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Abstract—In this paper we propose a method for visual systentbe data flow of a computer program date back to the work
to consistently represent functional dependencies betwdiféerent of Dennis [2], [3]. In this and later works, graph structures

visual routines along with relatl_onal short_— and Iong-tdmmwledge_ are used to analyze the data and control flow of a computer
about the world. Here the visual routines are bound to visua

properties of objects stored in the memory of the systenthEumore program to parallelize and optimize the program by a compile

the functional dependencies between the visual routinesseen [4], [3]. There, the program dependence graph "[introdlices
as a graph also belonging to the object's structure. Thiplgia a partial ordering on the statements and predicates in the

parsed in the course of acquiring a visual property of anatje program that must be followed to preserve the semantics of
automatically resolve the dependencies of the bound visudines. the original program” [4, p. 322]. In the domain of computer

Using this representation, the system is able to dynargica#irrange . . -
the processing order while keeping its functionality. Rartore, vision, data flow graphs are also used to ease the design of

the system is able to estimate the overall costs of a ceriona ViSion systems and keep their complexity manageable [6].
We will also show that the system can efficiently use thatcstme However, all of the mentioned methods try to map a fixed
to incorporate already acquired knowledge and thus redbee Hnqg predefined algorithm to a graph structure to later use it
computational demand. for parallelization and optimization of that fixed algorith

~ Keywords—Adaptive systems, Knowledge representation, Machingontrary to that, we propose a method to implemenban
vision, Systems engineering demandvision system that parses its internal representation
of the dependencies ardi/namically creates program for
acquiring the requested property of an object. As the vast
majority of the literature in the field of computer science

OGNITIVE vision systems, both technical and biologishows, graph structures are well suited for that purpose. In
cal, with at least a minimal claim on generality have ténis paper we will show that:

carefully select the information they acquire from theivien
ronment. This is necessary to fulfill constraints on compti
and memory resources. Therefore, those systems implement
algorithms to focus on certain aspects of the surrounding
scene, depending on their need, their task and their kngeled
about the world they have accumulated. This flexible control ®
architecture like proposed in [1] must be able to dynamycall
rearrange the processing pathways of the system, use the
already acquired knowledge and estimate the cost and benefit
of the system’s actions. To achieve this in a reasonable erann
the system not only needs knowledge about relations betweefl
objects, but also needs knowledge about the relations of
internal routines it can use to acquire information aboet th
vicinity. This knowledge could then be used to determine
which actions the system has to perform to measure e.g. &
certain property of an object. If, for example, the systemtwa
to measure which color an object has, it first need to know
where the object is and what retinal size it has approximatel In the next we show the memory structure of the system
Furthermore, determining the position of an object mighbgether with the way we are modeling the functional depen-
involve further processing which is again a dependency ef tdencies. We will also elucidate modifiers required for covgr
localization module and so on. The structure we have chogte whole functionality of a vision system in the dependency
makes it possible to model those dependencies along with #tricture. In section 1l we then present a parsing algorith
world knowledge the system has in a relational memory. Is ththat exploits the previously described graph structure. We
paper we concentrate on how we can efficiently implement thiéscuss some special situations we came across when working
knowledge about dependencies between different routinés avith that structures. Using the parsing algorithm presgire
on how to use it in a system context. section Il we perform some experiments in a proof-of-cquice

In computer science problems similar to the representatisystem based on the architecture proposed in [1] and finally
of such dependencies exist. Those problems on representiisguss our results.

|I. INTRODUCTION

« Using graph structures we are able to consistently model
functional dependencies between object properties along
with the property structure of objects and world knowl-
edge, both short- and long-term.

Using graph structures the system is provided with the
means to estimate the costs of a certain measurement. In
an example we show that the size of the graph required
for performing the measurement can be used as a cost
function.

Using our proposed parsing algorithm, knowledge already
acquired by the system can be reused in a simple and effi-
cient way. This leads to a reduction of the computational
demand and speeds-up operations of the system.

Using our proposed parsing algorithm, the complexity of
designing the vision system is considerably reduced by
only modeling direct dependencies.



II. RELATIONAL MEMORY example and can thus be performed directly. Afterwafds

Memory Structure can be measured. If the structures getting more complex and
- . . the graph is getting deeper, a more sophisticated algotighm
N our vision system we use the relational semantic memorg . . .

. N L needed to perform the parsing of the graph. Details on this
proposed in [7] for representing information in the short- . .

