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Consistent Modeling of Functional Dependencies
along with World Knowledge

Sven Rebhan and Julian Eggert

Abstract—In this paper we propose a method for visual systems
to consistently represent functional dependencies between different
visual routines along with relational short- and long-termknowledge
about the world. Here the visual routines are bound to visual
properties of objects stored in the memory of the system. Furthermore
the functional dependencies between the visual routines are seen
as a graph also belonging to the object’s structure. This graph is
parsed in the course of acquiring a visual property of an object to
automatically resolve the dependencies of the bound visualroutines.
Using this representation, the system is able to dynamically rearrange
the processing order while keeping its functionality. Furthermore,
the system is able to estimate the overall costs of a certain action.
We will also show that the system can efficiently use that structure
to incorporate already acquired knowledge and thus reduce the
computational demand.

Keywords—Adaptive systems, Knowledge representation, Machine
vision, Systems engineering

I. I NTRODUCTION

COGNITIVE vision systems, both technical and biologi-
cal, with at least a minimal claim on generality have to

carefully select the information they acquire from their envi-
ronment. This is necessary to fulfill constraints on computing
and memory resources. Therefore, those systems implement
algorithms to focus on certain aspects of the surrounding
scene, depending on their need, their task and their knowledge
about the world they have accumulated. This flexible control
architecture like proposed in [1] must be able to dynamically
rearrange the processing pathways of the system, use the
already acquired knowledge and estimate the cost and benefits
of the system’s actions. To achieve this in a reasonable manner
the system not only needs knowledge about relations between
objects, but also needs knowledge about the relations of
internal routines it can use to acquire information about the
vicinity. This knowledge could then be used to determine
which actions the system has to perform to measure e.g. a
certain property of an object. If, for example, the system wants
to measure which color an object has, it first need to know
where the object is and what retinal size it has approximately.
Furthermore, determining the position of an object might
involve further processing which is again a dependency of the
localization module and so on. The structure we have chosen
makes it possible to model those dependencies along with the
world knowledge the system has in a relational memory. In this
paper we concentrate on how we can efficiently implement the
knowledge about dependencies between different routines and
on how to use it in a system context.

In computer science problems similar to the representation
of such dependencies exist. Those problems on representing

the data flow of a computer program date back to the work
of Dennis [2], [3]. In this and later works, graph structures
are used to analyze the data and control flow of a computer
program to parallelize and optimize the program by a compiler
[4], [5]. There, the program dependence graph ”[introduces]
a partial ordering on the statements and predicates in the
program that must be followed to preserve the semantics of
the original program” [4, p. 322]. In the domain of computer
vision, data flow graphs are also used to ease the design of
vision systems and keep their complexity manageable [6].

However, all of the mentioned methods try to map a fixed
and predefined algorithm to a graph structure to later use it
for parallelization and optimization of that fixed algorithm.
Contrary to that, we propose a method to implement anon-
demandvision system that parses its internal representation
of the dependencies anddynamically createsa program for
acquiring the requested property of an object. As the vast
majority of the literature in the field of computer science
shows, graph structures are well suited for that purpose. In
this paper we will show that:

• Using graph structures we are able to consistently model
functional dependencies between object properties along
with the property structure of objects and world knowl-
edge, both short- and long-term.

• Using graph structures the system is provided with the
means to estimate the costs of a certain measurement. In
an example we show that the size of the graph required
for performing the measurement can be used as a cost
function.

• Using our proposed parsing algorithm, knowledge already
acquired by the system can be reused in a simple and effi-
cient way. This leads to a reduction of the computational
demand and speeds-up operations of the system.

• Using our proposed parsing algorithm, the complexity of
designing the vision system is considerably reduced by
only modeling direct dependencies.

In the next we show the memory structure of the system
together with the way we are modeling the functional depen-
dencies. We will also elucidate modifiers required for covering
the whole functionality of a vision system in the dependency
structure. In section III we then present a parsing algorithm
that exploits the previously described graph structure. We
discuss some special situations we came across when working
with that structures. Using the parsing algorithm presented in
section III we perform some experiments in a proof-of-concept
system based on the architecture proposed in [1] and finally
discuss our results.
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II. RELATIONAL MEMORY

Memory Structure

IN our vision system we use the relational semantic memory
proposed in [7] for representing information in the short-

and long-term memory. This relational memory is, contrary to
many other semantic memories, able to represent an arbitrary
number of relation patterns. Thus we can define classical link
types like ”hasProperty”, ”isPartOf” or ”isContainedIn” as
shown in Fig. 1. Additionally we store a sensory representation

Fig. 1. In the relational memory we use, an arbitrary number of link patterns
can be constructed. Some examples are shown here.

in the property nodes to be able to later feed back that infor-
mation into the system. Along with the sensory representation
a direct link to the visual routine used for acquiring a certain
property is stored in the property nodes. Thus we candemand
the attached visual routine to deliver information. The objects
in the memory are composed of several visual properties.

