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Pareto Analysis of Evolutionary and Learning Systems

Yaochu Jin, Robin Gruna, and Bernhard Sendhoff

Abstract— This paper attempts to argue that most adaptive
systems, such as evolutionary or learning systems, have in-
herently multiple objectives to deal with. Very often, there is
no single solution that can optimize all the objectives. In this
case, the concept of Pareto optimality is key to analyzing these
systems.

To support this argument, we first present an example
that considers the robustness and evolvability trade-off in a
redundant genetic representation for simulated evolution. It is
well known that robustness is critical for biological evolution,
since without a sufficient degree of mutational robustness,it is
impossible for evolution to create new functionalities. Onthe
other hand, the genetic representation should also providethe
chance to find new phenotypes, i.e., the ability to innovate.
This example shows quantitatively that a trade-off between
robustness and innovation does exist in the studied redundant
representation.

Interesting results will also be given to show that new insights
into learning problems can be gained when the concept of
Pareto optimality is applied to machine learning. In the first
example, a Pareto-based multi-objective approach is employed
to alleviate catastrophic forgetting in neural network learn-
ing. We show that learning new information and memorizing
learned knowledge are two conflicting objectives, and a major
part of both information can be memorized when the multi-
objective learning approach is adopted. In the second example,
we demonstrate that a Pareto-based approach can address
neural network regularization more elegantly. By analyzing the
Pareto-optimal solutions, it is possible to identifying interesting
solutions on the Pareto front.

I. I NTRODUCTION

In nature, species are evolving and living in constantly
changing environments. It seems that evolution has found dif-
ferent mechanisms of adaptation [1], among which evolution
and learning are two main ones. Learning, or more generally,
individual level adaptation, usually includes all forms of
individual phenotypic changes during an individuals lifetime.
In contrast, evolution, also referred to as population level
adaptation, represents the evolutionary cycle of selection and
genetic variations. In nature, evolution is the main adaptation
mechanism for some species such as bacteria, whereas others
rely more on the individual level of adaptation.

Both evolution and learning in nature must achieve distinct
goals for a better adaptation to changing environments, which
is additionally constrained by limited resource of energy.
These different goals may be conflicting with each other
and cannot be achieved simultaneously. To achieve these
goals, nature seems to have evolved systems consisting of
a large number of functionally distinct yet systematically
integrated subsystems, which is believed to represent a
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major characteristics of brain complexity [2]. In [3], multi-
objectivity has been used to characterize the complexity of
an evolved creature.

This paper demonstrates, with examples, how the Pareto-
based approach can be employed to analyze computational
evolutionary and learning systems. Section II introduces the
mathematical definition of multi-objective optimization and
Pareto dominance, and discusses some general properties of
Pareto fronts. In Section III, the trade-off between robustness
and evolvability of a redundant Boolean representation is
investigated by analyzing the Pareto front achieved with
a multi-objective evolutionary algorithm. The advantage of
Pareto-based approach to addressing catastrophic forgetting
and neural network regularization is illustrated in Section IV.
Section V briefly summarizes this paper and discusses some
potentially interesting topics.

II. PARETO-BASED MULTI -OBJECTIVEOPTIMIZATION

AND ANALYSIS

A. Multi-objective Optimization and Pareto Optimality

Consider the following multi-objective minimization prob-
lem:

minimize fm(x) m = 1, 2, · · · , M ; (1)

subject to gj(x) ≥ 0, j = 1, 2, · · · , J ; (2)

hk(x) = 0, k = 1, 2, · · · , K; (3)

xL
i ≤ xi ≤ xU

i , i = 1, 2, · · · , n, (4)

where fm(x) are the M different objective functions to
be minimized,x = (x1, x2, · · · , xn)T is the n-dimensional
decision space,gj(x) are theJ inequality constraints,hk(x)
are theK equality constraints, andxL

i andxU
i are the lower

and upper bounds of thei-th decision parameter, respectively.
For the multi-objective minimization problem defined

above, solutionx(1) is said to dominate solutionx(2), if x
(1)

is no worse thanx(2) in all objectives, i.e.,

∀m = 1, 2, · · · , M, fm(x(1)) ≤ fm(x(2)), (5)

and ifx(1) is strictly better thanx(2) in at least one objective:

∃m′ ∈ {1, 2, · · · , M}, such thatfm′(x(1)) < fm′(x(2)).
(6)

If a solution x
∗ is not dominated by any other feasible

solutions, solutionx∗ is called Pareto-optimal. For most
multi-objective optimization problems, there are a finite or
infinite number of Pareto-optimal solutions, which are known
as the Pareto set in the decision space, and the Pareto front
in the objective space.
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B. Analysis of Pareto Optimal Solutions

When there is no preference over a particular objective,
the Pareto-optimal solutions are non-comparable, i.e., they
are equally good. To pick out one solution for the final use,
a user needs to provide some preference that helps the user
to decide which Pareto-optimal solution best meets user’s
preference. Due to this reason, it has been argued that it
is not necessarily to approximate the whole Pareto front,
which might require more computational resources. While
this kind of argument is true in some cases, it is our belief
that achieving the whole Pareto front is of great value due
to the following reasons:

• The shape of the Pareto front, in particular, the convex-
ness or concaveness of the front, as well as the location
of knee points and extreme points on the Pareto front,
can reveal much additional domain knowledge, refer to
Fig. 1. A knee point is a solution on the Pareto front
that requires a large sacrifice in the other objectives to
improve in one objective. Such domain knowledge may
greatly help the user in decision-making for choosing
the final solution.

• When aspects other than the performance of the solution
in terms of the function value are considered important,
for example the robustness of the Pareto-optimal solu-
tions, it is then very helpful to achieve all the Pareto-
optimal solutions. By analyzing the robustness of the
solutions, the user may modify their preference and
choose the best solution for the problem at hand.
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Fig. 1. Convexness and interesting points of Pareto fronts.A filled square
means an extreme solution, and a filled circle denotes a knee point. (a)
Convex Pareto front, (b) Concave Pareto front, (c) Convex Pareto front with
two sections of piecewise linear curves, and (d) Convex Pareto front with
two separate linear curves.

