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Abstract. In Bayesian-based tracking systems, prediction is an essential
part of the framework. It models object motion and links the internal es-
timated motion parameters with sensory measurement of the object from
the outside world. In this paper a Bayesian-based tracking system with
multiple prediction models is introduced. The benefit of multiple model
prediction is that each of the models has individual strengths suited for
different situations. For example, extreme situations like a rebound can
be better coped with a rebound prediction model than with a linear one.
That leads to an overall increase of prediction quality. However, it is still
an open question of research how to organize the prediction models. To
address this topic, in this paper, several quality measures are proposed
as switching criteria for prediction models. In a final evaluation by means
of two real-world scenarios, the performance of the tracking system with
two models (a linear one and a rebound one) is compared concerning
different switching criteria for the prediction models.

1 Introduction

Visually tracking an object means to locate a moving object in space over time
by estimating the state of its dynamics. The state estimation process happens by
a fusion of state prediction for the next time slot according to a motion model on
the one hand side and a measurement of its position by means of visual sensory
input data on the other hand side. The sensory measurement has the function
to confirm or reject the state prediction ([1]).

Tracking arbitrary objects in arbitrary environments is a sophisticated task,
since several challenges have to be overcome. One challenge is to cope with the
temporarily changing environment conditions, which let the object’s features get
temporarily unselective and so the measurement unreliable. Another challenge is
the change of object’s appearance, which makes the comparison with the origi-
nal template difficult. All these possibly cause a measurement failure which may
lead to a temporarily loss of the object for several frames. For coping with these
measurement challenges, several works exist concerning multi-cue approach to
overcome temporarily failures in some features (see e.g. [2], [3]) or concerning
template adaptation to overcome appearance changes (see e.g. [4], [5]). How-
ever, the best measurement is of no help, if the state prediction is unreliable,
since sensory measurement is only an additional information for confirmation
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or rejection of the state prediction. State prediction requires a model of object
motion which is used to predict the object’s state in the next time slot. Since for
arbitrary objects, there is usually no knowledge about specific prediction mod-
els available, tracking frameworks (see e.g. [6]) have to rely on rather generic
prediction models which cope well with a large variety of situations. Therefore,
a linear motion model based on a constant acceleration or even a constant ve-
locity assumption is often a choice. But a real object can also undergo a sudden
transposition maneuver, rebound, or other heavily accelerated motions. In these
cases a linear prediction model is not always appropriate.

The key idea of this paper is that a reliable prediction system should con-
tain multiple prediction models, where each model has individual advantages
for a special situation. So, the overall prediction system benefits from individ-
ual strengths of each of the single models. However, having multiple prediction
models poses the question of how to manage them. Several approaches were
proposed concerning probabilistic model management for multiple-model esti-
mations (see e.g. [7], [8]). Here, we analyze the advantages of having multiple
structurally different prediction models for visual object tracking and propose
concrete quality measures as methods for deterministic switching between the
models. This paper is structured as follows. We first introduce a simple Bayesian
tracking framework. Then we extend it by multiple prediction models, and in-
troduce methods to switch between them. Finally, we evaluate the performance
of our tracking system with multiple prediction models on test sequences.

2 Tracking Framework

The system we used to test the multiple prediction models is a correlation-based,
particle-filter tracker for locating an arbitrary object in a sequence of 2-D images.
It estimates the object’s state x = (x, y, vx, vy, ax, ay) in a recursive Bayesian
way ([1]) by incorporating measurement results gained from multiple cues.