Beside the classical link patterns, we can also construct
dependency patterns. The dependency pattern that can be seen
in Fig. 2 reads as ”the measurement ofA depends on operation
op of B. Given this link, we can now measureA in a demand-

A B
op

Measurement
request

Fig. 2. The measurement of nodeA depends on the operationop of node
B. For representing this we use exactly the same memory structure as shown
in Fig. 1.

driven way: if the system needs to measure nodeA it knows
it has to performop of nodeB before being able to process
A. The operationop of B has no further dependency in this

example and can thus be performed directly. AfterwardsA
can be measured. If the structures getting more complex and
the graph is getting deeper, a more sophisticated algorithmis
needed to perform the parsing of the graph. Details on this
can be found in section III.

Link Modifiers

Even though Ballance et. al state in their paper that ”neither
switches nor control dependence are required for a demand
driven interpretation” [8, p. 261], we need some modifiers for
the dependency link patterns to cover interesting cases of a
vision system. Those interesting cases are:

• The operation of nodeB is optional and not absolutely
required for measuring nodeA, but would e.g. improve
the result of the measurement. A modulatory input for a
visual routine would be an example for this case, where
the presence of such an input is helpful but not necessary
(see Fig. 3 a).

• The system requires different operations for the target
node to be fulfilled before it is able to process the current
node (see Fig. 3 b).

• There might be alternative ways to measure a certain
property and the system only needs to fulfill one of
several dependencies. Think of different segmentation
algorithms for estimating the shape of an object, where
only one of those algorithms is required to complete to
get a shape (see Fig. 3 c).

B

A

B

A

B

A

C

and/or

a) b) c)

send mandatory optional receive

Fig. 3. We cover different cases using modifiers for the dependency
link patterns: a) a dependency can be optional or mandatory,b) different
operations(send and receive) are requested for the target node and c) we
differentiate between the need for all dependencies or onlyone-of-many
dependencies to be fulfilled.

The generic pattern we implement reads as ”A dependsdepen-
dency typeon operationof B logical mode C...” The modifiers
of this generic pattern are in our case:

• Dependency type: The link between the node can be
mandatory or optional as shown in Fig. 3 a.

• Operations: We realizesend andreceive operations that
push or pull information of the target node, respectively
as shown in Fig. 3 b.

• Logical mode: The node ”A can depends onB and C”
or node ”A can depend onB or C”. That way we can
mark alternative pathways by using the logicalor mode,
else nodeA depends on all target nodes (see Fig. 3 c).

Node States

Beside the link patterns, the graph also contains nodes. In
our case each node has a state marking the validity of the nodes
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data. We use this later to determine if the node information
needs to be update i.e. the visual routine bound to this node
needs to be executed or not. Basically there are two states, as
the data is eithervalid or invalid. In the beginning, all nodes
contain invalid data. After updating, i.e.receivinginformation
from a visual routine, the datum of the node isvalid. The
transition of the node’s state back toinvalid can be determined
by time or any other criteria. In section III you will see how we
use the state of the nodes to dynamically reduce the number
of operations if we encounter a node with valid data.

System Memory Layout

After discussing the different link types, operation, mod-
ifiers and node states, we now present the actual designed
prototypical memory patterns we use in out system. The upper
part of Fig. 4 shows the view on the designed object structure.
You can see that the object properties are bound to the different
visual routines (shown in the upper left). In the lower part of
Fig. 4 the designed dependency patterns are shown. Please
note that the illustration shows only two different views on
the memory content. Both representations coexists in the very
same memory using the same nodes! As you can see we only
define thedirect dependenciesof the node and not the whole
tree. This eases the design process, as it keeps the system
structure manageable. The complete dependency tree will later
be generated on the fly using the parsing algorithm described
in the next section.

III. D EPENDENCYPARSING

THE last section illustrated the way the system represents
its knowledge, both about the world and about its internal

functional dependencies. In this section we will show how
we use that knowledge for implementing a demand-driven
acquisition of sensory information about the vicinity. If we
look back at the bottom of Fig. 4 in section II we see that
we define only direct dependencies. To update a property of
an object like its 3D-position (world location), we need to
resolvethe dependencies of that node. The manually resolved
dependency graph for the world location is shown in Fig. 5 to
illustrate the necessary steps.

