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ABSTRACT

Neural dynamics coupled by adaptive synaptic information
transmission provide a very powerful tool for biologically
inspired visual processing systems[4]. Currently, progress
is limited by the computing time needed to evaluate the
underlying equations and by the high number of parameters
necessary to tune to achieve the desired system performance.

In this contribution we apply Autonomic Computing tech-
niques to overcome these limitations. We approach the com-
puting time problem with an error model of the differen-
tial equations allowing for self-optimization of the evaluation
step size and the parameter problem with a self-configuration
heuristics to keep neural activation in working range.

We show the equivalence of system behavior compared
to the case without self-management, the performance gain
achieved by the self-optimization and the stability achieved
by the self-configuration.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management;
G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions

General Terms

Performance, Design, Management

1. INTRODUCTION
In the effort of building brain-inspired, real-time capa-

ble intelligent systems, coupled neural dynamics provide a
powerful tool. We envision these systems consisting of sev-
eral neural dynamic modules (NDM), responsible for tem-
poral integration and decision making, coupled by synaptic
dynamic modules (SDM), responsible for data transmission
and learning. [1, 2] Before this work, to achieve desired sys-
tem behavior, a designer needed to configure approx. 15
parameters per NDM, of which there may be many, and
approx. 8 per SDM connecting two NDM. In addition, eval-
uation of the differential equations was done at one, system-
wide step-size, which also had to be set by the designer and
required an intuitive understanding to achieve sufficiently
precise but computationally affordable calculations.
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Autonomic Computing and its predecessors in control the-
ory and cybernetics have developed a number of techniques
for similar problems, among them policy-based control[5],
agent-oriented solutions[6], adaptive heuristics[7] and gener-
ative models[3], although they typically focus more on tech-
nical management problems.

In this paper we introduce an error model for the differen-
tial equation evaluation allowing for self-optimization of the
update interval in Sec. 2 and a heuristic self-configuration
approach for neural activation in Sec 3. We then move to a
short evaluation in Sec. 4 and conclude with Sec. 5.

2. UPDATE INTERVAL OPTIMIZATION
A dynamic neural field is a two-dimensional array of model

neurons where each neuron’s activation is guided by the dif-
ferential equation
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where τN is a time constant, I~x
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Following the approach taken by the adaptive Runge-Kut-

ta evaluation, but reducing to first order to minimize evalua-
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By several transformations, including the Taylor approx-

imation of the update error caused by the lateral terms,
introducing a constraint ∆t ≪ τN, we arrive at an error
measure for each neuron
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where mf is the maximal gradient of the transfer function
f [·]. By providing the maximally acceptable error we get an
optimal update rate:
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In the same way, based on the differential equation for the
update of synaptic weight
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with time constants τL, τFL and τFG and the averaged neu-
ral output at and bt at both sides of the synapse we can
formulate an error estimate to obtain an update rate. In
this case, this is done by analytically maximizing the error
measure µ

~x~y
S = w
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t , at and bt as
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by providing again the maximally acceptable error µ̃S .

3. NEURAL ACTIVATION HEURISTICS
Especially caused by the lateral interaction within the

field, a stable system state attractor is always present at
full activation. Since no processing can be done in this state
and the field is completely static, designers usually try to
avoid it. This is typically achieved by hand-tuning scalar
factors to the terms in Eqn. 1, adding another four param-
eters. However, even with a good setting an unexpectedly
high input may still bring the field into the undesired state.

To overcome this we propose a heuristics modulating the
resting potential ht in form of a “global inhibition”:

ht = hbase − νND

〈

f [u~x
t ]

〉

~x
(5)

In addition to the neurobiologically motivated parameter
hbase, this requires only one parameter νND which regulates
the requested maximal activation independent of the input.

4. EVALUATION
Fig. 1 demonstrates the presented properties in a small

simulation scenario consisting of two NDM connected by
one SDM. The simulation runs in real-time. External in-
put data to the NDM is applied at t = 3.25s, 5.25s and
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Figure 1: Plot of system behavior – top: compar-
ison of original and self-managed neural activation for one
prominent position in the neural field, together with the self-
configured resting potential ht over time; bottom: compar-
ison of the self-optimized update intervals ∆tND and ∆tSD

with the global update rate of 150Hz of the original system.

8.25s. All other activations result from information trans-
mitted through synaptic connections.

The upper graph shows a comparison between the original
and the self-managed system, together with the development
of ht. At each full second, ht is automatically set to −5.0 to
reset the field before the next input is processed.

The lower graph shows the update rate, as described in
Sec. 2. It can be seen that most of the benefit gained from
the self-optimization stems from evaluating NDM and SDM
at different rate, where synaptic update is much slower. We
can see that the number of NDM/SDM evaluations is re-
duced to only 38% compared to the original system without
self-management.

5. CONCLUSION
In this contribution we have briefly introduced a self-opt-

imization technique for correctly and autonomously adapt-
ing the update rate of differential equation evaluations need-
ed in brain-like system simulation. In addition we intro-
duced a simple heuristics for keeping the neural activation
in a working range. We have shown these two extensions to
work properly, in addition to keeping a qualitative equiva-
lence with the original system, in a short experiment.

Future work will concentrate on two areas. On the one
hand, the substitution of the application specific parameters
∆tND and ∆tSD by the generic maximum error boundaries
µ̃N and µ̃S is surely a step towards parameter reduction,
but we aim to go further, reducing the set to the ones which
are really essential to the task the designer wants to solve.

On the other hand, we aim at using the presented tech-
niques to build efficient large-scale neural systems for flexible
and adaptive control of autonomous robotic agents that ex-
hibit the necessary robustness in real-world situations. In
this respect, the reduced design complexity and increased
performance allows for constructing much more complex and
realistic embodied systems than before.
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