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Abstract—The autonomous learning of concept hierarchies is 
still a matter of research. Here we present a learning schema 
for Bayesian networks which results in a nested structure of 
sub- and superclass relationships. It is based on so-called 
parent divorcing but exploits the similarity of all nodes 
involved as expressed by their connectivity pattern. If the 
procedure is applied to simple object-property pairings a 
nested taxonomic hierarchy emerges. We further show how the 
learning procedure can be aligned with basic results from 
developmental psychology. For this we made a set of 
simulations which clearly indicate that a fixed developmental 
order of sensory maturation is crucial for the emerging 
conceptual system. The learning procedure itself is biologically 
plausible since it works incrementally, makes use of only local 
information and leads to a reduced computational effort by 
building a more efficient representation. 

I. INTRODUCTION 
HERE are huge collections of textual knowledge 

available which provide information about the 
properties of objects and the relations between them 

(e.g. the Open Mind Common Sense database OMCS, [6]). 
Of special interest for a Bayesian treatment are relations like 
has component, has part, comprises, includes, has property 
etc. because they can be given a “causal” interpretation in 
the following manner: locations (e.g. a kitchen) “cause” an 
observer to see objects which typically are located herein 
(e.g. a cup) with a certain probability, these objects “cause” 
the observer to see the parts they usually are made of (e.g. a 
handle) and the parts in turn “cause” to see certain colors 
(e.g. white) and shapes (e.g. curved). The corresponding 
knowledge snippets from the database (here cup is located in 
kitchen, cup has part handle etc.) can be used to built up a 
standard Bayesian network (BN) in which each node 
represents a concept (kitchen, cup etc.) and each link 
represents a causal relation. In BNs conditional probability 
tables (CPTs) are attached to each node and these can be 
instantiated with confidence scores which are often provided 
alongside the knowledge snippets (leading thus to 
conditional probabilities like p(cup|kitchen)). In [8] we made 
use of such scored assertions and combined them with 
several sources to build large probabilistic networks. 

A problem that immediately arises if it comes to Bayesian 
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reasoning is that the number n of parent nodes becomes 
critical since the CPT entries grow exponentially with n. If 
we consider objects and their properties this becomes 
especially pressing since simple features are observed in a 
huge number of objects. One well-known solution to this 
complexity issue is to use additional nodes by standard 
parent divorcing, a procedure introduced by [5]. Employing 
this procedure results in an addition of “divorcing nodes” 
which leads to an arbitrary grouping of the corresponding 
child nodes. At this point we asked ourselves how this 
procedure can be advanced in a way that it leads to new 
nodes which are no more meaningless, but can be interpreted 
as subclasses, interconnecting appropriate properties with 
corresponding objects. We came up with a procedure called 
“child-friendly divorcing” which is the topic of this 
contribution. 

The paper is organized as follows: First the method is 
introduced, starting with standard divorcing and advancing 
to the modified and extended version. We illustrate the 
behavior with small-scale examples and show results in 
terms of coding gain and learned network structure. The 
learning procedure then is employed in an incremental 
setting that interestingly results in network structures that 
depend on the sequence of incoming information. We give a 
report on these results and relate them in the next section to 
empirical findings from developmental psychology. Finally 
we discuss relations to other work. 

II. LEARNING PROCEDURE 

A. Standard Parent Divorcing 
We base our learning procedure on a technique used 

previously merely as a design tool for building more 
efficient Bayesian models. The basic idea of so-called parent 
divorcing (see [5]) is to split parent nodes by introducing an 
intermediate node which leads to an increased computational 
efficiency due to less entries in the CPTs. 

Fig. 1 illustrates the schema with nodes representing 
variables iO  (coding for a set of objects) plus one node 
representing property 1p  which is common to these objects. 
Divorcing amounts in separating parents kOO ,...,1 from 
parents mk OO ,...,1+ by introducing a mediating variable 
X , thus making X a parent of 1p  and a child of 

mk OO ,...,1+ . 
The underlying assumption is that the set of 

configurations ),...,( 1 mk OO +  can be portioned into two 

sets such that whenever two configurations )',...,'( 1 mk oo +  

and )'',...,''( 1 mk oo +  are elements of the same set (i.e. the 
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same state of X), then )',...,',,...,|( 111 mkk ooOOpp +  

equals )'',...,'',,...,|( 111 mkk ooOOpp + . 
Using parent divorcing in conjunction with independence 

of causal influence may reduce the complexity of inference 
exponentially. But it is important to note that the procedure 
can always be applied: If mediating variable X has one state 
for each configuration of its parents, then ),...,|( 11 moopp  
is equivalent to ),...,,|( 11 kooxpp . In this extreme case 
nothing has been gained with respect to reducing the 
model’s complexity. 
 

