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Abstract 
Evolutionary algorithms are well established method s for shape and design optimisations 
and they are applied to a large variety of problems . Especially for the optimisation of 
aerodynamic properties various publications demonstrate the potential of the method. Two 
major problems in the application of evolutionary o ptimisation methods for the improvement 
of aerodynamic properties are the representation of  the shape and the generation of the 
CFD mesh necessary for the numerical flow simulatio ns. In this paper a state-of-the-art 
deformation method named free-form deformation (FFD ) is coupled with Evolution Strategies 
(ES). In this way, both problems are addressed. On the one hand the grid generation for 
solutions which are generated during the optimisati on can be realised. On the other hand a 
representation of the design is generated, which de couple the complexity of the design to be 
optimised from the optimisation parameter. In this way it is possible to represent highly 
complex geometries with a tractable number of optim isation parameter. The combination of 
ES and FFD is applied to the optimisation of an exh aust flow element for a modern diesel 
engine. Especially the effects of the representatio n are demonstrated. Furthermore the 
problem of solution robustness is addressed in a wa y that multiple design points are 
considered during the optimisation in order to gene rate one optimal solution for a wide range 
of possible operation conditions. 

1. Introduction 
Evolutionary algorithms are well established method s for shape and design optimisations 
and they are applied to a large variety of problems . Especially for the optimisation of 
aerodynamic properties various publications demonstrate the potential of the method. 
However, the optimization of three dimensional stru ctures is a very challenging task even 
today due to several reasons. One factor are the Co mputational Fluid Dynamics (CFD) 
calculations which are necessary to evaluate the de sign at hand. Also from the viewpoint of 
the optimisation methods several challenging problems are present like the multi-modality of 
the problem, the fact that gradient information are  often not available or too expensive to 
evaluate and the fact that both, aerodynamic proper ties and numerical methods, introduce 



noise in the quality estimation which hinder the pr ogress of numerical optimisation methods. 
The effect of these issues become more and more red uced by the progress in the field of 
CFD simulation, computational speed and by advanced  numerical optimisation methods.  
However, two other difficult to solve issues hinder  very often the numerical optimisation of 
aerodynamic properties. The first is related to the  representation of the geometry which is 
subject to the optimisation. The other is related t o the generation of a computational grid 
necessary for the evaluation of the design by CFD m ethods.  
The first problem is already addressed by a huge va riety of shape representations proposed 
in the literature, illustrating the high influence on the performance of the optimisation process. 
One of the difficulties is the trade-off between th e high dimensionality of the models which 
allow a large freedom for shape modifications durin g the optimisation and a model with a low 
number of design variables. Whereas a high degree o f freedom potentially allows to identify 
optimal and well tuned solutions, the high dimensio nality of the search space often result in a 
very slow convergence rate of the optimisation meth od or even in a stagnation at local 
optima. On the other hand, the restriction to only a few parameters allows for a fast 
identification of optimal configurations in a low d imensional search space however with the 
disadvantage of a low flexibility in the representa tion with the risk of not being able to 
represent the optimal solution. The majority of rep resentations which are proposed in 
literature are based on a parameterisation of the s urface of a design e.g. by splines with the 
drawback that complex and involved surfaces result in an extremely high dimensional model 
with often very involved dependencies between param eter.  
An alternative way for the representation is given by deformation approaches in which the 
deformation of a given base-design is described ins tead of the geometry itself. In this paper 
a deformation method named free-form deformation (F FD) is coupled with a numerical 
optimisation method which is named Evolution Strate gy (ES). Free form deformation allows 
shape modifications by moving the control points ar ranged in a lattice which encloses 
arbitrary target geometries. By modifications of th e control points of the model, the enclosed 
design space is deformed independent from the desig n represented in the space. Therefore 
the complexity of the design parameter space on whi ch the optimisation algorithm operates 
is decoupled from the complexity of the design to b e optimised.  
At the same time it offers a way to realise the CFD  grid generation. The computational grid 
for a modified design can be generated by applying the same deformations to an initial 
computational grid as for the initial design. There fore it is often sufficient to generate one 
single initial grid. A manual update of the grid is  afterwards only necessary if deformations 
are applied which lead to unfavourable local mesh c onditions. 
In this paper, the combination of FFD with evolutio nary optimisation is applied to the 
optimisation of an exhaust flow element for a moder n diesel engine. Since the focus is on 
the representation of the geometry and the evolutio nary optimisation the actual quality 
calculation including the flow simulation is regard ed as black box simulation which returns, 
after providing a computational grid, the required quality criteria. 
The remainder of the paper is structured as follows . After a short description of the applied 
numerical optimisation method in the next chapter, the deformation method is described in 
chapter  3. Chapter  4 gives a brief idea about the system the flow elem ent is optimised for. In 
chapter  5, a description of the encoding of the exhaust flo w element, the fitness function, the 
combination of ES and FFD methods and the setup of the optimisation is given. A 
description of optimisation results is given in cha pter  6, before a conclusion in chapter  7. 
 