Recursive Parsing

In the example of receiving the world location (see the steps
in Fig. 5), this would require the measurement (receiving)
of the retinal location (1) and the distance of the object, as
we can calculate the 3D-position of the object by means of
the camera parameter. However, the measurement of e.g. the
retinal location itself depends on sending a spatial modulation
map (2). If you take a closer look, you will see that the
dependency isoptional, as we can also measure the retinal
location without having a modulatory input. If we again follow
the graph, we see that the sending of the spatial modulation
map itself depends on the acquisition (receiving) of the spatial
modulation map (3). This makes perfect sense, as we first need
to have the modulatory information before using it. Looking
at the steps we have done up to here we already can see

Visual routines
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Stereo computation
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Saliency module

Level-set module

Region growing
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Prototypical memory layout
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Fig. 4. On top the prototype of a object structure is displayed as used by
our system. You can clearly see the binding to the visual routines, both feed-
forward and feed-back. On the bottom, the dependency structure can be seen.
The color indicates the operation the node should perform.

that parsing the dependency graph can be formulated as a
recursive problem. So we implement our parsing algorithm as
a recursive function as can be seen in the pseudo-code below.

Circular Dependencies Detection and Handling

We now continue the example and pursue the dependencies
one step further. We find that the measurement of the spatial
modulation map depends on the measurement of a object mask
and on the measurement of the retinal location (4) of the
object. This two information are necessary to create the spatial
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Resolved world location dependency tree
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location

SpatialModulationMap

modulation_spatialmap
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ObjectMask

SaliencyCueWeights

saliency_weights

1
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Fig. 5. The resolved dependency tree for the world location property of the
object looks much more complex then the definitions in Fig. 4.We the didn’t
complete resolve the graph here for simplicity (cut at the object mask node).
The path described in the text is marked red.

modulation map at the correct location with the correct shape.
However, if we further trace the dependencies of that branch
in Fig. 6, we see that the retinal location depends on the spatial
modulation map, which in the end depends on the retinal
location. What we see here is a loop orcircular dependency,

Cyclic dependency handling
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Fig. 6. The detection of a cyclic dependency at the retinal location node,
leads to a trace back of the path. Finally the circular dependency can be
resolved by cutting the branch between the retinal locationand the spatial
modulation map nodes.

which would lead to a dead-lock situation if the system doesn’t
have means to deal with it. So the first important point is to
detect such circular dependencies which can be easily done
by marking visited nodes in the graph and check if the node
is already marked before entering it. The second important
question is what to do once a circular dependency is detected.
Here the dependency types described in section II come into
play. After detecting the circular dependency, we go back to
the parent node (5) and check if the dependency is mandatory
or optional. If the dependency is optional we are done, as
we can simply cut the loop at this point without breaking the
algorithm. This is because the information that is missing,
is not essential for the algorithm to run. However, if the
dependency is mandatory (as in our example) the system can’t

resolve the dependencies of the current node. In this case, the
system can’t receive the spatial modulation map, because it
requires the retinal location to be known. Thus the system
needs to go back one step (6) and check if the operation of
the dependency graph’s parent can be executed (in our case
the sending of the spatial modulation map). As you can see in
Fig. 6 this is not the case, as sending the spatial modulation
map strictly depends on receiving it first. Again we have have
to trace back the dependency path one step (7). This brings
us back to the receiving of the retinal location, which only
optionally depends on sending the spatial modulation map. At
this point we can ”solve” the circular dependency bycutting
the complete branchleading to the loop. The procedure for
handling circular dependencies can be summarized as:

1) Detect a circular dependency.
2) If the current link leading to a dependency loop is

optional, cut it and thus remove the whole branch
containing the circular dependency.

3) Otherwise check if we are already at the root node. In
this case, the dependencies can’t be resolved and an error
should be returned. If we are not yet at the root node,
trace back the dependency path one step and continue
with step 2.

This steps are also fold into the pseudo-code at the end of this
section.