While it is of essential importance to analyze the Pareto-
optimal solutions for multi-objective optimization problems,
it is sometimes very helpful to multi-objectivize problems

that originally have only one objective. For example diversity
has been used as the second objective to facilitate solving
multi-modal problems in reducing the number of local opti-
mums [4], [5], [6], or solving dynamic problems [7].

One important research area in which Pareto-based multi-
objective analysis has found to be of particular interest is
machine learning [8]. Many typical learning problems. such
as neural network regularization, ensemble generation and
data clustering, can be addressed by summarizing the dif-
ferent objectives into a scalar objective. These problems can
be solved more elegantly when the Pareto-based approach
is used. A few examples will be provided in Section IV to
elaborate on this point.

III. PARETO ANALYSIS OF REDUNDANT GENETIC

REPRESENTATIONS OFEVOLUTIONARY SYSTEM

A. Trade-offs in Biological Systems

Natural evolution can never be single-objective. Trade-offs
between different targets have accompanied the history of
evolution mainly due to the limited amount of energy and
time. A few examples in biological systems are:

• A trade-off between energy efficiency and functionality
in evolution of brain size and organization of nervous
systems. It is believed that the intelligence level of
organisms is roughly proportional to their relative brain
size, e.g., the ratio of brain weight to body weight.
However, a bigger brain is evolved at costs [9]. First,
a big brain often means more energy consumption,
and therefore more food consumption, which is not
always available. Second, animals with a bigger brain
usually have a longer life span, which means that they
are likely to experience more extreme environmental
changes and thus harder survival environments. In the
evolution of nervous systems, it has been shown that
energy efficiency has also been a main constraint for
evolving their functionality. This kind of trade-off has
also been shown to lead to the emergence of biologically
plausible structure in the artificial evolution of a neural
system [10].

• There is a trade-off between reproduction and survival
(longevity) [11]. Research has been shown that male
fruit flies supplied with virgin females have lower
longevity than those kept without access to females [12].
This trade-off has also been shown to be important in
evolving an optimal lifetime in an artificial evolutionary
system [13].

• Evidence has also been found that supports a trade-off
between the number of offspring and their size [14].

• Trade-offs have been found in many research topics of
bioinformatics and computational biology. For example,
in protein sequence alignment, maximizing the number
of matching bases and minimizing the number of gaps
may be two conflicting objectives. Conflicting objec-
tives must also be taken into account in constructing
phylogenetic tree and gene regulatory networks [15].



B. Pareto Analysis of Robustness-Evolvability Trade-off

It is a challenging and extremely important task to under-
stand how natural evolution has managed to bring about the
huge biological diversity and complexity from simple par-
ticles and molecules. In addition to environmental changes,
it is believed that two important principles, i.e., robustness
and evolvability, may have played a central role in shaping
biological complexity.

Biological robustness means organisms’ ability to rela-
tively maintain their functionality under a certain degree
of internal and external perturbations. An important is-
sue directly related to robustness is evolvability, which is
organisms’ ability to evolve inheritable novel phenotypic
functionalities that help the organism survive and reproduce.
In the recently years, research on robustness and evolvability
has become one of the main research topics in systems
biology [16], [17].

Research on robustness and evolvability is still in its
infancy [18], [19]. Not only a sophisticated quantitative
definition for biological robustness and evolvability is still
missing, but the biological origin, that is, how evolution has
shaped the various biological mechanisms for robustness and
evolvability remains to be understood.

In a broader sense, robustness contributes to evolvabil-
ity in that without robustness, evolutionary tinkering will
most likely lead to the lethal consequences, thus preventing
evolution from creating new functionalities. For a clearer
understanding of the mechanisms underlying evolvability
and robustness, we investigate here evolvability in a narrow
sense, that is, systems’ ability to generate new phenotypes,
termed innovation hereafter. Although it has been recognized
qualitatively that there is a trade-off between robustnessand
innovation, no quantitative results have been reported.

Biological robustness can be achieved with a variety
of mechanisms, such as feedback, genotypic redundancy,
functional modularity, among others [16]. In the following,
we investigate a redundant genotype-phenotype mapping to
investigate quantitatively the robustness-evolvabilitytrade-
off.

1) A Boolean Model for Genotype-Phenotype Mapping:
Consider the following genotype-phenotype mapping from
n-dimensional genotype spaceG ∈ {0, 1}n to m-dimensional
phenotype spaceP ∈ {0, 1}m:

pi = fki

i (ci1(g1), ci2(g2), · · · , cin(gn)), (7)

wherepi, i = 1, 2, . . . , m is thei-th phenotype trait,gj , j =
1, 2, · · · , n is the j-th genotype, andC = (cij)m×m, where

cij =1 : ⇐⇒ phenotype traitpi is affected by genegj

cij =0 : ⇐⇒ phenotype traitpi is independent of genegj.

fki

i (.) is a Boolean function withki inputs, where

ki =
n∑

j=1

cij , (8)

is also known as the arity of the Boolean function.

If ki > 1, that is, if phenotypepi is influenced by more
than one genotype, it is called polygeny. In contrast, the
number of phenotype traits affected by genegj is given by
the sum of the elements in the column:

lj =

m∑

i=1

cij . (9)

If lj > 1, then genotypegj is said to be pleiotropy. Without
loss of generality, it is assumed thatC is chosen such that
lj ≥ 1 for all i = 1, . . . , n. This means that each gene affects
at least one phenotype trait.