2. Evolutionary Algorithms 
 
Evolutionary algorithms (EAs) are direct pseudo-sto chastic search methods which mimic the 
principles of Neo-Darwinian evolution. A population  of possible solutions (e.g., a vector of 
continuous parameters which are also called objecti ve variables in the context of EA) is 
adapted to solve a given problem (e.g. minimization  of pressure drop) over several 



generations. The adaptation occurs by varying these  solutions in the population and by 
selecting the best solutions for the next generatio n. The variations can be classified as 
purely stochastic (usually called mutation) and com binatoric/stochastic (usually called 
recombination or in the context of genetic algorith ms crossover). Schematically the evolution 
cycle is shown in Figure 1. 
 
 

 
Figure 1: Schematic evolution cycle  
 
In the application presented here, a special varian t of Evolutionary Algorithms the so called 
Evolution Strategy is applied. Standard Evolution S trategies have been described in several 
textbooks e.g.  [1]. Evolution Strategies have been proven to be ef ficient for the optimisation 
of continuous parameters due to the utilisation of so called strategy parameter which allow 
the adaptation of the mutation width along with the  object parameter. The effect is a constant 
adjustment of the algorithm to the current location  in the search space.  
One of the simplest Evolution Strategies applies on ly one single strategy parameter which 
defines the variance of the normal distribution des cribing the generation of offsprings based 
on selected parent solutions.  
Due to the fact that all parameter are mutated with  the same strength the adaptation 
mechanism in this special Evolution Strategy is cal led global step size adaptation. This 
strategy is described in more detail for example in   [1].  
The mutation operator which is the main source for modifications can be described in this 
case mathematically by )).(,0()1()( tNtxtx σ+−= rr

The vector )1( −tx
r

describes the 
parameter set which is subject to the optimization from the former generation and is also 
called a parent solution. A parameter set for the c urrent generation is generated by adding a 
realization of a normal distributed random vector w ith a variance of )(tσ where in the most 
simple case the variance is adapted in a similar wa y than the object parameter by 
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adaptation rate. It is usually kept to a constant v alue depending only on the dimensionality of 
the problem. The adaptation of the strategy paramet er describing the probability distribution 
for the offspring generation around a parent soluti on is subject to the main developments 
and extensions of Evolution Strategies. 
In the following, we will conceptually outline the lesser known extensions to Evolution 
Strategies which have been proposed by Ostermeier  [2] and Hansen  [3] [4] and which have 
been demonstrated to be very effective both, on ben chmark as well as on several practical 
optimization problems. 
Firstly, this is the derandomised strategy which re duces the stochastic influence on the self-
adaptation of the strategy parameters. In the origi nal mutative self-adaptation scheme, as 
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proposed by Schwefel  [1] and mentioned above, both the strategy paramete rs, as well, as 
the objective parameters are subject to independent  stochastic mutations. The idea behind 
the derandomised strategy is to use one stochastic source for both the adaptation of the 
objective and of the strategy parameters. In this c ase, the actual step length (which was 
used to generate the current successful offspring) in the objective parameter space is used 
to adapt the strategy parameter, e.g. )(tσ  in the following way: 
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N  denotes a random vector whose components are Gauss ian distributed random 
variables with zero mean and variance equal to one.  
This update rule results in the following, simple, however successful, effect: 

If the mutation was larger than expected [ ]( ))1,0(
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NEz >  then the strategy parameter is 

increased. This ensures that if this larger mutatio n was successful (i.e. the individual was 
selected), then such a larger mutation will again o ccur in the next generation, since 

