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Abstract—1In everyday conversation besides speech people
also communicate by means of nonverbal cues. Facial ex-
pressions are one important cue, as they can provide useful
information about the conversation, for instance whether the
interlocutor seems to understand or appears to be puzzled.
Similarly, in human-robot interaction they also give feedback
about the interaction situation.

We present a Wizard of Oz user study in an object teaching
scenario where subjects show several objects to a robot and
teach their names. Afterwards the robot shall term the objects
correctly. In a first evaluation, we let other persons watch
short video sequences of this study. They should decide by
looking at the face of the human whether the answer of
the robot was correct (unproblematic situation) or incorrect
(problematic situation). We conducted the experiments under
specific conditions by varying the amount of temporal and
visual context information and compare the results with related
experiments described in the literature.

I. INTRODUCTION

Human-robot interaction has received much research at-
tention in the recent years. One important goal and also
crucial part of this research is to achieve a fairly natural
communication between human and robot. To communicate
successfully in dialog situations, people align at different
levels during conversations [1]. People also adapt their
discursive behavior when interacting with a robot depending
on their beliefs about the knowledge and abilities of the robot
that they acquired during the interaction [2]. On the contrary,
the abilities of present robots concerning the adaptation of
their behavior depending on the behavior of their human
interaction partners are rather limited.

To provide robots with sufficient communication skills for
natural conversations with humans, besides the understanding
of speech, also the recognition and interpretation of nonver-
bal cues is important, as these cues can provide useful infor-
mation. Gestures might be used to support or complement
speech [3]. Furthermore the recognition and interpretation
of facial expressions can yield important information about
the interaction situation, for instance whether the interlocutor
seems to understand or appears to be puzzled.

The six emotional facial expressions happiness, anger,
disgust, fear, surprise, and sadness according to Ekman [4]
are not the most important ones in this context. According
to our experiences, most of these emotional expressions
occur much less frequently in human—robot interaction than
facial expressions that carry some communicative semantics.
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Examples of this kind of “communicative” facial expressions
are looking puzzled or disappointed, appearing to agree or
disagree with the interlocutor, or seeming satisfied with or
frustrated by the situation. In this context we think about
facial expressions in a broader sense which also includes
head poses and head gestures, because they often carry a
communicative meaning as well. However, emotional and
communicative facial expressions are not disjunct. An ongo-
ing failure of the robot in performing some task might cause
anger or the behavior of the robot in a particular situation
could be surprising.

A. The Contribution of this Paper

In this paper, we report a Wizard of Oz user study in
which we tried to provoke communicative facial expressions
by letting people interact with a remote controlled robot
in an object teaching scenario. The users should teach the
names of several objects to the robot, which was expected to
term them correctly afterwards. The goal of this user study
was to create a video corpus of people giving substantive
nonverbal feedback by means of authentic, communicative
facial expressions while interacting with a robot. This video
corpus shall serve as test data for automatic feedback inter-
pretation methods and other investigations in future work. To
our knowledge, no such corpus is publicly available in the
scientific community so far.

As a first evaluation of this corpus we present a user
study were we showed short video sequences to subjects
who should interprete the shown facial expressions by dis-
tinguishing problematic (the robot said a wrong object name)
from unproblematic (the robot termed the object correctly)
situations. This “problem detection” approach is one impor-
tant special case of feedback interpretation. The recognition
performance of the subjects can serve as a baseline for
the development of automatic recognition approaches. We
compare our results with a study of Barkhuysen et al. [5].
The authors showed video fragments of people interacting
with a spoken dialog system to subjects, who should decide
whether there is a communication problem in a particular
interaction.

One motivation for our choice of this experiment for a
first corpus evaluation was to avoid a common problem
with experiments involving authentic, spontaneous facial
expressions: the acquisition of reliable ground truth data for
a classification of the displayed expressions into categories,
for instance basic emotions. This can be addressed by asking
the subjects about their feelings in specific situations after the
experiment, but this is not unproblematic. When asking after



the whole experiment is over it might be very difficult for
a subject to remember the feeling in a particular situation.
On the other hand, interrupting immediately after every
interesting situation is likey to disturbe the experiment or
influence the subject in an undesired way.