The mapping can be defined by the dependencies between
genes and phenotype traits, and a set of Boolean functions
that determine the values of the phenotype traits. Since the
connection between genotype and phenotype determines the
number of inputs for a certain phenotype trait and thus for the
corresponding Boolean function, the dependencies between
genes and phenotype traits are determined at first. Once the
connection matrixC has been fixed, the Boolean functions
fki

i : {0, 1}ki → {0, 1}, i = 1 . . .m can then be defined.
An example of genotype-phenotype mapping with eight

genes and four phenotype traits is given in Fig. 2, where
the arity of the Boolean function for the four phenotypes is
three, six, six, and two, respectively. The connection matrix
in this example is as follows:

C =







1 0 0 1 0 0 0 1
1 1 1 1 1 0 1 0
0 1 1 0 1 1 0 0
0 0 1 0 0 0 1 0







. (10)
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Fig. 2. An example of genotype-phenotype mapping, where thenumber
of genes is eight, and the number of phenotype traits is four.

In the following, we are going to evolve the connection
matrix C as well as the Boolean functions to maximize
the robustness and evolvability using the NSGA-II [20],
which is one of the most popular evolutionary multi-objective
optimization algorithms.

2) Encoding of the Model: The first stage of the multi-
objective evolutionary approach is to determine the scheme
for representing the genotype-phenotype mapping model.
In this work, an encoding with a fixed coding length and
relatively compact has been adopted.

The encoding of the Boolean model consists of two parts:
the encoding of the connection matrixC and the encoding
of the Boolean functionsfi, i = 1, . . . , m. The encoding of
C is trivial, since each entrycij can be written in a binary
vector, leading to a fixed encoding lengthmn, independent
of the actual value ofC.



Finding an encoding forfi is more difficult. The con-
nection matrixC determines the polygenyki =

∑n

j=1 cij

of each phenotype traitpi, i.e., the number of inputs of
the Boolean functionfki

i . Sincefki

i is a Boolean function
fki

i : {0, 1}ki → {0, 1}, it is completely defined when the
corresponding outputs for each2ki inputs are determined. It
can be seen that such a canonical encoding is dependent
on the actual value of the connection matrixC. During
evolutionary search the size of such an encoding is changing
and a set ofad hoc search operators have to be defined to
guarantee that newly generated solutions are feasible.

A simpler option is to define an encoding forfki

i ()
independent of its arityki. To this end, it is assumed that
ki = n due to the fact that a phenotype trait cannot depend
on more thann genes. Unfortunately, this approach would
lead to an encoding with a length ofnm + 2nm. Even for a
medium size of genotype and phenotype spaces, e.g.,m = 8
and n = 16, the length of the chromosome will become
intractably large. To address this problem, we impose more
restrictions on the Boolean model so that a reasonably small
encoding length can be achieved. Since the crucial part of
the encoding is the encoding of the Boolean functionsfki

i ()
and its dependency onki, we are going to define a class of
Boolean functions that are independent of the polygenyki.

Let fke ∈ Fke denote an arbitrary Boolean func-
tion with arity ke. Then the k-ary extension of fke ,
fk ↑fke : {0, 1}k → {0, 1}, is recursively defined by

fk ↑fke (g1, . . . , gk)

=

{
fke(g1, . . . , gke

), if k = ke;
fke(fk−1 ↑fke (g1, . . . , gk−1), gk), if k > ke;

(11)
for k ≥ ke. If k < ke, then,

fk ↑fke (g1, . . . , gk) = fke(1, . . . , 1
︸ ︷︷ ︸

ke−k

, g1, . . . , gk), (12)

where the first(ke − k) positions are set to1. fke is termed
the elementary Boolean function andke its elementary arity.
Fig. 3 shows an example of 4-ary extension of 2-ary Boolean
function f2.
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Fig. 3. An example of 4-ary extension of a 2-ary Boolean function: f4 ↑f2 .

With the definition of thek-ary extensionsfk ↑fke of
Boolean functions, the following three different approaches
to encoding the Boolean functions are considered, each of
which results in a reasonably compact and fixed encoding
length.

• Multiple Boolean Functions All fk ↑fke have the same
encoding size2ke , independent of their actual arityk,
since only the elementary Boolean functionfke has to
be encoded. Consequently, a restricted version of the
Boolean model can be defined as follows: determine a
fixed elementary arityke for the model and choose every
Boolean functionfi = fk ↑

f
ke

i

, i = 1, . . . m, where
ki is the polygeny of the corresponding phenotype
trait pi and is determined by the connection matrix
C. It is important to emphasize that each phenotype
functionfi is thek-ary extension of different elementary
Boolean functionsfke

i . This model restriction leads to
an encoding size ofnm+m2ke bit, which is reasonably
small for ke = 2, 3, 4. The structure of the encoding is
schematically depicted below:

connection matrix
︷ ︸︸ ︷

c11 c12 · · · cmn

elementary Boolean functions
︷ ︸︸ ︷

fke

1 fke

2 · · · fke

m (13)

• Single Boolean Function Encoding An even simpler
encoding can be achieved when the Boolean model is
restricted to a single elementary Boolean function. In
doing so, a fixed elementary arityke for the model is
determined and the local Boolean functions areki-ary
extensions of the same elementary Boolean function:
fi := fk ↑fke , i = 1, . . . m. This restriction leads to
an encoding size ofnm + 2ke bit. The structure of the
encoding is schematically depicted as follows:

connection matrix
︷ ︸︸ ︷

c11 c12 · · · cmn fke (14)

• Majority Rule Encoding In a further simplification of the
Boolean model, we dispense with an explicit definition
of the Boolean functionsfi. Instead, the phenotype traits
are determined by the majority rule. There are several
possibilities to break ties. In our work, we set the output
of majority rule to its first input in the case of a tie. This
keeps the rule balanced and deterministic:

fi(gj1 , gj2 , . . . , gjki
) =







1, if
ki∑

l=1

gjl
> ki/2;

0, if
ki∑

l=1

gjl
< ki/2;

gj1(i), otherwise.
(15)

Hence, only the connection matrix has to be encoded:

c11 c12 · · · cmn (16)

These different encodings restrict the original model in a
strong way and so one could say that each presents a different
model on its own.

3) Objective Setup I: Maximizing Local Neutral Degree
and Local Variability: There is no widely accepted quantita-
tive definition for robustness and evolvability. In this setup,
we use local neutral degree for estimating the robustness



and the maximum local innovation for approximating the
evolvability of a genotype-phenotype mapping.