: : . can be found in section Ill.
and long-term memory. This relational memory is, contrary t
many other semantic memories, able to represent an agbitrar -
number of relation patterns. Thus we can define classical likink Modifiers
types like "hasProperty”, "isPartOf’ or "isContainedin'sa Even though Ballance et. al state in their paper that "neithe
shown in Fig. 1. Additionally we store a sensory represériat switches nor control dependence are required for a demand
driven interpretation” [8, p. 261], we need some modifiens fo

MADE-OF the dependency link patterns to cover interesting cases of a
vision system. Those interesting cases are:
OBJECT 6__>U<\>B MATERI Y g

o The operation of nod® is optional and not absolutely
N required for measuring nod&, but would e.g. improve
i@i<\>i the result of the measurement. A modulatory input for a
object-can  rejation-1 maferial-aluminum visual routine would be an example for this case, where
the presence of such an input is helpful but not necessary
USED-FOR (see Fig. 3 a).
o The system requires different operations for the target

)ﬂ&\) USAGE node to be fulfilled before it is able to process the current
node (see Fig. 3 b).
'}: « There might be alternative ways to measure a certain
i 7\ property and the system only needs to fulfill one of
elation;mv usage-drinking several dependencies. Think of different segmentation
1 idrinking algorithms for estimating the shape of an object, where
v ! only one of those algorithms is required to complete to
relation-3 i i _ get a shape (see Fig. 3 c).
usage-gaming v gaming
<—>i Bdriving
a) b) c)
usage-driving 0 0 0
mandatory |optional  send |receive 'and/or

Fig. 1. In the relational memory we use, an arbitrary numlbdink patterns

can be constructed. Some examples are shown here. o o ° o

in the property nodes to be able to later feed back that info:-

mation into the system. Along with the sensory represematirig 3. we cover different cases using modifiers for the depeoy
a direct link to the visual routine used for acquiring a dertalink patterns: a) a dependency can be optional or mandamryjifferent
propery is stored in the property nodes. Thus we damand (erioloer B eeshe) e edeses o e am e b
the attached visual routine to deliver information. Theeob§ gependencies to be fulfilled.

in the memory are composed of several visual properties.

Beside the classical link patterns, we can also construgie generic pattern we implement reads Asi&pendsiepen-
dependency patterns. The dependency pattern that canibe ge@cy typen operationof B logical mode C..” The modifiers
in Fig. 2 reads as "the measurementalepends on operation of this generic pattern are in our case:
op of B. Given this link, we can now measufein a demand- | Dependency type: The link between the node can be

Measurement mandatory or optional as shown in Fig. 3 a.
request « Operations. We realizesend andreceive operations that
push or pull information of the target node, respectively

op as shown in Fig. 3 b.
” ° Logical mode: The node A can depends oB and C”

or node 'A can depend o8 or C’. That way we can

Fig. 2. The measurement of nodedepends on the operatiap of node mark alternative pathways by using the logicalmode,
B. For representing this we use exactly the same memory steuas shown else nodeA depends on all target nodes (see Fig. 3 c).
in Fig. 1.

driven way: if the system needs to measure nadeknows Node States
it has to performop of nodeB before being able to process Beside the link patterns, the graph also contains nodes. In
A. The operatiorop of B has no further dependency in thisour case each node has a state marking the validity of thesnode



data. We use this later to determine if the node informatic
needs to be update i.e. the visual routine bound to this nc
needs to be executed or not. Basically there are two staes
the data is eithevalid or invalid. In the beginning, all nodes
contain invalid data. After updating, i.eeceivinginformation
from a visual routine, the datum of the nodewalid. The
transition of the node’s state backitwalid can be determined
by time or any other criteria. In section Il you will see hovew
use the state of the nodes to dynamically reduce the num
of operations if we encounter a node with valid data.

System Memory Layout

After discussing the different link types, operation, moc-

ifiers and node states, we now present the actual desig!
prototypical memory patterns we use in out system. The upf
part of Fig. 4 shows the view on the designed object structu
You can see that the object properties are bound to the eliffer
visual routines (shown in the upper left). In the lower pdrt ¢
Fig. 4 the designed dependency patterns are shown. Ple
note that the illustration shows only two different views ol
the memory content. Both representations coexists in the v
same memory using the same nodes! As you can see we ¢
define thedirect dependenciesf the node and not the whole
tree. This eases the design process, as it keeps the sys
structure manageable. The complete dependency tree teil |z
be generated on the fly using the parsing algorithm descrit
in the next section.

HE last section illustrated the way the system represel
its knowledge, both about the world and about its intern
functional dependencies. In this section we will show ho

D EPENDENCYPARSING

we use that knowledge for implementing a demand-drive |~

acquisition of sensory information about the vicinity. lew
look back at the bottom of Fig. 4 in section Il we see the
we define only direct dependencies. To update a property
an object like its 3D-position (world location), we need t
resolvethe dependencies of that node. The manually resolv
dependency graph for the world location is shown in Fig. 51
illustrate the necessary steps.