)(tσ  was increased. The same argumentation holds if [ ]( ))1,0(
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Therefore, the self-adaptation of the strategy para meters depends more directly on the local 
topology of the search space. 
The second method is the introduction of the cumula tive step size adaptation. Whereas the 
standard Evolution Strategy extracts the necessary information for the adaptation of the 
strategy parameters from the population (ensemble a pproach), the cumulative step size 
adaptation relies on information collected during s uccessive generations (time averaged 
approach). This leads to a reduction of the necessa ry population size. The main idea is to 
avoid strong correlations (positive or negative) in  successive step sizes, because such 
cumulative steps can be more efficiently realized b y single steps. 
In the CMA algorithm, the full covariance matrix of  the probability density function 
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is adapted for the mutation of the objective parame ter vector. This has the advantage that 
the mutation direction is independent from the choi ce of the coordinate system and 

correlations between parameters can be represented.  If the matrix B
r

satisfies TBBC
rrr

= and if 
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Nz is a Gaussian distributed random variable with zero  mean, then an arbitrary 

normal distribution can be described by ),0(~ CNzB
rrrr

. The adaptation of the objective vector 
can then be written as:  
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NzztBttxtx −−+−= δ  where )1( −tδ denotes the global step-size of 
the strategy. Thus, the overall mutation length can  be adapted on a faster time scale (one 
parameter) than the direction which needs the adapt ation of the covariance matrix. Since 
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the different matrix entries cannot be 
determined independently and the detailed adaptatio n algorithm combined with the 
cumulative step-size approach is more involved, see   [3] [4] for a detailed description. 
 

3.  Free Form Deformations (FFD) 
Free-Form Deformation (FFD) has been introduced by Sederberg and Parry  [5] in the field of 
computer graphics and computer animation for object  manipulation and later extended by 
Coquillart  [6]. Instead of representing the geometry itself, o nly the deformation of an initial 



geometry is specified. The initial geometry can be given in any solid modelling scheme. A 
physical analogy for FFD is to imagine a clear, fle xible plastic. The objects which shall be 
deformed are embedded into the plastic. Deforming t he plastic forces the object to change 
similarly.  
The “plastic” is defined by a trivariante Bernstein  polynomial consisting of a lattice of control 
points (CP). To embed an object the coordinates of the object have to be mapped to the 
coordinates in the spline parameter space, a proced ure which is called freezing. If the object 
is a surface point cloud of the design each point h as to be converted into the spline 
parameter space to allow the deformations. For this  calculation various methods have been 
proposed, e.g. Newton approximation or similar grad ient based methods  [7]. 
The deformation of the plastic is realised by chang ing the position of the control points of the 
lattice. The object modification is then computed b y evaluating a vector valued trivariate 
Bernstein polynomial. The advantage of representing  deformations instead the geometry 
itself is the decoupling of the representation para meters from the design. Therefore, the 
number of parameters is independent of the complexi ty of the shape. It is solely determined 
by the required flexibility of the deformation. 
Deformation methods have been applied to shape opti misation of aerodynamic problems by 
Perry et al. and Samareh in  [8] and together with evolutionary algorithms by Me nzel et al. in 
 [13]. It has been shown that FFD methods realize a good trade-off between shape flexibility 
and a low number of parameter which in turn results  in a low dimensional search space for 
the optimisation. 
Furthermore, the representation of deformations ena bles to modify several objects 
simultaneously. This also includes the deformation of a grid used in computational fluid 
dynamics calculations as demonstrated in  [8]  [9]  [13]. Since everything in the control volume 
is deformed, a grid from computational fluid dynami cs that is attached to the shape is also 
adapted. The new shape and the corresponding CFD gr id are generated at the same time 
without the need for an automated or manual re-mesh ing procedure even for complex 
geometries. This feature significantly reduces the computational costs and allows a high 
degree of automation  [12] [13] [14]. In many cases, design optimisation of complex  shapes 
only becomes feasible when FFD methods are used for  the representation. 