Let xk be the state and zk the measurement at the k-th frame. Starting from
the propagation and measurement equations with additive noises ζk−1 and ηk

xk = f(xk−1) + ζk−1 (1)
zk = g(xk) + ηk (2)

and its probabilistic notation via the Bayesian state tracking formulation [1], the
belief probability density function (pdf) about the object state (posterior)

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3)

is constructed as a fusion of p(zk|xk) as the measurement expectation (likeli-
hood) and p(xk|z1:k−1) as the predicted state pdf (prior) which evolves from the
posterior pdf of the last time step by applying a transformation using a given
prediction model for state transition p(xk|xk−1) according to

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4)
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Here p(zk|z1:k−1) is a normalization constant with

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk. (5)

In our tracking framework, the likelihood L := p(zk|xk) is obtained by comparing
the measurement result of the target object with the expected measurement
result as stated in (2). From an input image I a set of cues Ci with i = 1, . . . , N
is extracted, including e.g. RGB color, DoG edges, structure tensors. On the
other hand template cues containing the tracked object inside are stored in Ti

with i = 1, . . . , N . In addition, a window W for weighting the target object
in the templates cues Ti is given. The measurement Mi for the target object
position is gained by correlation of Ci and Ti with window W by

Mi = Corr2D {Ci,Ti,W} . (6)

The object’s expected measurement Si is calculated by auto-correlating the tem-
plate cues Ti according to

Si = Corr2D {Ti,Ti,W} . (7)

The operations in (6) and (7) are accelerated by multiplication of Ci resp. Ti

and Ti in the Fourier domain, weighted by W. With the measurement Mi

and the expected measurement Si, likelihood Li is gained (assuming a normal
distribution of measurement noise ηk with a variance of σ2

η) by

Li(x, y) ∼ exp
(
− 1

2σ2
ηi

‖(Mi − Ax,y (Si)) � Ax,y (W)‖2

)
, (8)

with Ax,y as a translatory transformation operator to shift a block by (x, y) and
� as a pixel-wise multiplication of two blocks. Fusion of the likelihoods of all
cues delivers an overall likelihood L = F {L1, . . . ,LN}.

The likelihood L is used to weight the prior pdf p(xk|z1:k−1), which is ob-
tained according to formula (4), in the resampling phase of particle filtering.
The estimation process of the posterior p(xk|z1:k) is evolved by a Sample Im-
portance Resampling (SIR) Particle Filter ([1], [9]) where prior and posterior
pdfs are approximately represented by 5000 particles in the six dimensional state
space x.

3 Multiple Prediction Models

In a Bayesian tracking framework like presented here, measurement is a supple-
mentary information for correcting the guess coming from the motion prediction
model. In the case of an inappropriate motion prediction model even a good
likelihood coming from the measurement can not prevent a loss of the object.
Since a single motion prediction model can never cope with all situations, it is
beneficial to have multiple few-parameterized prediction models specialized for
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(a) (b) (c)

Fig. 1. Visualization of three different prediction models, projected to the x, y-plane.
(a) visualizes the prior distribution of a linear prediction model. One can see the uni-
directional motion from the origin and normal distribution due to noise. (b) Elastic
rebound prediction model. It shows the omnidirectional characteristic of a rebound
with no knowledge about the rebound direction and uncertainty of the rebound re-
flection factor. (c) visualizes a rebound prediction model with a preferred reflection
direction.

different kinds of motion. In this case, each of them plays its strengths on current
situations where others are unreliable. In this way the models complement one
another.

In order to show the limitation of a single prediction model, we tested our
tracking system in combination of a linear prediction model of the form

⎡
⎢⎢⎢⎢⎢⎢⎣

xk

yk

vx,k

vy,k

ax,k

ay,k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 ΔT 0 0 0
0 1 0 ΔT 0 0
0 0 1 0 ΔT 0
0 0 0 1 0 ΔT
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk−1

yk−1

vx,k−1

vy,k−1

ax,k−1

ay,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

ζxk−1

ζyk−1

ζvx,k−1

ζvy,k−1

ζax,k−1

ζay,k−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

with ζ...,k−1 ∼ N(0, σ2
ζ...