The situation is easier when the ground truth data can be
aquired objectively — independent from the sentiments of
the subject. This is the case for the detection of communi-
cation problems in this study, as one usually knows for sure
whether the answer of the robot was correct or not. In a
sense this is an inverse approach: instead of trying to find
the correct ground truth data for given facial expressions one
looks for facial expressions in a given situation with implic-
itly given ground truth data. But here another problem can
arise: There is no guarantee that the subject will show one
of the expected facial expression or a prominent feedback
signal at all. However, it seems to be likely that people often
will show some striking facial expression in the presence
of a communication problem. This assumption is confirmed
by the experiments of Barkhuysen et al. [5] and also by
preliminary studies we carried out.

B. Paper Structure

The remainder of this paper is organized as follows. The
next section II briefly discusses some related works. The
subsequent section III describes the object teaching corpus
in detail, before a first evaluation in terms of a feedback inter-
pretation user study and the results of this study are presented
in section IV and V, respectively. Section VI compares these
results with related experiments in the literature and section
VII finally draws conclusions and discusses future work.

II. RELATED WORK

Most works about the detection of communication prob-
lems consider speech. Krahmer et al. [6] showed that people
can correctly classify disconfirmation fragments of dialogs
as positive or negative communication signals and conclude
that prosodic features such as duration, intonation and pitch
are relevant for communication. The automatic recognition
of user corrections in spoken dialog systems has been inves-
tigated by Hirschberg et al. [7]. Zhou et al. [8] conducted
user studies to find cues to error detection that could be
used to improve the error correction capabilities of speech
recognition systems.

As humans are capable to interprete nonverbal feedback
to a reasonable extent, one wants to achieve this also for
technical systems to improve the communication between
humans and robots. Many techniques have been developed
for automatic facial expression recognition in general; Fasel
and Luettin [9] and Pantic and Rothkrantz [10] presented
surveys on this topic. Most works consider the classification
into the six basic emotion categories according to Ekman
[4] or the recognition of facial actions in terms of the
facial action coding system proposed by Ekman and Friesen
[11]. Buenaposada et al. [12] recently presented a real—
time capable classification system that can classify basic
emotions. Bartlett et al. [13] have developed a system that

classifies 20 action units. The system performance was
tested on a database of spontaneous facial expressions, in
contrast to databases of posed facial expressions that are
usually used. Sebe et al. [14] also created a database of
spontaneous, authentic facial expressions. They noted that
there is a remarkable difference between authentic and posed
emotional facial expressions in the visual appearance, as the
latter ones are not “felt” by the subjects displaying them and
thus do not correspond to their true emotional state.

III. THE OBJECT TEACHING CORPUS
A. Motivation

The overall goal of our research about facial expressions
is to enable a robot to make use of them to get substantive
nonverbal feedback from its human interaction partner. We
think that this is one important step to make the interaction
more natural, i.e. more human-like. For the development of
appropriate feature extraction and recognition methods for
automatic interpretation a corpus containing videos of inter-
action situations where the subjects give nonverbal feedback
by means of authentic, communicative facial expressions is
essential. Therefore the goal of this object teaching user
study was to create such a corpus. We plan to make the
corpus available for research purposes on request.

By evaluating videos from a previous user study [2],
we found that the object teaching scenario seems to be
well suited in general to “provoke” communicative facial
expressions, thus we chose this scenario for the user study.
(A new study was necessary because the videos from the
previous study do not contain close up views of the faces of
the subjects which is required for further analysis.)

B. Scenario

The participants were instructed to show several manipula-
ble objects to the robot “Biron”![15] and to teach the objects’
names. Furthermore they should validate that the robot had
actually learned the objects. It was not specified how they
should term the objects and how they should present them
(pointing to them or lifting them up). We performed a
Wizard of Oz study where Biron was remote controlled
to determine exactly its behavior (when to recognize the
object correctly, when to misunderstand the subject, what
to say and where to look). Of course the subjects did not
know this beforehand, but assumed that the robot would
act autonomously. The robot did not move but reacted to
the subjects by speech production and movements of its
pan tilt camera, e.g. to focus on the objects or the face.
The study was conducted with eleven subjects (five females
and six males) ranging from 22 to 77 years in age, nine of
which had never interacted with the robot before. Per person
two counterbalanced sessions were performed: a “good” one
where Biron termed most of the objects correctly, and a
“bad” one where Biron misclassified the majority of objects.
A session lasted about ten minutes. Between the sessions, the
objects were exchanged to make the subjects believe that the
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recognition performance of the robot on another object set
was to be evaluated. For each session, videos were recorded
from three different perspectives as shown in figure 1. One
stationary camera recorded the whole scene, showing the
robot Biron on the left and the test person on the right, in
front of a table with nine objects that were to be taught.
Another stationary camera was placed right behind Biron to
record the face of the subject during the whole experiment.
Additionally, the videos taken by Biron’s pan tilt camera
were stored.