4. Application 
The application to which the optimisation method is  applied to is an exhaust gas flow 
element for a catalytic converter. The task of the element is an increase of the catalytic 
converter performance by generating an optimal flow  distribution of the gas flow in the 
converter. A schematic description of the overall s ystem is given in Figure 2 assuming a flow 
direction from right to left.  
A simple base geometry was defined initially that c onsists of 6 blades with a constant wall 
thickness and a constant radius of curvature. Due t o the large variations of possible flow 
conditions like mass flow and exhaust temperature d uring normal operation, the design is 
always a compromise in the sense, that an overall h igh performance at all possible operation 
points is necessary rather than a high performance at selected operation points. 
For the setup-up the initial configuration, which i s referred to as base design in the following, 
a simulation study was performed to define the opti mal radius at selected boundary 
conditions (i.e. different engine operating points) .  
The selected geometry was tested on a flow bench to  validate the simulation result. Finally it 
was tested on the engine bench to investigate the i mprovement of the catalyst activity due to 
the improved flow distribution. Remarkable improvem ents were detected for both, the flow 
profile and the catalyst activity already for the b ase design. 
To further optimize the catalyst performance in the  overall system and to reduce the 
pressure drop at the same time, the numerical optim ization of this flow element was 
performed.  
Since the precise evaluation of the catalytic conve rter performance is very involved a 
simplified criterion is used in the following with the target to generate a homogeneous flow 



through the catalytic converter. Therefore two crit eria are taken into account for the 
optimisation. The pressure drop and the homogeneity  of the flow through the catalytic 
converter.  

 
Figure 2: Overall system setup 
 

5. Setup of the Optimization 
The initial design of the exhaust flow element is d epicted in Figure 3. To represent the 
rotation symmetric configuration it is transformed in a cylindrical coordinate system.  
 

   
Figure 3:  Baseline flow element. (left) including the surrounding wall. Airfoil geometry which 

was subject to the optimization (right). 
 
 

 
Figure 4:  Control volume and flow element in cylin drical coordinate system. Both are 

scaled in z-direction by factor 100 for visualizati on. 
 
Figure 4 visualises the control volume which is def ined surrounding the configuration. The 
control volume consists of a lattice of control poi nts. Each blade is contained and therefore 
controlled by a group of four identical planes of c ontrol points in z-direction. In order to 
simultaneously control all blades this group is rep eated 6 times in a distance of 2 π/6 units in 



z-direction to enclose each single blade. To achiev e a uniform deformation of the blades as 
well as the CFD grid, additional control point plan es are added in z-direction in order to 
generate periodic boundary conditions in z-directio n.  
In the following, groups of control points are deno ted by their indices (indicated in Figure  4) 
in each direction within the control lattice. Inste ad of directly modifying the control points a 
mapping between optimisation parameter and control points is generated which at the one 
hand allows to simultaneously modify control points  which influence corresponding points of 
the blade and on the other hand to restrict the mod ifications to areas which have an 
influence on the blade shape.  
In total three optimisation runs are reported in th is paper. In the first two optimizations (Run 1 
and Run 2) the control grid is modified by five par ameters. Each of them specifies the 
position of a group of control points relative to t heir initial location. The first parameter effects 
the control point group (3-4,1-5,2-37) and allow a modification in x-direction. This enables to 
change the diameter of the outlet in the centre of the tube.  
The remaining four parameters change the groups (1- 4,1,2-37), (1-4,2,2-37), (1-4,3,2-37) 
respectively (1-4,4,2-37) in z-direction. In Euclid ean coordinates this corresponds to a 
rotation around the centre of the tube. Thus the sl ope and outlet angle of the blades can be 
modified. In the third optimization (Run 3), the li mitation on the number of parameter was 
relaxed by using 17 parameters allowing a higher de gree of freedom for modifications. 
Compared to the representation of Run 1 and Run 2 e ach of the previously defined four 
control point groups is divided in four sub groups allowing independent deformations in z-
direction which leads to the groups defined by 4...1,)372,,( =∀− jiji . These two sets of 
parameter define the possible deformations of the f low element and therefore the model for 
the optimisation. 

5.1  Fitness evaluation 
The quality of each offspring is evaluated based on  CFD simulations and contains two 
objectives:   

1. the pressure loss of the whole exhaust duct,   
2. the uniform distribution index 1mm within the ca talyst. 