Reusing Already Acquired Knowledge

One of the biggest advantages of our approach to flexibly
model functional dependencies is the fact that we can reuse
the knowledge the system has. For doing so we introduced
the node statein section II. This node state tells the graph
parsing algorithm if a node requires updating, i.e. performing
the operation required by its parent in the dependency graph,
or if it already holds valid data. If the node already has
valid data, the system does not need to execute the whole
dependency sub-tree below the node. Let’s assume that we
already measured the retinal location (the data is still valid)
and we now want to update the world location of that object.
This will lead to the effective graph you can see in Fig. 7.
If you compare that effective to the original one in Fig. 5,
you see that theeffective structure of the dependency graph
is determined by the knowledge of the system! This is a main
difference to previously proposed methods like [4], [8], [6],
working only on fixed graphs. Eventually, the graph shrinks
by incorporating the knowledge of the system, leading to a
more efficient and less demanding system.

Alternative Pathways

Alternative ways of measuring a certain object property
are desirable in a cognitive vision system, as the redundancy
often increases the robustness of the system. This is because
different algorithms for determining a property might differ in
the assumptions they make on the data, the way they compute
the result, the speed, the accuracy and the weakness they
might have. Therefore we need to also add a way to deal with
such alternative pathways. In our example shown in Fig. 8



5

Resolved world location dependency tree

WorldLocation

Distance

distance

RetinalLocation

SpatialModulationMap

modulation_spatialmap

SpatialModulationMap

ObjectMask

Fig. 7. By incorporating knowledge already acquired by the system, the
structure of the effective dependency graph changes and itssize shrinks.

we have three different segmentation algorithms: a simple
size estimation using the saliency map (see [9] for details),
a region-growing method (see [10]) and a level-set method
(see [11]). For modeling alternative pathways we introduced

ObjectMask

RetinalSize

radius levelset

LevelSet

region

RegionGrowing

Fig. 8. The mask of an object can be calculated by any of the three algorithms
(retinal size estimation using the saliency, region growing and a level-set
method). However, only one of thesealternativeshas to run to get the mask.

the logical or modein section II. As you can see in Fig. 8
the ”object mask” node is marked by a bluish color which
indicates ”or nodes”. Theor modeis interpreted by the graph
parser as ”one of these dependencies is required”. To calculate
the object mask we only need to start one of these routines.
However, if you look at the different algorithm you will see
that they differ in speed, initial requirements and accuracy.
The retinal size estimation isvery fast and only needs the
object’s locationas an initial value, but isnot very accurate.
The region-growing isfast (even though it is slower than the
retinal size estimation),only needs the object’s locationas an
initial value and ismore accurateat least for homogeneously
structured objects. The level-set method on the other hand is
relatively slowcompared to the other two algorithms,needs
an initial segmentationto start but isvery accurateeven
for structured objects. One consequence of the mentioned
properties is, that the level-set method never can be used for
initially estimating the object mask, because it needs an initial
mask to run. Furthermore, the system should be able to select
the algorithm that is as accurate as required, but as fast as
possible. What we need here is a decision dependent on the
current system’s state (e.g. required accuracy and available
time) and the system’s knowledge (e.g. initial object mask).
In the easiest implementation the parser now tries to resolve
the dependencies in order until one of them can be resolved

1. If none of the dependencies can be resolved a trace back as
described in the circular dependency case can be performed.
Besides the resolvability of dependency an extended version
of the parsing algorithm could take the costs and accuracy of
the different pathways into account.

Pseudo-code

The pseudo-code of our graph parsing algorithm has
a recursive nature as the problem is recursive. The
algorithm dynamically generates the dependency graph
starting from the requested property. It also needs
to take care about the cyclic dependency detection
and handling. The update procedure reads as follows:

Procedure UpdateNodeValue:
(a) Check run-ability of the node

(1) Check the current node for valid data. If it already has valid data
we skip any operation and return success.

(2) Check for a cyclic dependency indicated by an already setvisited
flag. If we detect a cyclic dependency, hand the corresponding
error to the node’s parent.

(3) Set the visited flag for the current node.
(b) Updating dependencies

(1) Get the list with all dependencies for the current node.
(2) For each dependency (child node) do:

(2.1) Call UpdateNodeValue on the child node.
(2.2) Check the return code of the call for a cyclic dependency

error. If we get such an error and we have amandatory
dependencyfor that child node, propagate the error further up
to the node’s parent. For an error on anoptional dependency
we continue with processing the next dependency in the list.

(2.3) If we are on alogical or node we can leave the loop and
continue with (c), because at least one dependency was
fulfilled.

(c) Execute current node’s operation
(1) Perform thesend or receive operationof the current node as

requested by the parent node and optionally store the sensordata
locally.

(2) Set the data validity flag.
(3) Remove the visited flag.
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