Given an genotype-phenotype mappingφ : G → P and
a neighborhood relationN over the set of genotypesG,
then thelocal neutral degree νφ(g) of mappingφ is defined
by [21]

νφ(g) :=
|{g′ ∈ G : φ(g) = φ(g′) ∧ N(g, g′)}|

|{g′ ∈ G : N(g, g′)}|
(17)

Similar to the definition of local neutral degree, a definition
of the local variability can be defined as follows. Given an
genotype-phenotype mappingφ : G → P and a neighborhood
relation N over the set of genotypesG, then the local
variability δφ(g) of mappingφ at genotypeg is defined as

δφ(g) :=
|{g′ ∈ G : φ(g) 6= φ(g′) ∧ N(g, g′)}|

|{g′ ∈ G : N(g, g′)}|
(18)

Note that the variabilityδ captures the fraction of unique
phenotypes in the non-neutral neighborhood, which is ac-
complished by the set notation. Accordingly,∀g ∈ G, νφ(g)+
δφ(g) ≤ 1 holds by definition.

  (a)                                                                (b) 

Fig. 4. Two illustrative examples on calculating local neutral degree and
local variability. In the figure, filled circles, squares andpentagons denote
different phenotypes, while the lines represent local neighborhood in the
genotype. (a)νφ(g) = 0.5, δφ(g) = 0.25, and (b)νφ(g) = 0.5, δφ(g) =
0.5.

Two illustrative examples on how to calculate local neutral
degree and local variability are provided in Fig. 4.

The definition of local neutral degree has been discussed
in a number of studies. However, in most of these stud-
ies, the local neutral degree measure is investigated with
respect to the single genotypes or neutral sets mapping to
the same phenotype. In this work, we want to evaluate
different characteristics of neutrality with respect to entire
genotype spaces. We use the local neutral degree to calculate
the mean neutral degree of a genotype-phenotype mapping,
which is accomplished by randomly sampling genotypes and
averaging their local neutral degree. A high mean neutral
degree indicates that there are many genotypes with a high
local neutral degree, and therefore the mean neutral degree
reflects how many neutral mutations or how much neutrality
is provided by the mapping. In the genotype space where
the neutral degree is high, mutations are most likely neutral
rather than deleterious. As a consequence, populations on
neutral networks tend to drift toward regions with a high
neutral degree to evolve robustness. This gives rise to the
consideration that the mean neutral degree is related to
mutational robustness.

In order to evaluate the robustness of a mapping, the
mean of its neutral degree distribution̄νφ is estimated.
The local neutral degree of randomly sampled genotypes is
determined and averaged over all samples. Consequently, the
mean neutral degree reflects the density of neutral spaces. A
mapping with a high mean neutral degree has more regions
in the genotype space that are surrounded by neighbors
which map to the same phenotype. Therefore, phenotypes
associated with dense neutral spaces have a higher robustness
against mutations than those associated with less dense
neutral spaces.

The mean variability of a genotype-phenotype mapping
can be calculated in a similar way. It is the sensitivity of
phenotypes to genotypic mutations and therefore can be
considered as the opposite of robustness to genetic changes.
A high mean variability can be viewed to contribute to
evolvability, when a condition of evolvability is defined asto
reduce the number of mutations needed to produce phenotyp-
ically novel traits [22], [23]. In [24], Fontana states thatthe
capacity to evolve in response to selective pressures depends
on phenotypic variability. This suggests that variabilitycan
be considered as prerequisite for evolvability.

It is important to note that the neutral degree and variabil-
ity are related according to∀g ∈ G : νφ(g) + δφ(g) ≤ 1 and
thus the mean neutral degreeν̄φ and the mean variabilitȳδφ

are conflicting properties of a mapping. Therefore, the true
Pareto front is given bȳνφ + δ̄φ = 1. In order to study this
trade-off relationship and how this is resolved by the Boolean
model, we will evaluate different encodings of the model in
the proposed multi-objective optimization framework.

In the experiment, different encodings of the Boolean
model were optimized with respect to the mean variability
and mean neutral degree. The results for a population of 50
individuals and 100 generations are summarized in Fig. 5.

It can be seen that the different encodings lead to quite dif-
ferent results. The random initial population with the multiple
Boolean function encoding is unevenly distributed across the
objective space. The mappings lie at some distance from the
true Pareto front̄νφ + δ̄φ = 1, albeit mappings with̄ν > 0.6
are almost on the true Pareto front. After 100 generations, the
mappings lie evenly distributed on the theoretical trade-off
surface. This is different to the case in which single Boolean
functions encoded. The randomly initialized population lies
almost entirely on the theoretical Pareto front, but only on
a sectionν̄ < 0.5. After multi-objective optimization was
performed, the mappings are more evenly distributed along
this section. Only a few mappings lie on the Pareto front
section withν̄ < 0.5. The solutions seem to have an uniform
distance from each other. For0.2 < ν̄ < 0.5, however, no
Pareto optimal solutions have been found. In the case of
the majority rule encoding, the randomly initialized mapping
form a compact cluster and evolutionary search finds Pareto
optimal mappings with0.5 < ν̄ < 0.8. In summary, all
genotype-phenotype mappings found by different encodings
of the Boolean models and evolutionary search lie on the true
Pareto front̄νφ + δ̄φ = 1. However, the found Pareto optimal
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Fig. 5. Multi-objective optimization evaluation of the Boolean model (n = 16, m = 8) for maximal mean neutral degreēνφ and maximal mean variability
δ̄φ. The model is encoded by different techniques:a Multiple Boolean functions encoding with elementary arity2. b Single Boolean function encoding
with elementary arity 2.c Majority rule encoding. Plots in the left panel show the results of 50 randomly initialized genotype-phenotype mappings with
n = 16 andm = 8. Those in the right panel show the approximated Pareto optimal set of genotype-phenotype mappings after 100 generations. The dotted
line indicates the theoretical Pareto front, determined bythe definition of neutral degree and variability, i. e.ν̄φ + δ̄φ = 1. The different encodings result
in different approximations of a Pareto optimal set.

solutions are distributed along different regions. Only with
the multiple Boolean function encoding was the evolutionary
algorithm able to find the complete Pareto optimal front.