 
 
Fig. 1.  Standard divorcing applied to network A leads to network B with 
mediating variable X. The gain in terms of CPT entries depends on the 
number of states needed for X to keep the joint probability distribution 
unchanged. 
 

B. Child-friendly Parent Divorcing 
The base algorithm is now modified to avoid a splitting of 

parent nodes into arbitrary groups but instead group together 
parents that are similar in some respect. The rationale is that 
caring for similarity might foster the emergence of 
meaningful groupings represented by the new mediating 
nodes. Node similarity boils down to similarity in 
connectivity, and here we just look at the number of 
common child nodes. The relation to these child nodes is 
made explicit by the insertion of additional links. The 
algorithm work as follows: 
 

1) Generating of and Linking to New Nodes 
In order to trigger divorcing we first have to check if for 

some node the number of parents is above a certain 

threshold. If this is the case (as for node p1 in Fig. 1), we 
determine which additional child nodes (e.g. p2) the to-be-
divorced parent nodes have in common and partition the 
parents into two sets with respect to their overlap in child 
nodes. In the unlikely case that the node which triggered the 
divorcing is the only common child we decide not to divorce 
at all. 
 

2) Adding Non-Essential Links 
After having inserted the mediating node and having 

changed the connections appropriately we add non-essential 
links from this newly generated node to all nodes of the set 
of common parent nodes, for which the following criterion is 
met: In order to avoid redundancy, there should not be a path 
between mediating node and node in question. For the 
example in Fig. 1 this simply amounts to inserting a link 
from x to p2 (dashed arrow). 
 

3) Handling of Already Learned Nodes 
Finally, we have to deal with the case that the connectivity 

pattern of the to-be-established node would be the same as 
for an already existing node (which has been learned 
previously). If this is the case we dispense with the new 
node and use the existing one instead in the following way: 
The connection from the to-be-divorced parent node to the 
child node that triggered divorcing is to be replaced by a 
connection from father node to already learned mediating 
node. E.g., in the configuration of Fig. 1B assume we have 
added knowledge about an object Om+1 which has properties 
p1 and p2. “Child-friendly parent divorcing” would select 
Om+1 and x for divorcing, since they have children p1 and p2 
in common. A new mediating node would result in a node 
with the same child nodes (p1 and p2), therefore Om+1  p1 is 
replaced by Om+1  x. 
 

C. Correctness 
An intuitive account on the correctness of the resulting 

network modifications is as follows: Parent divorcing is 
known to leave the joint probability distribution unchanged 
and in (1) we just constrained the cases in which we like to 
divorce. Adding links (2) is completely uncritical, at worst 
the network complexity will be increased. We have to 
consider the special case (3) in more detail. 

For the network fragment of Fig. 1 we have two joint 
probabilities before (A) and after (B) divorcing: 
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Since the transformation should leave the joint probability 
distribution unchanged, ),...,,( 11 mA oopp  has to equal 
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),...,,( 11 mB oopp . In order to fulfill this equality, we have 
to find conditional probabilities in B which fit to given 
conditional probabilities in A such that 
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This equality also holds for additional child nodes ip  

since they cancel out on both sides. There are kmk −+ + 22 2  
conditional probabilities in B which have to be adjusted 
according to the m2  values in A. It is easy to show that the 
number of values in B is always equal or less than the 
number of values in A if there is more than one parent node 
to node x. 

As far as the number of conditional probabilities is 
concerned, parent divorcing with binary variables thus 
always leads to a coding gain for reasonable node 
configurations.  

We now restrict the choice of parameters further by 
setting 1),...,,|( 11 === kooTRUExTRUEpp , 
which will be motivated below. With this constraint the 
equality reads 
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This condition has to be met for all possible values of 

moop ,...,, 11 and we reformulate it to the following 
expression which allows for an easily interpretation: 
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The joint probability thus equals a probability summation 

of two independent causes, since the factor that prevents 
),...,,|( 11 kooFALSExpp =  and the factor that 

prevents ),...,|( 1 mk ooTRUExp +=  are contributing 

independently to the probability that ),...,|( 11 moopp  is 
prevented. 

