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Abstract

Dynamic field theory models the spatio-temporal evolution of activity within the cortex and has been suc-

cessfully applied in various domains. However, the development of dynamic neural fields (DNFs) is only rarely

explored. This is due to the fact that DNFs are sensible to the right balance between excitation and inhibition within

the fields. Small changes to this balance will result in runaway excitation or quiescence. Consequently, learning

most often focuses on the synaptic weights of projections to the DNF, thereby adapting the input-driven dynamics,

but leaving the self-driven dynamics unchanged. Here we present a recurrent neural network model composed of

excitatory and inhibitory units which overcomes these problems. Our approach differs insofar as we do not make

any assumption on the connectivity of the field. In other words, synaptic weights of both, afferent projections to the

field as well as lateral connections within the field, undergo Hebbian plasticity. As a direct consequence our model

has to self-regulate in order to maintain a stable operation mode even in face of these experience-driven changes.

We therefore incorporate recent advances in the understanding of such homeostatic processes. Firstly, we model

the activity-dependent release of the neurotrophine BDNF (brain-derived neurotrophic factor) which is thought

to underlie homeostatic synaptic scaling. BDNF has opposing effects on the scaling of excitatory synapses on

pyramidal neurons and interneurons, thereby mediating a dynamic adjustment in the excitatory-inhibitory balance.

Secondly, we adapt the intrinsic excitability of the model units by adjusting their resting potentials. In both processes

the objective function of each neuron is to achieve some target firing rate. We experimentally show how homeostasis

in form of such locally operating processes contributes to the global stability of the field. Due to the self-regulatory

nature of our model, the number of free parameters reduces to a minimum which eases its use for applications

in various domains. It is particularly suited for modeling cortical development, since the process of learning the

mapping is self-organizing, intrinsically regulated, and only depends on the statistics of the input patterns. Self-

organizing maps usually develop a topologically ordered representation by making use of distance-dependent lateral

connections (e.g. Mexican Hat connectivity). Since our model does not rely on such an assumption, the learned

mappings do not necessarily have to be topology preserving. In order to counteract this problem we propose to

incorporate an additional process which aims at the minimization of the wiring length between the model units.

This process relies on a purely local objective and runs in parallel to the above mentioned self-regulation. Our

experiments confirm that this additional mechanism leads to a significant decrease in topological defects and further

enhances the quality of the learned mappings.



SUPPLEMENTARY MATERIAL

Intrinsically Regulated Self-Organization of

Topologically Ordered Neural Maps
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The structure of the recurrent neural network is shown in Fig. 1. It is

composed of excitatory units E and inhibitory units I, both initially

being arranged on a 2-dimensional grid mimicking the neural tissue.

Fig. 1. The structure of the recurrent neural network.

The membrane potentials of the E- and I-cells are denoted by the

variables u and v, respectively. We use index i for referring to the

unit located at position xi of the cortical sheet. The spatio-temporal

evolution of the activity in the field is modeled by the following

differential equations:
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Here, τE and τI are time constants, hE
i and hI are the resting poten-

tials, sj is an external input, and w∗

ij denotes the synaptic weight of

a connection from unit j to unit i where ∗ ∈ {EE,EI, IE,EXT}
specifies the type of connection. A monotonically increasing transfer

function is denoted by f . Furthermore, g is a function which

modulates synaptic efficiency depending on the distance dij between

the pre- and postsynaptic cells.

In the course of learning we incorporate homeostatic synaptic

scaling as follows:
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Thereby, ∆w̃∗

ij(k) denotes the weight change according to Hebbian

plasticity, α the learning rate, and BDNFE
i (k) the level of BDNF

released by the i-th E-cell. We model the activity-dependent release

of BDNF according to (7)-(8), where Ai(k), Āi(k), and Â are the

instantaneous, mean, and target firing rates, respectively.
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We further adapt the resting potentials of the E-cells by which the

intrinsic excitability of them becomes changed:
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Fig. 2. The developed receptive fields of all excitatory units: (a) shown in
the s

1-s2-plane; (b) the distribution of their centers in the s
1-s2-s3-space.

For the reduction of topological defects, which may occur during

learning, we incorporate an additional process based on the principle

of wiring length minimization (WLM). More precisely, each unit tries

to dynamically adjust its position in the map such that its weighted

distance to other units becomes minimized. This objective can be

formalized according to (10)-(11) for E- and I-cells, respectively.
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As a concrete implementation of this mechanism we suggest an

iterative process in which units exert forces on each other. This

includes repulsive and attractive forces (both being dependent on the

distance between the units) where the attractive forces are additionally

modulated by the strengths of the corresponding synapses.

In order to evaluate the model we used three continuously varying

stimuli s1,s2,s3 with s1, s2 ∈ [−1, 1] and s3= s1– s2. Each of them

has been represented by a population code composed of 21 neuron

responses, resulting in a total of 63 inputs to the network. The model

should consequently map the inputs into unique representations such

that the input distribution becomes adequately represented. Learning

has been carried out during online operation at each timestep.

The developed receptive fields of the E-cells are shown in Fig. 2.

As can be seen, the units specialized to distinct input configurations

by which a proper sampling of the input space has been achieved.

Fig. 3 illustrates the effect of incorporating the additional process

of WLM. Firstly, it shows that WLM changes the positions of the

cells within the map. Secondly, the topographic function [3] (as

a measure for the degree of topological defects in the developed

mapping) indicates that the incorporation of WLM significantly

enhances topology preservation compared to not using WLM.
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Fig. 3. The final distribution of the cells on the cortical sheet (a) as well as
the topographic function [3] of the developed mappings (b).
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