) as model noise (an illustration of the linear prediction
model can be seen in figure 1(a)) using a sequence of a falling ball which rebounds
on a can, as illustrated in figure 2(a). The tracking result plotted in figure 3 shows
that the tracker loses the object after the rebound.

Since a linear prediction model has problems at the rebound, we used a second,
non-linear prediction model

⎡
⎢⎢⎢⎢⎢⎢⎣

xk

yk

vx,k

vy,k

ax,k

ay,k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx,k−1 · ΔT + xk−1 + ζx,k−1

vy,k−1 · ΔT + yk−1 + ζy,k−1(√
v2

x,k−1 + v2
y,k−1 + ζr,k−1

)
· cos(ξϕ)(√

v2
x,k−1 + v2

y,k−1 + ζr,k−1

)
· sin(ξϕ)

ax,k−1 + ζax,k−1

ay,k−1 + ζax,k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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(a)

(b)

Fig. 2. This figure shows two real-world scenarios containing 18 and 39 frames with
400 × 300 pixel resolution, respectively. In the first scenario (a) a ball is falling on a
can and rebounds to the left. A selection of the 18 frames is shown here to illustrate
the rebound. The lower right image illustrates the complete trajectory of the ball. In
the second scenario (b) a tennis ball is falling down to the floor and rebounds several
times up and down. A selection of the 39 frames is shown in these figures. The lower
right one contains the complete trajectory of the tennis ball.

with ζ...,k−1 ∼ N(0, σ2
ζ...

) and ξϕ equally distributed in [0, 2π[. This is a noisy
rebound prediction model (see figure 1(b)), that assumes that the object changes
its direction arbitrarily while keeping its velocity approximately constant. Fig-
ure 3 shows the tracking result of our framework using a rebound model with a
preferred direction (see in figure 1(c)) as a single prediction model, i.e. a mixture
between (9) and (10). The reason for using a rebound model with a preferred
direction is that a pure rebound model is obviously not suited for describing the
linear phases of the motion with sufficient accuracy. Here, the object is tracked
throughout the sequence, but the confidence is not as high as in the case of linear
prediction before rebound, since the rebound model is more unselective.

At this point it seems straightforward to assume that a switching between both
models, which corresponds to the confirmation-rejection-concept of tracking, is
a good solution to overcome the rebound in the scenario and still to have high
confidence for the posterior. The question is how to automatically find out when
to switch between prediction models. For this purpose, in the following several
quality measures for a prediction model are taken into consideration.
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Fig. 3. Tracking results using a single linear prediction model vs. using a single re-
bound prediction model with a preferred direction, without switching between both
prediction models, for the scenario shown in figure 2(a). The first plot shows the value
of the highest posterior peak, the second one the distance of the peak to the ground
truth position of the target object. Before the rebound the linear model is an appropri-
ate prediction model. Immediately after the rebound in frame 9 the linear prediction
model further predicts the object motion in same direction, whereas the target object
rebounds on the can and turns to the left. So, the target object gets lost. Using only the
rebound model with a preferred direction the target object is tracked over all frames
(with a distance of 2.19px to ground truth in average), but the standard deviation of
posterior is quite high (63.44px in average) which indicates a high uncertainty.

Highest posterior peak. The first quality measure for selecting prediction model
is the value of the highest peak of the posterior. So, the prediction model î with
the highest overall value of its posterior is chosen as the operative prediction
model:

î = arg max
i

p̂i with p̂i = max
xk

pi(xk|z1:k). (11)

Looking at the posterior value of the highest peak plot in figure 3 it can be
seen that the highest posterior peak value of the linear model decreases during
rebound (frame 9), whereas the highest posterior peak value of the rebound
model surpasses that of the linear model. Taking this as a switching criterion,
the object can be tracked successfully over the entire sequence resulting in an
overall higher posterior peak value as compared to the single prediction models.
In figure 4, we show the respective contributions of the two prediction models
(linear and pure rebound) and the posterior result gained by selection of the
best prediction model at each time step.