The trick that leads to this equation was the fixing of the 
conditional probability of 1p  to 1 if the new variable x  has 
value TRUE. This in turn is motivated by the view that the 
link between nodes x  and 1p  should reflect a taxonomic 
relation with node x  being a subclass of node 1p . The 
desired outcome, that if a subclass is found to be true, all 
super-classes of this node should also be true, is expressed 
by the constraint above. 

III. EXPERIMENTS 
Since we are interested in a learning strategy that 

incrementally builds a hierarchical structure, we tested the 
schema described above in various settings and paid 
attention not only to the achieved coding gain, but also to the 
developing network structure. In general, there is some 
variation due to the random choice of the procedure in cases 
with more than one best parent grouping, and therefore we 
have to make many runs in all experimental conditions. The 
resulting behavior is exemplified here with a network small 
enough to be presentable albeit exhibiting a dense 
connectivity. Fig. 2 shows such a BN with 7 objects on an 
upper layer that are completely connected with 6 properties 
on the lower layer.  
 

 
 
Fig. 2.  Network resulting from inserting 42 object-property relations 
without divorcing.  There are 13 nodes, linked by 42 connections which 
leads to 775 CPT entries. 
 

A. Incremental Setting 
We run the child-friendly procedure incrementally, i.e. 

after each of the 42 snippets that are used to build the BN. 
The node and link statistics for a total of 60 iterations are 
summarized in Table 1. It was disappointing to see that in 
many cases there is no coding gain at all, but a worsening in 
terms of CPT entries. Interestingly, the resulting network is 
highly dependent on the order in which the snippets enter the 
network and we consider two special conditions in the 
following.  
 

 #nodes #links CPT 
entries 

no divorcing 13 42 775 
divorcing, by-object  
   best  14 48 967 
   average 14.8 51.8 1840 
   worst  16 58 3515 
divorcing, by-property  
   best  22 61 459 
   average 18.8 53.9 702 
   worst  18 52 859 
Table 1.  Summary statistics for the example network before and 
after child-friendly divorcing. Best / worst cases refer to the total 
number of CPT entries. Two extreme cases can be distinguished: 

object-by-object and property-by-property sorting (see text). 
  

B. Object-by-object Knowledge Acquisition 
To characterize the effect of the ordering on the network 

behavior we considered two extreme cases: All relations are 
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entered object-by-object, i.e. all what is known about one 
object is entered sequentially, and after that all relations 
concerning a second object are entered and so on and so 
forth. The summary results for 30 trails can be found in 
Table 1 and a typical network in this condition is shown in 
Fig. 3. Generally, network performance decreased 
dramatically and the resulting network structure is relatively 
flat, since on average only 1.8 new mediating nodes are 
learned. Consequently, if the information about all objects’ 
properties is provided at once, the system is not able to build 
up a hierarchical, distributed representation. 
 
 

 
 
Fig. 3. Typical network resulting from child-friendly divorcing for the 
object-by-object condition. Only one mediating node has been learned, 
leaving nevertheless to 48 links and 1348 CPT entries. 
 

C. Property-by-property Knowledge Acquisition 
In an antipodal condition we fed the network with 

relations property-by-property, i.e. first all relations which 
refer to one particular property (OBJ1 PROP1, 
OBJ2 PROP1, …), then all relations which refer to another 
property etc. The resulting networks show an improvement 
on average (see Table 1), even though the network possesses 
a large number of new nodes. Fig. 4 demonstrates that these 
are hierarchically organized. Note that the remaining 
redundancy in this network is due to the symmetric start 
configuration.  

Results in Table 1 have demonstrated a wide variety with 
respect to the gain in terms of CPT entries: Whereas most 
networks resulting from the property-by-property grouping 
show substantial improvements, all networks in the object-
by-object condition are completely unfavorable. A further 
comparison reveals that neither the number of nodes nor the 
number of links, but the network structure is crucial (see Fig. 
3, 4). 

Thus the ordering seems indeed to be the critical 
parameter which determines the network structure. We will 
relate this finding to biology below and proceed with having 
a look at the learned nodes in the property-by-property 
condition. Fig. 4 shows a typical network  

IV. HUMAN CATEGORY LEARNING 

A. Experimental Data 
Similar to our simulation, also humans learn new concepts 
incrementally and they do this by observing and 

manipulating concrete instances of all concepts in question. 
If it comes to the development of early categories, one has 
additionally to take into account, that a lot of sensory 
information is not available from the very beginning. This is 
especially true for the visual system, which is very poor at 
birth, whereas other senses like gustation and olfaction are 
quite mature. 