C. Corpus Description

To support the latter evaluation of the corpus in terms
of facial expressions, all videos recorded by the stationary
face camera were annotated. Besides the transcription of the
speech of the subject and the robot, all object teaching scenes
were annotated and subdivided into four phases:

1) present: The subject presents the object to Biron and
tells its name or asks for the name.

2) waiting: The subject waits for the answer of the robot
(not mandatory).

3) answer: The robot answers to the subject, for instance
by classifying the object or asking a question.

4) react: The subject reacts to the answer of the robot.

These scenes may overlap, as a part of the react phase of one
scene might be part of the present phase of the next scene.
The exact times of the phases are sometimes ambiguous
(especially the end of react or present phases). To achieve
consistency nevertheless, all scenes were annotated according
to a predefined coding scheme. Each of the object teaching
scenes was classified into one of the following categories,
depending on the answer of Biron (examples answers in
parenthesis):

 success: Biron says the correct object name. (“So, this
is a book.” after the subject has taught the object name
or “This is a book.” after the subject has asked for the
object name)

e failure: Biron says a wrong object name. (same answer
structure as in the success case)

o problem: There is a communication problem, but Biron
does not say any object name. (“I don’t know the
object.”, “I don’t know the word.”, “I don’t know.”).

e vague: Biron claims to understand, but does not say the
correct object name (‘T have seen the object.”, “This is
interesting.”, “I like it.”)

e clarification: Biron asks a clarification question. (‘“Par-
don?”, “I could merely understand you partially. Can
you repeat this, please?”, “Did you show me the object
before?”’)

e abort: Biron does not answer in a reasonable period of
time thus the subject aborts this scene and teaches a
new object.

There are only very few cases where a scene does not
match any of these categories. Those scenes were omitted. In
addition to the phases also the period of time during that the
robot says an object name (in “success” and “failure” scenes)

subject | succ  fail prob vagu clar abor
01 15 18 12 6 26 0
02 17 11 6 1 16 0
03 32 21 14 1 16 0
04 20 17 4 2 16 0
05 16 16 4 1 14 0
06 15 13 2 0 10 3
07 25 31 4 6 23 3
08 32 26 23 5 22 1
09 13 24 5 0 19 0
10 12 12 0 1 12 1
11 24 35 2 1 21 1
total 221 226 76 24 195 9

TABLE I: Number of object teaching scenes of different
categories and subjects in the video corpus.

was annotated. This was used for the feedback interpretation
user study as reported in the next section.

Table I gives an overview of the number of scenes in
the database. A total number of 751 scenes were annotated,
providing a large test data set for evaluations. We succeeded
in creating a suitable video corpus for nonverbal feedback
analysis by means of authentic, communicative facial ex-
pressions and present a first evaluation in the next section.

IV. THE FEEDBACK INTERPRETATION USER STUDY
A. Motivation

The goal of the feedback interpretation user study is to find
out how good humans are in distinguishing problematic from
unproblematic interaction situations in our object teaching
scenario, depending on the available context information.
The results shall serve as a baseline for automatic recognition
approaches. The special case of “problem detection” was
chosen due to the availableness of reliable ground truth data,
as discussed in section I-A.

B. Material

We randomly selected 88 object teaching scenes from the
corpus: 44 “success” and 44 “failure” scenes (four success
and four failure scenes for each of the eleven subjects). For
each scene, we extracted a subpart of the associated video
sequence from the stationary face camera, starting near the
end of the answer phase, exactly when Biron starts to say
the object name, and ending at the end of the react phase.
This starting point of the videos was chosen because it is the
first moment from which on the subject can know whether
the answer of the robot is correct or not.