Recursive Parsing

In the example of receiving the world location (see the steﬁ?ﬁ

El Visual routines Prototypical memory layout

RetinalLocation
PhysicalSize

Stereo computation
module

Distance

Saliency module

SpatialModulationMap

WorldLocation
ObjectMask

Color measurement
module

SaliencyCueWeights

Region growing
module

Level-set module
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optional.
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Fig. 4.
our system. You can clearly see the binding to the visualimest both feed-

On top the prototype of a object structure is dispags used by

ward and feed-back. On the bottom, the dependency staican be seen.
e color indicates the operation the node should perform.

in Fig. 5), this would require the measurement (receiving)
of the retinal location (1) and the distance of the object, as

we can calculate the 3D-position of the object by means §{at parsing the dependency graph can be formulated as a

the camera parameter. However, the measurement of e.g. #&rsive problem. So we implement our parsing algorithm as

retinal location itself depends on sending a spatial mdthwia 5 recursive function as can be seen in the pseudo-code below.

map (2). If you take a closer look, you will see that the
dependency i®ptional as we can also measure the retinal . ) ) )
location without having a modulatory input. If we again éwil  Circular Dependencies Detection and Handling

the graph, we see that the sending of the spatial modulationMe now continue the example and pursue the dependencies
map itself depends on the acquisition (receiving) of thdiapa one step further. We find that the measurement of the spatial
modulation map (3). This makes perfect sense, as we first n@addulation map depends on the measurement of a object mask

to have the modulatory information before using it. Lookingnd on the measurement of the retinal location (4) of the
at the steps we have done up to here we already can ség@ct. This two information are necessary to create théadpa



= Resolved world location dependency tree resolve the dependencies of the current node. In this dase, t
system can't receive the spatial modulation map, because it
requires the retinal location to be known. Thus the system
needs to go back one step (6) and check if the operation of
the dependency graph’s parent can be executed (in our case

RetinalLocation

; the sending of the spatial modulation map). As you can see in
__ - __| t . .S . . .
distance _ - ocaon Fig. 6 this is not the case, as sending the spatial modulation
<SpatialModulationMap . L. e .
SaliencyCueWeight map strictly depends on receiving it first. Again we have have

to trace back the dependency path one step (7). This brings
us back to the receiving of the retinal location, which only
optionally depends on sending the spatial modulation map. A
this point we can "solve” the circular dependency dtting

the complete brancleading to the loop. The procedure for
handling circular dependencies can be summarized as:

[ modulation_spatialmap }

<SpatialModulationMap
ObjectMask

saliency_weights

Fig. 5. The resolved dependency tree for the world locati@perty of the 1) Detect a circular dependency.
object looks much more complex then the definitions in FigiVé.the didn’t 2) If the current link |eading to a dependency |oop is

complete resol\{e thg graph he(e for simplicity (cut at thpatbmask node). optional, cut it and thus remove the whole branch
The path described in the text is marked red. T .
containing the circular dependency.

3) Otherwise check if we are already at the root node. In
modulation map at the correct location with the correct shap this case, the dependencies can’t be resolved and an error
However, if we further trace the dependencies of that branch  should be returned. If we are not yet at the root node,
in Fig. 6, we see that the retinal location depends on theéadpat trace back the dependency path one step and continue
modulation map, which in the end depends on the retinal  with step 2.
location. What we see here is a loop@rcular dependency This steps are also fold into the pseudo-code at the endof thi

section.

=] Cyclic dependency handling

WorldLocation

Reusing Already Acquired Knowledge

One of the biggest advantages of our approach to flexibly
model functional dependencies is the fact that we can reuse
the knowledge the system has. For doing so we introduced
the node statein section Il. This node state tells the graph
parsing algorithm if a node requires updating, i.e. perfogn
the operation required by its parent in the dependency graph
(modulation_spatialmap | or if it already holds valid data. If the node already has

. . valid data, the system does not need to execute the whole
<SpatialModulationMag— dependency sub-tree below the node. Let's assume that we
already measured the retinal location (the data is stilidyal
and we now want to update the world location of that object.

This will lead to the effective graph you can see in Fig. 7.