These results indicate that the different encodings of
the Boolean functions differ in their capability of realizing
various genotype-phenotype mappings. Since the multiple
Boolean function encoding restricts the original Boolean
model at the least, it is able to approximate the widest range
of the theoretical Pareto front. For example, a genotype-
phenotype mappingφ : {0, 1}16 → {0, 1}8 with variability
δ̄φ = 1 and neutral degreēνφ = 0 can be implemented.
Despite that this mapping has a redundancy of28, it pos-
sesses no neutrality. This means that the genotype space is
structured in such a way that genotypes that map to the
same phenotype are never neighbored and thus every single
point mutations leads to a new phenotype. Therefore, such

a mapping can be thought of as having low robustness and
high evolvability.

Alternatively, mappings with neutral degreeδ̄φ ≥ 0.9 and
variability ν̄φ ≤ 0.1 can be implemented by the multiple
and single Boolean functions encoding. In this case, almost
all single point mutations are neutral and lead to the same
phenotype. Therefore, such a mapping can be considered as
highly robust and less evolvable.

In order to understand how the Boolean model is capable
of implementing such different mappings, we analyze the
underlying parameters of the model. These are given by the
connection matrixC and the set of Boolean functionsfi, i =
1, . . . , m. To obtain a first impression of the parameters’
structures, we visualized them. Fig. 6 shows three example of
encoding structures for different encoding schemes. Visually,
no significant features or patterns in the encoding structure



can be identified. A profound analysis of the parameters is
difficult because of the high degree of freedom in the model.
A statistical approach is presented in [25] to interpret the
parameter structure of the majority rule encoding.

a b c

Fig. 6. Exemplary parameter visualization of the Boolean model (n = 16,
m = 8) yielded by different encoding techniques. Each frame corresponds
to an implementation of the connectivity matrixC and the set of phenotype
functions (if necessary) of a genotype-phenotype mapping.a Multiple
Boolean functions encoding with elementary arity 2. The left array depicts
the connection matrix, the right array illustrates the phenotype functions
fi, i = 1, . . . , m. Row i depicts the truth table of the elementary Boolean
function f2

i . b Single Boolean functions encoding with elementary arity
2. The left array depicts the connection matrix, the right array depicts the
truth table of the elementary Boolean functionf2. c Majority rule encoding.
The array indicates the connection matrix. In all descriptions, black array
entries corresponds to 1, whereas white array entries correspond to 0. An
entry cij = 1 in the connection matrix indicates, that phenotype traitpi

depends on genegj . Therefore, the pleiotropy of genegj is given by the
sum of columnj, whereas the polygeny of phenotype traitpi is given by
the sum of rowi.

4) Objective Setup II: Maximizing Neutral Degree and
Uniformity Entropy: In order to gain a deeper insight into the
relationship between neutral degree and entropy, we carried
out a multi-objective optimization with neutral degree and
entropy as two objectives. The experiment was performed
with different encodings and the results are shown in Fig. 7.
The results vary slightly with the different encodings. They
differ mainly in the way in which the random initialized
population is distributed in the objective space. After200
generations, the results resemble each other. The mappings
encoded with single and multiple Boolean functions form
a well-distributed Pareto front. Mappings encoded with the
majority rule cover only a section of the Pareto front and
do not exceed a neutral degree of0.8. This has also been
observed in the previous experiment and can be attributed to
the strong restriction that reduces the original Boolean model
to the majority rule.

The results suggest that a genotype-phenotype mapping
implemented by the Boolean model can provide high entropy
up to a certain neutral degree threshold. It remains to be
clarified if this observation is a consequence of the definition
of neutral degree and entropy, and so is true for arbitrary
genotype-phenotype mappings or this is a property of the
Boolean model. Moreover, it would be interesting to investi-
gate how the observed neutral degree threshold depends on
other model parameters. We hypothesize that this threshold
is determined by the redundancy of the mapping, which is
216 : 28 in our experiments, but we did not perform further
experiments to investigate this question.

This threshold is important when considering neutral de-
gree as a measure for mutational robustness. Our results
suggest that high entropy can only be guaranteed up to
a certain mean neutrality degree, and with decreasing en-
tropy more and more phenotypes become inaccessible to
the evolutionary system through the genotype-phenotype
mapping. Therefore it must be discussed if the notion of

robustness can be applied to mappings that are constant or
not surjective. Put differently, given two redundant genotype-
phenotype mappingsφ1 andφ2, both defined over the same
genotype and phenotype spaces. Then the question must
be asked whether the mappingφ1 with a smaller image,
that is |{φ1(g) | g ∈ G }| < |{φ2(g) | g ∈ G }|, is inevitably
the mapping with higher mutational robustness. We think
that non-surjective genotype-phenotype mappings must be
considered when defining robustness.

The above work on analyzing robustness and evolvability
trade-off of redundant genetic representations for simulated
evolution demonstrates that the Pareto-approach is of great
value in uncovering the relationship between redundancy and
evolvability of genetic representations. In the following, we
will apply the Pareto approach to studying machine learning
systems.

IV. PARETO ANALYSIS OF LEARNING SYSTEMS

A. Trade-offs in Learning

Machine learning can be largely divided into supervised
learning, unsupervised learning and reinforcement learning.
Any machine learning method can be seen as an optimization
problem, because the target of learning is either to minimize
a cost function or maximize a reward or value function.

Machine learning has traditionally been treated as a single
objective optimization problem. However, if we examine
different learning problems more closely, most of them have
to deal with more than one objective. Let us first take a look
at model selection strategies, which are the most important
issue in supervised or unsupervised learning.