We presented these 88 video sequences to 44 subjects (15
females and 29 males, ranging from 16 to 70 years in age)
which were not involved in the object teaching user study for
the corpus creation. The subjects should decide whether the
displayed situation is problematic (Biron says a wrong object
name) or unproblematic (Biron terms the object correctly).
To vary the amount of context information, we used four
different variants of each video sequence: full length versus
half length (starting from the beginning of the sequence in
every case), each combined with showing the whole video
in one case and only the face of the subject in the other



(a) Stationary scene camera

(b) Stationary face camera

(c) Biron’s pan tilt camera

Fig. 1: The object teaching corpus contains videos from three perspectives, showing (a) the whole scene, (b) the subject’s

face, and (c) the view of Biron’s pan tilt camera.

case.> All videos were presented without sound. The video
sequences were distributed over the 44 subjects such that the
following conditions were met:

« Each subject saw each video sequence in one variant
only. To avoid the effect of priming, we decided not to
show the same sequence twice (in different variants) to
the same person.

o Each subject saw all 88 video sequenes (and thus four
success and four failure scenes for each of the eleven
subjects from the object teaching study) in randomized
order.

o Each subject saw exactly 22 videos in each of the
four variants: eleven “success” and eleven ‘“failure”
interaction situations (in randomized order).

o Summed up over all 44 subjects, each video was seen
by eleven subjects in each of the four variants.

V. RESULTS

On average the subjects of the feedback interpretation user
study were able to classify the video segments with 79.1%
recognition performance. We did not observe differences
between female and male subjects, the classification rate
was as well 79.1% for both. Figure 2 shows the recognition
performance distributed over all 44 subjects for all videos,
only “success” videos, and only “failure” videos, in each
case for all four context conditions:

e all: average over all context conditions
o fs-ft: full scene and full time

o fs-ht: full scene and half time

e of-ft: only face and full time

e of-ht: only face and half time

The subjects are sorted by the recognition performance in
each case. Table II lists the mean recognition performance
and standard deviation.

There were big differences between the subjects, ranging
from 89% to 59% in average. The visual context helped

2The faces were located as rectangular regions using an automatic face
detection approach (based on the work of Castrillén et al. [16]) that led
to a kind of “glint” around the faces (as the face size varies somewhat) in
some cases, also in a few cases the face detection got lost for a few frames.
Videos where the face detection was too poor were rejected beforehand.

sub- all videos success videos  failure videos
set mean std mean std mean std
all 79.1 8.2 75.8 11.9 82.4 12.0
fs-ft 83.4 12.8 80.2 16.8 86.6 16.2
fs-ht 78.2 8.1 75.0 12.6 81.4 15.3
of-ft 82.0 11.1 78.1 16.3 86.0 13.5
of-ht | 72.8 9.9 69.8 15.9 75.8 15.9

TABLE II: Mean value and standard deviation of the recog-
nition performance for different video subsets (distribution
over subjects). Please refer to section V.

in the classification, as the performance was better for full
scene videos compared to face only videos, significantly
for half time videos (t-test, p < 0.01) and very slightly
only for full time videos (p < 0.61). The temporal context
seems to be even more important, as the performance was
higher for full time videos compared to half time videos,
and the difference was greater than for the visual context,
significantly for both full scene (p < 0.03) and face only
(p < 0.001) videos. On average, it was easier to classify
failure videos than to classify success videos (p < 0.011). In
both cases, the variance was higher than the total variance
for all videos, because most subjects (26) were better in
classifying failure videos than in classifying success videos,
but for some subjects (12) the opposite was the case (six
subjects performed equally well in either case).