 

 
 
Fig. 4.  Typical network resulting from child-friendly divorcing for the 
property-by-property condition. Here five mediating nodes have been 
learned, leading to a total of 52 links and 679 CPT entries. Numbers 
indicate the sequence of learned nodes. 
 
 

Animal experiments show that a change of the natural 
order of developing senses disrupts e.g. in kittens the 
olfactory development [9] or in owls the auditory and visual 
spatial localization [4]. Also results from developmental 
psychology [10] as well as theoretical studies [1] indicate 
that an immature sensory system should not be seen as a bug 
but as a feature. Another interesting question is how the 
sensory development relates to the establishment of a 
hierarchy of categories, especially with respect to the coarse-
to-fine progression. 

 
1) Sensory Development 

In the beginning only very restricted visual information 
about objects is available. More and more measurement 
results are incrementally added at later stages of 
development. If we relate this developmental process to the 
considerations made above about different knowledge 
acquisition strategies, it becomes clear, that human infants 

1 

2 

3 

4 

5 

1 
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follow a strategy that lies between the object-by-object and 
the property-by-property acquisition sequence: During the 
examination of an object the infant’s sensory apparatus 
makes several measurements with respect to size, shape, 
color etc., but it has to reexamine this specific object (or 
another instance of the same category) after an improvement 
of sensory mechanisms has taken place or after new 
measurement capabilities have been established. Examples 
for quantitative and qualitative changes include the addition 
of detailed shape information due to an improved analysis of 
high spatial frequencies and the faculty of word learning 
which is not at all available at the very beginning. 
 

2) Learning Direction 
There has been a lot of dispute if human categories 

develop in a bottom-up or top-down fashion. Most 
researchers now agree that coarse categories like object, food 
and indoor are acquired before finer grained ones like cup, 
banana and kitchen. To relate this coarse-to-fine progression 
with the set of new nodes generated by our divorcing 
procedure, we have to take a closer look what these nodes 
represent and when they are learned. As illustrated in Fig. 4, 
the first node acquired via the learning schema is 
PROP1_PROP2. The automatically generated label of this 
node is arbitrary but it refers to what the node represents: 
objects that have properties PROP1 and PROP2. If we look 
at the sequence of acquired nodes (indicated by numbers in 
Fig. 4), we observe the same pattern described above, since 
an addition of properties leads to a more specialized 
representation. 
 

B. Simulating Conceptual Development 
We applied the child-friendly divorcing procedure to a 

small BN with 20 nodes and 40 links in order to simulate 
aspects of conceptual development. Motivated by the 
aforementioned animal experiments with normal order of 
sensory experiences vs. disrupted order, we will compare the 
categories that emerge from a biological ordering with the 
ones that emerge from a reversed ordering. 
 

1) Stimulus Set 
As stimuli we selected a balanced set of 8 objects and 12 

properties. Fig. 5 depicts the exact pairing between nodes 
representing objects (001 to 008) and nodes representing 
properties (self-starter etc.). 
 

 
Fig. 5.  Stimuli, their identifier and all their properties that were “measured” 
by the system. In total 40 object-property pairings were used. They get into 
the system as knowledge snippets like 006 has-property human-shape. 

2) Sensory Availability 
To simulate the heterochronicity of measurement 

procedures the network was incrementally built in three 
separate phases. For empirical support of the different 
maturation times of sensory (sub-) modalities see e.g. [2]. 

In a first phase only the most important visual information 
is available: Motion can be detected and there is a 
functioning mechanism for the indication if the object in 
question belongs to the class of “agents”. Furthermore, the 
system has very basic manipulative capabilities giving rise 
to crude size measurements. For the simulation here we used 
four exemplary properties in phase I: 
 

• biological-motion 
• self-starter 
• small 
• graspable 

 
More advanced sensory measurements can be made in the 

next phase in which parts as well as shapes can be 
recognized. Thus we used the following properties in phase 
II: 
 

• legs 
• beak 
• human-shape 
• duck-shape 

 
Finally, word for the set of learned objects are provided. 

For this we added labels in a third phase: 
 

• “duck” 
• “man” 
• “woman” 
• “pawn” 
 

3) Resulting Categories 
Table 2 shows all learned categories for the biological and 

reversed orderings (columns) and for each of the three 
phases (rows). To ease interpretation and avoid long node 
labels the categories are abbreviated with the following 
names: A node representing all objects of the domain that 
show a biological motion pattern and are observed to start by 
their own has the label BIOLOGICAL-MOTION_SELF-
STARTER in the network and is abbreviated with animal in 
Table 2. Likewise a node with child nodes graspable and 
small can be said to represent a vague concept of small 
objects, therefore the node labeled GRASPABLE_SMALL 
in the network is in the table abbreviated with utensil.  