A well-known criterion for model selection is the Akaike’s
Information Criterion (AIC):

AIC = −2log(L(θ|y, g) + 2K, (19)

whereg is the true function from which the training data are
produced,θ is the model,L(θ|y, g) is the maximized log-
likelihood between the model and the true function given the
training datay, andK is the effective number of parameters
to be estimated in the modelθ. For a number of different
models trained from the same training data set, the one
with the minimal AIC will be chosen. From Equation 19,
we can see that AIC consists of two terms. The first term
is to maximize the accuracy of the model, whereas the
second termK indicates the complexity of the model. As
the model complexity increases, i.e., the number of free
parameters in the model increases, the first term in the AIC
tends to decrease, while the second becomes larger, which
in fact reflects the well-known bias-variance dilemma. From
the optimization point of view, these two terms cannot be
minimized simultaneously and therefore, model selection,or
more generally, machine learning is actually a typical multi-
objective optimization problem.

In supervised learning of neural networks and fuzzy sys-
tems, several specific trade-off criteria have been considered
derived from the fundamental trade-off relationship defined
by the AIC. The most commonly used criterion for model
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Fig. 7. Multi-objective optimization evaluation of the Boolean model with (n = 16, m = 8) for maximal mean neutral degree and uniformity entropy.
The model is encoded by different techniques:a Multiple Boolean functions encoding with elementary arity2. b Single Boolean function encoding with
elementary arity 2.c Majority rule encoding. The figures1 in the first columns show 75 randomly initialized genotype-phenotype mappings withn = 16
andm = 8. The figures2 in the second column the approximated Pareto optimal set of genotype-phenotype mappings after 100 generations. The different
encodings result in similar approximations of a Pareto optimal set.

fidelity is the error function, such as the mean square error
or the mean absolute error. Complexity of learning models
is also very often used, including the Gaussian regularizer
that is the sum of the squared weights of the neural net-
work, or the Laplacian regularizer, which is the sum of the
absolute weights. If a non-gradient based algorithm is used
for learning, the number of hidden nodes or the number of
connections can also be used to denote the complexity of
the network. In generating fuzzy systems, complexity of the
fuzzy rules is directly associated with their interpretability,
in other words, the easiness for human users to understand
the knowledge represented by the fuzzy rules [26], [27].
Reducing the number of fuzzy subsets, the overlaps of the
fuzzy subsets, the number of fuzzy rules and the rule length
(in the rule premises) will improve the interpretability of
fuzzy rules. When ensembles of learning models are to be
generated, either functional or structural diversity of the

ensemble members can be used as the objective in ensemble
generation [8].

Although the bias-variance trade-off in the AIC has not
been explictly taken into account in many learning algo-
rithms, it is explicitly considered in the learning algorithms of
support vector machines (SVMs). Without loss of generality,
we take SVMs for classification as an example. A typical
SVM for classification can be expressed as the following
optimization problem:

minimize 1
2w

T
w + C

∑N

i=1 ξi, (20)

subject to yi(w
T φ(xi) + b) ≥ 1 − ξi, (21)

ξi ≥ 0, (22)

(23)

where xi ∈ Rn, yi ∈ {−1, 1}, i = 1, 2, · · · , N are the
training data set consisting ofN data pairs,φ(xi) is a kernel



function, b is the bias,ξi is called interior deviation or
slackness, andC is a constant to be determined by the user.
Obviously, minimizingw

T
w and minimizing

∑N

i=1 ξi are
two conflicting objectives, and solving the SVM is a multi-
objective optimization problem [28].

One of the main principles in information processing in the
brain is that the fraction of neurons that are strongly active
at a time is below 1/2. This principle has been implemented
in computational neuroscience, which results in a class of
computational models known as sparse coding [29], where
the accuracy of the model trades off with the sparseness
of the active neurons in the model. So far, the coefficient
determining the trade-off between the two terms has been
chosen heuristically, and no in-depth discussion about the
influence of the co-efficient on the final performance has
been reported.

Another well-known issue in computational cognitive neu-
roscience is the stability-plasticity dilemma [30], which
means that the learning system should be able to learn new
information efficiently without completely forgetting what
has been learned previously. The stability versus plasticity
dilemma is often known as catastrophic forgetting in neural
network based machine learning [31]. Most existing tech-
niques try to alleviate catastrophic forgetting with models
using distributed representation or a growing structure. Direct
rehearsal where the previous training data is assumed to be
available, or pseudo-rehearsal using pseudo-data generated
from the trained model has also been suggested to address
catastrophic forgetting [32].

B. Illustrative Examples

In this section, we will provide two examples of Pareto-
based multi-objective learning. The first example shows how
catastrophic forgetting can be approached using the Pareto-
based approach. In the second example, neural network
regularization is tackled with by reformulating regularization
as a Pareto-based multi-objective optimization problem. In
addition, we demonstrate that by analyzing the accuracy-
complexity trade-off, it is able to identify Pareto optimal
solutions (learning models) with a complexity that most
likely matches that of the problem in question.

1) Alleviating Catastrophic Forgetting: Catastrophic for-
getting means that when a trained neural network learns new
patterns, the already learned information (the base patterns)
will be destroyed (forgotten). Since learning the base patterns
and learning the new patterns are very likely competitive,
it is natural to deal with the conflicting objectives using
the Pareto-based multi-objective learning [33]. In that work,
pseudo-rehearsal is reformulated as a multi-objective opti-
mization problem, as shown in Fig. 8. Before training the
neural network with the new patterns, a number of pseudo-
patterns are generated. The pseudo-patterns are created by
generating random inputs to the trained neural network, and
then recording the corresponding outputs of the network. It
is hoped that the pseudo-patterns will carry the same or
similar knowledge as the base patterns. Next, learning is
carried out as a bi-objective optimization problem, where
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Fig. 8. Pseudo-rehearsal through multi-objective optimization.

the approximation error on the new patterns and that on the
pseudo-patterns serve as the two objectives.