Similar to figure 2 and table II, figure 3 and table III
show the recognition performace distributed over all videos.
The variance between different videos was even greater than
the variance between subjects: Some videos were correctly

sub- all videos success videos  failure videos
set mean std mean std mean std
all 79.1 179 758 19.4 82.4 15.8
fs-ft 83.4 18.1 80.2 21.1 86.6 14.1
fs-ht 782 240 750 27.2 81.4 20.1
of-ft 82.0 19.1 78.1 21.2 86.0 16.1
of-ht | 72.8 239  69.8 25.8 75.8 21.7

TABLE III: Mean value and standard deviation of the recog-
nition performance for different video subsets (distribution
over videos). Please refer to section V.
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Fig. 2: Recognition performance for different video subsets
(distribution over subjects). Please refer to section V.

classified in almost every case, whereas some other videos
were systematically misclassified. The best recognized video
shows a cleary visible nodding, the second best clear signs
for perplexity. In the worst recognized video, the subject
talks a lot without a clear confirmation sign, which was
misinterpreted as correcting the robot by most subjects. The
subject shown in the second worst video displays hardly
any prominent facial expression at all. The variance was
for success videos higher than for failure videos, which is
consistent with the observation that failure videos were easier
to classify on average, but there were also some success
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Fig. 3: Recognition performance for different video subsets
(distribution over videos). Please refer to section V.

videos that were correctly classified in almost any case.

VI. DISCUSSION AND COMPARISON

Barkhuysen et al. [5] conducted similar experiments.
They performed three experiments where subjects watched
film fragments of speakers interacting with a spoken train
timetable dialog system. The subjects should decide whether
or not there was a communication problem present in the
shown situation. In the first experiment, the subjects saw
a silent person listening to a confirmation question of the
system, where the system’s confirmation was either correct



or wrong. About 75% of the subjects classified the videos
correctly, and about 70% of the videos were significantly
classified correctly. As in our study, some videos were
significantly misclassified due to untypical behavior of the
shown subject. These results and ours match fairly well.
In the second experiment, the subjects watched videos of
a speaker saying “no”, either in response to a yes—nho-—
question or to indicate a misinterpretation of the system. Here
the recognition performance was only slightly above chance
level. This task seems to be very hard, perhaps partially due
to the short duration of the video sequences. Again, they
observed great differences between different speakers. In the
third experiment, the speakers uttered a destination, either in
answering a question or to correct a misunderstanding. About
two—third of the subjects classified the videos correctly, and
most of the videos were significantly classified correctly.

The somewhat higher recognition performances in our
study might be due to the different settings. In our object
teaching scenario, the videos seem to contain more “implicit”
context that can be used by the subjects. Asked about the
features they (believe to) have used to classify the videos,
some subjects mentioned aside from head gestures, “lipread-
ing”, and facial expressions also some “implicit” contextual
features that were present in all four variants to some degree:
the length of the sequence respectively how much the person
talks and whether the person seems to put down the object
at the end of the video.

In spite of the similarities of the experiments, there are
also some important differences. Whereas Barkhuysen and
her colleagues varied the shown video sequences, we used
the same video sequences and varied the amount of displayed
visual and temporal context. They presented the videos with
sound, whereas we removed the sound from all videos.
Barkhuysen et al. investigated differences between the videos
respectively speakers shown in the videos, we also reported
about differences in the recognition performance of the
observing subjects.

VII. CONCLUSION AND FUTURE WORK

In the Wizard of Oz object teaching user study we suc-
ceeded in creating a suitable corpus for evaluations in terms
of nonverbal feedback by means of authentic, communicative
facial expressions. This video corpus contains hundreds of
interaction situations where subjects try to teach objects to
a robot and give verbal und also nonverbal feedback; these
sequences can be used in future investigations.

As a first evaluation of the corpus we presented a feedback
interpretation user study. The subjects in this study were able
to distinguish problematic from unproblematic interaction
situations with recognition performances between 73% and
83% on average, but there were in part large differences
depending on the videos, the subjects, and the amount of
context displayed. Our results are consistent with the results
of Barkhuysen et al. [5], who conducted related experiments.
We attribute the partially higher recognition rates in our
studies to differences in the settings.

Future work will concentrate on the investigation of
appropriate automatic recognition approaches for feedback
interpretation in human—robot interaction in general and for
problem detection in particular. Such an approach could be
used to increase the ability of a robot to react and adapt to its
human interaction partner and thus make the interaction more
human-like. Important results to consider are that humans
are capable of feedback interpretation to some extent even
with very less context and that the temporal context seems
to help the intepretation more than the visual context.

