener-

Under this set-up, we first compared learning with Ouralise well over unseen constraints, we repeated the experi-

approach against learning with the naive approach. For thidnent, but this time training the model on a subset of the data

we trained two RBF models on the full data set of sevenis the pehaviour produced by the two methods can be examined in
demonstrations (i.e. wiping data for each of the surfaces)etail in the second video accompanying this paper.




Fig. 12 Reproduced movements on the ASIMO robot for the surfacediilt, +16°, —27° about ther-axis, and+16° about they-axis.

containing one set of constraints, then testing on a differe subject to variable, dynamic, non-linear constraints. Due
subset containing different constraints. Specificallyused to a small but very effective modification in the calcula-
our approach to train a model on the three demonstratiortson of an empirical risk, our method can recover the un-
corresponding to the surface tilted by, +16° and+27°  constrained policy from arbitrarily constrained obseiwas,
about thez-axis (Fig. 13, left). We then took the demon- without the need for explicit knowledge of the constraints.
strated movements for the surface tilted-at6° and—27°  This allows us to learn policies that generalise over con-
about ther-axis (Fig. 13, right) as our test set and comparedstraints, including novel constraints, unseen in the ingin
the movement reproduction. data. We demonstrated our method using parametric (RBF)

In Fig. 13 we show the demonstrated (grey) and reproand locally linear function approximators to learn polgie
duced (black) trajectories for the training data constsin for problems of varying size and complexity.
(left) and the test data constra|nt§ (right). Though wentrai Our results clearly show the efficacy of learning from
on a smaller data set here, the policy learnt by our approach , . .

. - constrained demonstrations using our approach, and then
again produces a stable wiping movement that reproduces

- applying the resultant policies to new constraint scersario
the human movement well, both under the training data con, . .
. . owever, in terms of lessons learnt from these experiments
straints and under the unseen test constraints.

there are also some bigger issues raised. One such issue
is the question of when, faced with a new constraint, the
learnt policy will fail at the desired task. For example, in
the ball grasping experiment, under certain configurations
of the constraints (e.qg. if the barriers were placed examtly
either side of the ball, or a much larger barrier was placed
between the robot and the ball) the learnt policy would fail
at the task of grasping. This may be due to several factors,
for instance if the control vector happens to be orthogamal t
the nullspace of the constraint, deadlock would occur (this
is similar to the problem of local minima in many gradient-
based controllers, e.g. see Conner et al. 2003). While prob-
o lems such as these are in general unavoidable when deal-
\ ing with constrained systems, one of the nice properties of
our approach is that it learns a policy that is successful
der the same constraints that the demonstrator is success-
Fig. 13 Generalisation over constraints when learning from humarful. S0, although the learnt policy for the grasping task is
wiping data. Left: Three demonstrated trajectories wittiage tilto°, ~ not guaranteed to successfully get the ball in the preseince o
+16° and+27° (grey lines) used to train the model. Right: Two tra- any arbitrary barrier (constraint), it successfully reesithe
jectories with tilt—16° and —-27° (grey lines) held out for testing. Re- ), \hanever (i.e. with whatever barriers) the demonstrat
produced trajectories from the learnt policy under the egponding
constraints (both train and test) are overlaid in black. does. In some sense we can sayrtheistness of the demon-
strator’s policy against different constraints was transfd
to the learner.

T

A second, related issue concerns the role of adaptation of
5 Discussion policies in response to constraints. Clearly there araiairc
stances in which it is desirable to re-plan the policy to cope
In this work, we introduced a novel approach to direct pol-with certain sets of constraints, especially if the leamex-
icy learning in cases where demonstrated movements aisting policy (here, learnt from demonstration) fails unde



those constraints (and in some cases the learner may evAtkeson C, Schaal S (1997) Robot learning from demonstra-
take advantage of certain types of constraint to improve per tion. In: Int. Conf. Machine Learning
formance). However, here a balance must be struck. On thRillard A, Calinon S, Dillmann R, Schaal S (2007)
one hand re-planning the policy will likely improve perfor-  Robot programming by demonstration. In: Handbook of
mance under any given set of constraints; but on the other Robotics, MIT Press
hand the adapted policy will also become more specialiseBolder B, Dunn M, Gienger M, Janssen H, Sugiura H, Goer-
to that particular set of constraints (and may even lead to ick C (2007) Visually guided whole body interaction. In:
degraded performance for other constraints). In other word |EEE Int. Conf. Robotics and Automation
we lose thegeneralisation to other constraints that here we Calinon S, Billard A (2007) Learning of gestures by imita-
attempt to extract from the demonstrator. Furthermore, due tion in a humanoid robot. In: Imitation & Social Learn-
to the inherent uncertainty in the constraints in most real ing in Robots, Humans & Animals: Behavioural, Social
world problems, it may not be feasible to explicitly incor- & Communicative Dimensions
porate all of the constraints when re-planning. For exampl€halodhorn R, Grimes DB, Maganis GY, Rao RP, Asada
consider planning a policy for walking on uneven terrain; M (2006) Learning humanoid motion dynamics through
to explicitly incorporate the constraints involved hereuld sensory-motor mapping in reduced dimensional space. In:
require a detailed model of the terrain, which is rarely vai  IEEE Int. Conf. Robotics and Automation
able. The proposed approach, however, allows us to sidest&thaumette F, Marchand A (2001) A redundancy-based it-
this, providing a shortcut to uncovering the policy used by erative approach for avoiding joint limits: Application to
the demonstraté? (who, if observed to use the same policy visual servoing. IEEE Trans Robotics and Automation
under a number of constraint settings, presumably finds it 17:719-730
sufficient successful for those and similar settings). €her Choi S, Kim B (2000) Obstacle avoidance control for redun-
fore in this sense, we envisage a move away from the tra- dant manipulators using collidability measure. Robotica
ditional approach of planning explicitly with respect td al  18:143-151
possible constraints that is typically only possible inflyg  Conner D, Rizzi A, Choset H (2003) Composition of local
controlled, structured environments. potential functions for global robot control and naviga-
In future work we intend to continue our analysis of tion. In: IEEE Int. Conf. Intelligent Robots and Systems

learning from variable constraint data. An interestinggdir  D’Souza A, Vijayakumar S, Schaal S (2001) Learning in-
tion would be to test the approach for learning policies that verse kinematics. In: IEEE Int. Conf. Intelligent Robots
incorporate forces as well as positions and velocities. For and Systems
example in the car wash experiment, one might consider ussienger M, Janssen H, Goerick C (2005) Task-oriented
ing kinesthetic demonstrations to generate data inclyding whole body motion for humanoid robots. In: IEEE Int.
for example, the normal force to the surface. One might also Conf. Humanoid Robots
use such data to model the forces that constrain the polioggrimes D, Chalodhorn R, Rao R (2006) Dynamic imitation
(as distinct from the forces applied by the policy to gererat  in a humanoid robot through nonparametric probabilistic
the movement), and thus potentially lead to automated meth- inference. In: Robotics: Science and Systems
ods for explicitly decomposing observations into the polic Grimes D, Rashid D, Rao R (2007) Learning nonparametric
actions and the (environmental or self-imposed) condsain  models for probabilistic imitation. In: Adv. Neural Infor-
affecting those actions. mation Processing Systems
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