 
Furthermore a penalty for high skewness of the CFD cells is added to the quality measure to 
avoid unrealistic simulation results. Such cases ca n occur if the deformation of the CFD grid 
is large. Moreover, to improve the grid quality bef ore each CFD simulation the smoothing 
and swapping functions provided by the Fluent softw are are performed. This reduces the 
maximal cell volume skewness by about 0.1.  
 
The overall quality function is defined by  
 

( ) ( ) ( ) ( )( )9.05

00

−+−= xse
u

xu

p

xp
xf       (3) 

where ( )xp  is the pressure loss, 0p the pressure loss of the base design, ( )xu  and 0u  the 

uniform index of the current design and the base de sign and ( )xs  the cell equivolume 
skewness. 
 
In optimization Run 2 and 3 the fitness calculation  is based on three different operation 
points (OP 20, OP 28, OP 66) which differs in the i nflow velocity and temperature. The 
results of the three operation points are weighted according to their expected relevance 
(40%, 40%, 20%). In optimization 1 only operation p oint OP28 is evaluated. The CFD 
simulations were carried out by ANSYS Software Flue nt (version 6.3.26). Depending on the 
operation point the time needed for one calculation  is in the range of one to three hours. The 
overall time for the evaluation of a solution at al l three operation points is about 6 hours. 



Since all evaluations in one generation are indepen dent from each other the quality 
evaluations can be done in parallel. In the experim ents reported here 10 evaluations are 
calculated in parallel. This results in a calculati on time of one single generation in about 6 
hours and an overall calculation time for 56 genera tions in run 2 of 14 days and of 40 
generations in run 3 in 10 days. Since run 1 is eva luated only on one working point the time 
for the evaluation of one generation is about 2 hou rs, which results in a calculation time for 
the experiment of about 2 days. 

5.2 Evolution Strategy 
In all three optimisation runs a ES-CMA(1,10) was a pplied, which means that in each 
generation λ=10 offsprings where generated based on µ=1 selected parent from the 
previous generation. 

6. Results 
In this section the results of the three optimizati on runs are presented. Table 1 and Table 2 
summarize calculated performance values for all thr ee working points. In case of Run 1, the 
performance indices and the fitness are only evalua ted for operation point OP28 during the 
optimisation. The calculated results for Run 1 give n in Table 2 at other operation points as 
well as the fitness given in the second column of T able 1 are calculated afterwards for a 
comparison of results and were not used during the optimisation. 
 
Table 1: Comparison of performance between Run 1, R un 2 and Run 3 
 

Case Fitness Fitness II (OP 28)  
Baseline 1.000000 1.000000 
Run 1 1.208101 0.967468 
Run 2 0.973621  
Run 3 0.966267  

 
Table 2: Comparison between Run 1, Run 2 and Run 3 
 

Case OP 20 OP 28 OP 66 
pressure loss 
Baseline -835.520 -7375.032 -21047.914 
Run 1 -832.938 -7255.462 -20497.779 
Run 2 -830.327 -7223.738 -20393.742 
Run 3 -828.739 -7197.838 -20259.011 
uniformity index 2 (1mm in the catalytic converter)  
Baseline 0.991 0.974 0.959 
Run 1 0.995 0.989 0.984 
Run 2 0.994 0.984 0.977 
Run 3 0.995 0.988 0.985 

 
 
In case of run 1 the fitness which was achieved dur ing the optimisation is given in a separate 
third column as Fitness II and is again normalised to the baseline design performance at 
operation point OP 28 only.  
It can be seen that the optimisation which is opera ting solely on operation point OP 28 
increases the quality of the base-design at this op eration point. However evaluating the 
same design with the more realistic quality functio n integrating other operation points 
demonstrates that the overall quality (which is a w eighted average over three operation 
points) is decreased to a value of 1.208 and theref ore significantly worse than the base-