Fig. 6. The detection of a cyclic dependency at the retinehtion node, ; P ; ;
leads to a trace back of the path. Finally the circular depeayl can be If you compare that gﬁectlve to the O”gmal one in Fig. 5,
resolved by cutting the branch between the retinal locatind the spatial YOU See€ that theffective structure of the dependency graph

modulation map nodes. is determined by the knowledge of the sys$t€his is a main
difference to previously proposed methods like [4], [8]], [6

which would lead to a dead-lock situation if the SyStem daesw\/orking on|y on fixed graphs_ E\/entua"y, the graph shrinks

haVe means to deal W|th |t So the fiI’St important pOint iS t@y incorporating the know'edge of the System, |eading to a

detect such circular dependencies which can be easily defgre efficient and less demanding system.

by marking visited nodes in the graph and check if the node

is already marked before entering it. The second important .

question is what to do once a circular dependency is detectfgernative Pathways

Here the dependency types described in section Il come intdAlternative ways of measuring a certain object property

play. After detecting the circular dependency, we go back &we desirable in a cognitive vision system, as the redurydanc

the parent node (5) and check if the dependency is mandatofien increases the robustness of the system. This is becaus

or optional. If the dependency is optional we are done, ddferent algorithms for determining a property might diffin

we can simply cut the loop at this point without breaking théhe assumptions they make on the data, the way they compute

algorithm. This is because the information that is missinghe result, the speed, the accuracy and the weakness they

is not essential for the algorithm to run. However, if thenight have. Therefore we need to also add a way to deal with

dependency is mandatory (as in our example) the system canith alternative pathways. In our example shown in Fig. 8

cut this
branch




Resolved world location dependency tree

WorldLocation

RetinalLocation

<SpatialModulationMap

[ modulation_spatialmap ]
<SpatialModulationMap
ObjectMask

Fig. 7. By incorporating knowledge already acquired by thstem, the
structure of the effective dependency graph changes armiziésshrinks.

1. If none of the dependencies can be resolved a trace back as
described in the circular dependency case can be performed.
Besides the resolvability of dependency an extended versio
of the parsing algorithm could take the costs and accuracy of
the different pathways into account.

Pseudo-code

The pseudo-code of our graph parsing algorithm has
a recursive nature as the problem is recursive. The
algorithm dynamically generates the dependency graph
starting from the requested property. It also needs
to take care about the cyclic dependency detection
and handling. The update procedure reads as follows:

Procedure UpdateNodeValue:
(a) Check run-ability of the node

we have three different segmentation algorithms: a simple
size estimation using the saliency map (see [9] for details)
a region-growing method (see [10]) and a level-set method

(1) Check the current node for valid data. If it already hagvdata
we skip any operation and return success.

(2) Check for a cyclic dependency indicated by an alreadyiséed
flag. If we detect a cyclic dependenchand the corresponding
error to the node’s parent.

(3) Set the visited flag for the current node.

(see [11]). For modeling alternative pathways we introduce (P) Updating dependencies

ObjectMask

( radius | [ levelset ]

Fig. 8. The mask of an object can be calculated by any of tleethigorithms
(retinal size estimation using the saliency, region growand a level-set
method). However, only one of theséfernativeshas to run to get the mask.

the logical or modein section Il. As you can see in Fig. 8
the "object mask” node is marked by a bluish color which
indicates "or nodes”. Ther modeis interpreted by the graph

(1) Get the list with all dependencies for the current node.
(2) For each dependency (child node) do:

(2.1) Call UpdateNodeValue on the child node.

(2.2) Check the return code of the call for a cyclic depengenc
error. If we get such an error and we havemandatory
dependencyor that child node, propagate the error further up
to the node’s parent. For an error on@ptional dependency
we continue with processing the next dependency in the list.

(2.3) If we are on dogical or node we can leave the loop and
continue with (c), because at least one dependency was
fulfilled.

(c) Execute current node's operation

(1) Perform thesend or receive operatioof the current node as
requested by the parent node and optionally store the selasar
locally.

(2) Set the data validity flag.

(3) Remove the visited flag.

parser as "one of these dependencies is required”. To eddcut
the object mask we only need to start one of these routines.
However, if you look at the different algorithm you will see
that they differ in speed, initial requirements and accurac [1]
The retinal size estimation igery fastand only needs the
object’s locationas an initial value, but imot very accurate
The region-growing ifast (even though it is slower than the
retinal size estimation)ynly needs the object’s locatias an
initial value and ismore accurateat least for homogeneously (3]
structured objects. The level-set method on the other haind i
relatively slowcompared to the other two algorithmseeds (4]
an initial segmentationto start but isvery accurateeven

for structured objects. One consequence of the mentiondd
properties is, that the level-set method never can be ugsed fo
initially estimating the object mask, because it needs #iain

(2]
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