Simulation results were obtained with 10 iterations in 
each condition. Numbers to the right of the category name 
therefore indicate the probability of occurrence. Sometimes 
nodes are generated which miss a property. A category label 
and the missing property with question mark indicate this. 

It is interesting to see how the amount and variety of 
learned categories is influenced by the chosen sequence of 
available measurements. The biological ordering has led to a 
much richer representation as opposed to the reversed 
ordering, but more experiments are needed to elucidate this 
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effect. Instead, we focus here on representations that have or 
have not emerged: In the condition of a biological ordering, 
we see e.g. a representation that groups together any kind of 
animal, i.e. stimuli 001, 002, 005 and 006 (with probability 
of 1.0 in phase I, Table 2) but we do not see a representation 
that groups stimuli 001 and 002 with 003 and 004, which 
would be a joint representation for natural ducks and toy 
ducks. It is obvious that such a kind of representation is not 
desirable, since there is no common behavior that is 
applicable to these very different kinds of ducks. 
 

 biological orderings (10 trials) reversed orderings (10 trials) 

 learned category p learned category p 

P 
H 
A 
S 
E 
 
I 

 
Animal 

 
1.0 

 

Utensil 1.0 

 
P 
H 
A 
S 
E 
 

II 

Animal with beak 
and duck-shape =A1 0.7 

Entity called “man” 
with legs and 

human-shape =E1 
1.0 

Animal with legs  
and human-shape =A2 0.1 

Entity called “duck” 
with beak and 

duck-shape =E2 
1.0 

Utensil with beak  
and duck-shape =U1 0.4 

 

Utensil with legs  
and human-shape =U2 0.4 

A1 (but self-starter?) 0.2 

A2 (but self-starter?) 0.3 

U1 (but small?) 0.2 

Utensil with beak 0.1 

U2 (but small?) 0.6 

P 
H 
A 
S 
E 
 

III 

A1 
called “duck”  0.4 E2 and Animal 1.0 

 A1 (but self-starter?) 
called “duck” 0.1 E2 and Utensil 0.4 

U1 
called “duck” 0.4 E2 (but label?) and 

Utensil  0.3 

U1 (but small?) 
called “duck” 0.1 E2  (but beak?) and 

Utensil 0.3 

 
Table 2.  Learned categories by applying child-friendly divorcing 
to the stimuli shown in Fig. 5. The outcomes of two settings that 

differ with respect to the availability of sensory measurements are 
shown for three hypothesized phases of network development. 
Numbers are probabilities that the respective categories were 

generated within ten trials. A1, U1 etc. are used as abbreviations. 
 

This representation, which is avoided by the biological 
ordering, emerges if the incoming information is reversed: 
With a probability of 1.0 a node (E2) is learned that 
represents objects with the properties BEAK, DUCKLABEL 

and DUCKSHAPE. While there are also nodes learned for 
distinguishing between natural ducks (E2 and animal) and 
rubber ducks (E2 and utensil) in phase III, representations 
for the basic categories of animal and utensil are missing in 
the reversed orderings experiments. 

V. DISCUSSION 
There are somewhat related approaches in fields like BNs, 

connectionism and neural networks. Here we can give only a 
short description of a few examples from these research 
areas. 

There are many methods for learning probability models, 
but most deal with parameter learning. Algorithms that learn 
the net structure usually assume that the data are fully 
observable. A much harder problem is how to learn the 
structure from incomplete data efficiently, i.e. in the 
presence of missing values or hidden variables. One 
interesting approach is the structural EM algorithm [2], 
which combines parameter optimization with structure 
search. To tackle with this challenging problem some 
constraints are introduced: The number of hidden variables 
is fixed and it is assumed that they are on top (i.e. parents) of 
all the other nodes. In the much simple context described 
herein such a constraint would prevent the development of 
concept hierarchy.  

In cognitive science the “Parallel Distributed Processing” 
approach [7] has attracted a lot of attention. They show how 
a simple computational approach can lead to a progressive 
differentiation of conceptual knowledge by exploiting the 
coherent covariations of objects’ properties. Their work 
covers a whole bunch of simulations, but to our knowledge 
they do not take into account the changing availability of 
measurement procedures due to sensory development which 
is crucial to our approach. 
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