It has been found that it is non-trivial to properly perform
life-time learning within the evolutionary cycles in multi-
objective learning. This is particularly true when all the
objectives are concerned with approximation error. In the
case of alleviating catastrophic forgetting, three life-time
learning strategies have been investigated [33]. In strategy
1, the union of pseudo-patterns and new patterns are used
in life-time learning. Strategy 2 randomly chooses either the
pseudo-patterns or the new patterns for lifetime learning.And
in strategy 3, one of the three patterns, the pseudo-patterns,
the new patterns, and the union of pseudo-patterns and
new patterns, is picked out randomly for life-time learning.
It is found that using the union of pseudo-patterns and
new patterns in life-time only will dramatically reduce the
population diversity and only a few Pareto optimal solutions
can be obtained. The diversity of solutions will be improved
when strategy 2 or 3 is used. Fig. 9 shows the trade-off
solutions in terms of memorized based and new patterns.
In this experiment, 25 pairs of base and new patterns of
are generated randomly, each pair of pattern containing a
10-dimensional input and a 10-dimensional output of value
either 0 or 1. Then, neural networks with a maximum of 10
hidden nodes are evolved to learn the base patterns. After
the training is completed, 24 of the 25 based patterns are
correctly learned. Then, 25 pseudo-patterns are generated
based on the trained neural network. From Fig. 9, we can see
that the Pareto-optimal solutions are able to memorize more
than 15 base patterns while learning over 20 new patterns.

2) Neural Network Regularization: To improve gener-
alization of neural networks, regularization techniques are
often adopted by including an additional term in the error
function:

J = E + λΩ, (24)

where λ is a hyperparameter that controls the strength of
the regularization,Ω is known as the regularizer, andE is
usually the mean square error (MSE):

f =
1

N

N∑

i=1

(y(i) − yd(i))2, (25)
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solutions.

wherey(i) and yd(i) are the model output and the desired
output, respectively, andN is the number of data pairs in
the training data.

The most popular regularization method is known as
weight decay (also known as Gaussian regularizer):

Ω =
1

2

∑

k

w2
k, (26)

wherek is an index summing up all weights.
One weakness of the weight decay method is that it is

not able to drive small irrelevant weights to zero, which may
result in many small weights. The following regularization
term has been proposed to address this problem (known as
Laplacian regularizer):

Ω =
∑

i

|wi|. (27)

This regularization was used for structure learning, because
it is able to drive irrelevant weights to zero.

It is quite straightforward to see that the neural network
regularization in equation (24) can be reformulated as a bi-
objective optimization problem:

min {f1, f2} (28)

f1 = E, (29)

f2 = Ω, (30)

whereE is usually the mean square error, andΩ is one of
the regularization terms defined in equation (26) or (27).

Since evolutionary algorithms are used to implement reg-
ularized learning of neural networks, a new and more direct
index for measuring complexity of neural networks can be
employed, which is the number of connections in the neural
network:

Ω =
∑

i

∑

j

cij , (31)

wherecij equals1 if there is connection from neuronj to
neuroni, and0 if not.

When gradient-based learning algorithms are employed for
regularization, the Laplace regularizer is usually believed to
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Fig. 10. Relationship between the number of connections andthe sum of
squared weights.
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absolute weights.

be better than a Gaussian regularizer in that the Laplace
regularizer is able to drive irrelevant weights to zero. In
this way, “structural learning” is realized with the help
of the Laplace regularizer. Using the evolutionary multi-
objective approach, we show that there is no substantial
difference between the Gaussian and the Laplace regularizers
in terms of their ability to realize structural learning, when
evolutionary algorithms are used as an optimizer.

To verify this assumption, we use the Breast Cancer Data
set available in the UCI Machine Learning Repository [34].
The available data are split into a training data set and a test
data set, where 525 instances are used for training and 174
instances for test.

From Figs. 10 and 11, we can see that a similar rela-
tionship between the sum of squared or absolute weights
and the number of connections is observed. In other words,
even when the Gaussian regularizer is used, the number of
connections can also be reduced to the minimum when the
sum of squared weights is minimized. It does not result
in many small weights as when gradient-based learning
algorithms are used.

3) Identifying Models of Suitable Complexity: In this
section, we show that the Pareto-approach to handling the
accuracy-complexity trade-off provides an empirical, yet
interesting alternative to selecting models that have good



generalization on unseen data. The basic argument is that
the complexity of the model should match that of the data to
be learned and the ability of the learning algorithm. When the
complexity of the model is overly large, learning becomes
sensitive to stochastic influences, and results on unseen data
will be unpredictable, i.e., overfitting can happen. To analyze
the relationship between the achieved accuracy-complexity
trade-off solutions, the normalized performance gain (NPG)
is defined:

NPG =
MSEj − MSEi

Ci − Cj

, (32)

whereMSEi, MSEj , andCi, Cj are the MSE on training
data, and the number of connections of thei-th and j-th
Pareto optimal solutions. When the solutions are ranked in
the order of increasing complexity, the following relation-
ships hold:

Ci+1 > Ci,

MSEi+1 ≤ MSEi.

We hypothesize that if the model complexity is lower than
that of the data, an increase in complexity will result in sig-
nificant increase in performance (NPG). As the complexity
continues to increase, the NPG reduces gradually to zero.
At this point, the complexity of the model matches that of
the data. Further increase in complexity will probably bring
about further enhancement in performance on the training
data, but with a dramatically increasing risk of overfitting
the training data.

We are now going to verify empirically the suggested
method for model selection also on the Breast Cancer Data
set. The Pareto fronts generated from two independent runs
on the three benchmark problems are presented in Fig. 12.
The dots denote the results on the training data set, while
the circles the results on test data. The NPG from the
two independent runs for the three problems are plotted in
Fig. 13. It can be seen from Fig. 12 that models with the
number of connections larger than 10 to 15 start to overfit the
data, which roughly corresponds to the point in Fig. 13 where
the NPG drops to zero after the first peak in performance
gain. This empirical result is helpful for model selection
when the number of training data is too small to perform
meaningful cross-validations and other statistical analyses.