design. This is a strong indication that the optimi sation improved the design quality by 
reducing the off-design performance. Therefore it s eems to be important to optimise the 
performance of the design simultaneously in the who le range of possible working conditions. 
A quality evaluation on 3 different operation point s is done in Run 2 by otherwise identical 
settings to Run 1. It can be seen in Table 1 that t he overall quality (fitness) for a realistic 
working range can be increased by integrating three  representative working points.  
The difference between Run 2 and Run 3 is related t o the flexibility of the model. Run 3 is 
realised by identical setting to Run 2 with the exc eption of a higher flexibility of the model like 
described in chapter  3 and therefore involves a higher number of optimis ation parameter. 
The possible performance increase due to a higher f reedom for the optimisation algorithm is 
demonstrated in Table 1 as well.  
The optimization progress for all three runs is pre sented in Figure 5. The development of the 
overall fitness during the optimisation is summaris ed in the right figure. Here it has to be 
noted again that the plotted fitness values can be compared only Run 2 and Run 3. In case 
of Run 1 the normalisation is done to the baseline performance at OP28 only. Therefore the 
fitness values cannot be compared directly. Compari ng Run 2 and Run 3 it can be observed 
that the increase of model flexibility considerable  improves the quality of the final solution, 
however usually with the disadvantage of a lower pr ogress rate. 
In the left part of Figure 5 the development of the  global step-size which represents the 
distribution of the offsprings around a parent solu tion is shown. In case of Run 2 the value 
becomes close to zero in generation 56. It can be a rgued that the optimisation is nearly 
converged, which means that no further progress can  be expect. For Run 1 and Run 3 a 
further improvement could be possible by continuing  the optimisation run which was stopped 
here due to limitations in the computational recour ses.  
Figure 6 summarises the progress of the optimisatio n for both criteria, the pressure loss and 
the uniformity index. 
 

  
Figure 5:  Left: Fitness improvement during the opt imization for all three optimization runs. 

(Please note that the fitness value for run 1 is di fferent because it is based on 
working point 2 only. Therefore the values cannot d irectly be compared);  
Right: Adaptation of the global step-size during th e optimization. 

  
Figure 6: Development of the optimization criteria:  Left: uniformity index, Right: pressure loss  



 
Figure 7-9 show the resulting geometries of the bes t solutions for all three runs compared to 
the baseline design which is indicated in grey, eac h in two different views. Comparing the 
results of run 3 in Figure 9 it can be seen that th e higher flexibility of the model is utilised by 
the optimisation algorithm generating highly bended  surfaces. 
 
 

   
Figure 7: Resulting geometry generated in run1 (red ) - compared to baseline (grey) 
 

   
Figure 8:  Resulting geometry generated in run 2 (r ed) - compared to baseline (grey) 
 

   
Figure 9: Resulting geometry generated in run 3 (re d) - compared to baseline (grey) 
 
The resulting velocity profiles at a cross section 1mm within the catalytic converter is given in 
Figure 10 for the best optimisation result generate d in run 3 and in Figure 11 for the base 
line design. Here the progress in generating a high er uniformity in the flow velocity can be 
observed. 
 



 OP20 OP28 OP66 
  

Figure 10: Uniformity Index II for the base-line de sign for all three operation points 
 

 OP20 OP28 OP66 
  

Figure 11: Flow velocity in the catalyst for the op timized design resulting from run 3 
 

7. Summary and Conclusion 
The presented results demonstrate the successful ap plication of free form deformation as a 
well suited representation for the numerical design  optimisations. It was demonstrated that a 
problem representation accessible to numerical optimisation algorithms can be easily 
created by deformation methods and that a coupling to evolution strategies produces 
powerful optimisation methods. 
A common problem which is known in the application of numerical optimisation methods is 
the specialisation of results to given design point s with the effect of a degeneration of the 
design performance at off-design conditions. This i s problematic for systems which are 
operated in wide range of possible conditions. Here  we address this problem with a very 
simple method of averaging the results of multiple calculations at different design points 
within the expected range of working conditions. It  can be seen that the average 
performance of the design can be increased by this method and that robust solutions can be 
generated which show a high quality in a wide range  of working points..  
Furthermore the influence of the flexibility of the  design model was demonstrated. The 
differences in the optimisation results between a m ore restricted model (Run 2) only allowing 
the modification of selected design areas and a mor e flexible design model (Run 3) with less 
restrictions show the expected behaviour. On the on e hand the higher freedom for the 
optimisation results in a higher final quality of t he solution. On the other hand the higher 
number of necessary simulations generates higher ov erall cost in terms of computational 
recourses. 
Overall it can be seen that the combination of mode rn optimisation methods, deformation 
methods and modern flow simulations can generate co mpetitive results even for complex 
geometries which are otherwise difficult to realise  due to problems in the design model 
generation and also due to problems in the generati on of the necessary CFD meshes.  
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