VIII. ACKNOWLEDGMENTS

Christian Lang gratefully acknowledges the financial sup-
port from Honda Research Institute Europe for the project
“Facial Expressions in Communication”. The authors thank
Sascha Hinte and Anton Helwart for their help in annotating
the object teaching user study videos and in performing the
feedback interpretation study, respectively. We also thank the
participants of the user studies and the respective preliminary
studies.

REFERENCES

[1] M. Pickering and S. Garrod, “Towards a mechanistic Psychology of dialogue,”
Behavioral and Brain Sciences, vol. 27, pp. 169-226, 2004.

[2] M. Lohse, K. J. Rohlfing, B. Wrede, and G. Sagerer, “Try something else!
When users change their discursive behavior in human-robot interaction,” in
Proceedings of the IEEE International Conference on Robotics and Automation,
Pasadena, CA, USA, May 2008.

[3] K. Bergmann and S. Kopp, “Coexpressivity of speech and gesture: Lessons
for models of aligned speech and gesture production,” in Proceedings of the
Artificial and Ambient Intelligence Convention (AISB), Language, Speech and
Gesture for Expressive Characters, 2007.

[4] P. Ekman, “Strong evidence for universals in facial expressions: a reply to
Russell’s mistaken critique.” Psychological Bulletin, vol. 115, no. 2, pp. 268—
287, 1994.

[5] P. Barkhuysen, E. Krahmer, and M. Swerts, “Problem Detection in Human—
Machine Interactions based on Facial Expressions of Users,” Speech communi-
cation, vol. 45, no. 3, pp. 343-359, 2005.

[6] E. Krahmer, M. Swerts, M. Theune, and M. Weegelsa, “The dual of denial:

Two uses of disconfirmations in dialogue and their prosodic correlates,” Speech

Communication, vol. 36, no. 1-2, pp. 133-145, 2002.

J. Hirschberg, D. Litman, and M. Swerts, “Identifying user corrections au-

tomatically in spoken dialogue systems,” in Second meeting of the North

American Chapter of the Association for Computational Linguistics on Language

technologies, 2001, pp. 1-8.

[8] L. Zhou, Y. Shi, D. Zhang, and A. Sears, “Discovering Cues to Error Detection
in Speech Recognition Output: A User-Centered Approach,” Journal of Man-
agement Information Systems, vol. 22, no. 4, pp. 237-270, 2006.

[9] B. Fasel and J. Luettin, “Automatic Facial Expression Analysis: A Survey,”
Pattern Recognition, vol. 36, pp. 259-275, 2003.

[10] M. Pantic and L. J. M. Rothkrantz, “Automatic Analysis of Facial Expressions:
The State of the Art,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 12, pp. 1424-1445, 2000.

[11] P. Ekman and W. Friesen, Facial Action Coding System: A Technique for the
Measurement of Facial Movement. Palo Alto: Consulting Psychologists Press,
1978.

[12] J. M. Buenaposada, E. Muioz, and L. Baumela, “Recognising facial expressions
in video sequences,” Pattern Analysis & Applications, vol. 11, no. 1, pp. 101—
116, 2008.

[13] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan,
“Fully Automatic Facial Action Recognition in Spontaneous Behavior,” in
Proceedings of the 7th International Conference on Automatic Face and Gesture
Recognition, 2006, pp. 223-230.

[14] N. Sebe, M. S. Lew, Y. Sun, I. Cohen, T. Gevers, and T. S. Huang, “Authentic
Facial Expression Analysis,” Image and Vision Computing, vol. 25, no. 12, pp.
1856-1863, December 2007.

[15] A. Haasch, S. Hohenner, S. Hiiwel, M. Kleinehagenbrock, S. Lang, I. Toptsis,
G. A. Fink, J. Fritsch, B. Wrede, and G. Sagerer, “BIRON — The Bielefeld
Robot Companion,” in Proceedings of the International Workshop on Advances
in Service Robotics, E. Prassler, G. Lawitzky, P. Fiorini, and M. Haegele, Eds.
Stuttgart: Fraunhofer IRB Verlag, May 2004, pp. 27-32.

[16] M. Castrillén, O. Déniz, and M. Herndndez, “The ENCARA System for Face
Detection and Normalization,” Lecture Notes in Computer Science, vol. 2652,
pp. 176-183, 2003.

[7