V. CONCLUSIONS

This paper discusses the Pareto-based multi-objective anal-
ysis of evolutionary and learning systems. With an evolu-
tionary multi-objective optimization algorithm, a numberof
Pareto-optimal solutions (forming the Pareto front) can be
obtained. By analyzing the Pareto front, we are able to gain
a deeper insight into in the evolutionary and learning systems.
We show in the first illustrative example how the Pareto
approach can be used to analyze the robustness-evolvability
trade-off in a class of redundant Boolean representations for
simulated evolution.

For learning systems, we show that the Pareto-based
approach is able to find solutions that can learning new
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knowledge without a serious interference with the already
learned knowledge. In the multi-objective approach to neural
network regularization, we demonstrate that the Gaussian
regularizer works as efficient as the Laplacian regularizer
in reducing the complexity of neural networks, when an
evolutionary optimization is employed. In addition, we hy-
pothesize that Pareto optimal solutions around the knee point
are those having the appropriate complexity for the given
data, which are most likely to generalize on unseen data.

Many interesting issues remain to be investigated. In this
work, a simple and stationary Boolean representation is used
to study robustness and evolvability of genetic representa-
tions. This should be extended to more complex, in particular
dynamic genotype-phenotype mappings described e.g. by
random Boolean networks or ordinary differential equations.
In multi-objective learning, it is interesting to compare the
convergence speed of single and multi-objective learning.
Multi-objective approaches to the analysis of sparse coding
still lacks. We believed the Pareto-based multi-objective
approach will release much burden in tuning parameters and
thus help to achieve a better understanding the the problem
at hand.

ACKNOWLEDGMENT

The authors would like to thank Ingo Paenke for the
interesting discussions on the work on multi-objective op-
timization of redundant representations.



REFERENCES

[1] L. Ancel and J. Bull, “Fighting change with change: Adaptive variation
in an uncertain world,”Trends in Ecology and Evolution, vol. 17,
no. 12, pp. 551–557, 2002.

[2] G. Tononi, O. Sporns, and G. Edelman, “A measure for braincom-
plexity: Relating functional segregation and integrationin the nervous
system,”PNAS, vol. 91, pp. 5033–5037, 1994.

[3] J. Teo and H. Abbass, “Multiobjectivity and complexity in embodied
cognition,” IEEE Transactions on Evolutionary Computation, vol. 9,
no. 4, pp. 337–360, 2005.

[4] S. Louis and G. Rawlines, “Pareto optimality, GA-easiness and decep-
tion,” in The Fifth International Conference on Genetic Algorithms.
Morgan Kaufmann, 1993, pp. 118–123.

[5] J. Knowles, R. Watson, and D. Corne, “Reducing local optima in
single-objective problems by multi-objectivization,” inEMO 2001, ser.
LNCS 1993. Springer, 2001, pp. 269–283.

[6] M. Jensen, “Helper-objectives: Using multi-objectiveevolutionary
algorithms for single-objective optimization,”Journal of Mathematical
Modeling and Algorithms, vol. 3, no. 4, pp. 323–347, 2004.

[7] L. Bui, J. Branke, and H. Abbass, “Multi-objective optimization for
dynamic environments,” inCongress on Evolutionary Computation.
IEEE, 2005, pp. 2349–2356.

[8] Y. Jin and B. Sendhoff, “Pareto-based multi-objective machine learn-
ing: An overview and case studies,”IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 38,
no. 3, pp. 397–415, 2008.

[9] J. Allman, Evolving Brains. Scientific American Library, 1999.
[10] B. Jones, Y. Jin, X. Yao, and B. Sendhoff, “Evolution of neural organi-

zation in the hydramat - a computational model of a radially-symmetric
organism,” ACM/IEEE Transactions on Computational Biology and
Bioinformations, 2008, in revision.

[11] S. Stearns, “Trade-offs in life-history evolution,”Functional Ecology,
vol. 3, pp. 259–268, 1989.

[12] A. Mukhopadhyay and H. Tissenbaum, “Reproduction and longevity:
secrets revealed by c. elegans,”Trends in Cell Biology, vol. 17, no. 2,
pp. 65–71, 2007.

[13] I. Paenke, Y. Jin, and J. Branke, “Balancing populationand individual
level adaptation in changing environments,”Adaptive Behavior, 2008,
submitted.

[14] E. Charnov and S. Ernest, “The offspring-size / clutch-size trade-off
in mammals,”The American Naturalist, vol. 167, no. 4, pp. 578–582,
2006.

[15] J. Handl, D. Kell, and J. Knowles, “Multi-objective optimization in
computational biology and bioinformatics,”ACM/IEEE Transactions
on Computational Biology and Bioinformations, vol. 4, pp. 279–292,
2007.

[16] H. Kitano, “Biological robustness.”Nat Rev Genet, vol. 5, no. 11, pp.
826–37, 2004.

[17] A. Wagner,Robustness and evolvability in living systems. Princeton
University Press, 2007.

[18] R. Lenski, J. Barrick, and C. Ofria, “Balancing robustness and evolv-
ability,” PLOS Biology, vol. 4, no. 2, p. e428, 2006.

[19] S. Cilibert, O. Martin, and A. Wagner, “Innovation and robustness in
complex gene networks,”PNAS, vol. 104, no. 34, pp. 13 591–13 596,
2007.

[20] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II,” inProceedings of the Parallel
Problem Solving from Nature VI Conference, M. Schoenauer,
K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and
H.-P. Schwefel, Eds. Paris, France: Springer. Lecture Notes in
Computer Science No. 1917, 2000, pp. 849–858. [Online]. Available:
citeseer.ist.psu.edu/deb00fast.html

[21] P. K. Lehre and P. C. Haddow, “Phenotypic complex-
ity and local variations in neutral degree,”Biosystems,
vol. 87, pp. 233–242, Feb. 2007. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6T2K-4KVJCK6-
8/2/099604f1791eecd1e23f7ea94729a5a9

[22] M. Kirschner and J. Gerhart, “Evolvability,”PNAS, vol. 95, no. 15,
pp. 8420–8427, 1998.
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