Quotient of standard deviations of prior to posterior. A second quality measure
is the ratio between the standard deviations of prior and posterior. A strong de-
crease from the standard deviation of prior to the standard deviation of posterior
is an indication for a reliable likelihood that is consistent with the prediction. So,
the model î with the highest quotient of standard deviation of prior to posterior
is taken as the operative model:
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Fig. 4. Switching behavior between two prediction models using the value of the highest
posterior peak as switching criterion, for scenario in figure 2(a). In the first plot the
values of the highest posterior peaks of both participating models (linear and pure
rebound) and that of the currently selected model are shown. In the second plot it is
shown which prediction model was active (the one which has the greater value at the
highest posterior peak). In the third plot the distance to the ground truth position is
shown. An average distance to the ground truth position of 2.13px indicates that the
object is never lost over the frames. With an average standard deviation of posterior
of only 16.47px the confidence is quite high.

î = arg max
i

q̂i with q̂i =
stdev(pi(xk|z1:k−1))
stdev(pi(xk|z1:k))

. (12)

Kullback-Leibler-divergence. The next quality measure is the Kullback-Leibler-
divergence ([10]), which quantifies the change of entropy of two pdfs. A higher
K-L value refers to a stronger decrease of entropy of prior to that of posterior
due to a reliable likelihood which is consistent with the prediction. So, the model
î with the highest K-L-divergence then becomes the operative model:

î = argmax
i

k̂i with k̂i =
∫

pi(xk|z1:k) · log
(

pi(xk|z1:k)
pi(xk|z1:k−1)

)
dxk. (13)

Modified Kullback-Leibler-divergence. A property of the K-L-divergence is that
it only takes the change of prior to posterior into account, but not the fact that,
on a reliable likelihood and a consistent prediction, it is easier for a prior with a
higher standard deviation to get a larger change towards posterior. That means,
under this circumstance, a model with a widely spread prior, e.g. a rebound
model, gets a higher K-L-divergence more easily than a model with a more
selective prior, e.g. a linear model. So a modified K-L-divergence weighted by
the standard deviation of prior is taken as the next quality measure, in order to
compensate this bias effect:
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î = argmax
i

m̂i with m̂i =

∫
pi(xk|z1:k) · log

(
pi(xk|z1:k)

pi(xk|z1:k−1)

)
dxk

stdev(pi(xk|z1:k−1))
. (14)

Scalar product of prior and posterior. The fifth quality measure is the scalar
product of prior and posterior. A lower scalar product refers to a larger change
from prior to posterior and thus to a reliable likelihood. In this case, we choose
the model î with:

î = argmax
i

ŝi with ŝi =
pi(xk|z1:k) · pi(xk|z1:k−1)

||pi(xk|z1:k)|| · ||pi(xk|z1:k−1)|| . (15)

2 4 6 8 10 12 14 16 18
0

0.5

1
Posterior value at the highest peak position

 frame

 

 

linear
rebound

2 4 6 8 10 12 14 16 18
0
0

1

frame

 

 

linear
rebound

(1)

2 4 6 8 10 12 14 16 18
0

5
stdev(prior)/stdev(posterior)

frame

 

 

linear
rebound

2 4 6 8 10 12 14 16 18
0
0

1

frame

 

 

linear
rebound

(2)

2 4 6 8 10 12 14 16 18
0

5
Kullback−Leibler−divergence of prior to posterior

frame

 

 

linear
rebound

2 4 6 8 10 12 14 16 18
0
0

1

frame

 

 

linear
rebound

(3)

2 4 6 8 10 12 14 16 18
0

0.1

0.2
Modified Kullback−Leibler−divergence of prior to posterior

frame

 

 

linear
rebound

2 4 6 8 10 12 14 16 18
0
0

1

frame

 

 

linear
rebound

(4)

2 4 6 8 10 12 14 16 18
0

0.5

1
Scalar product of prior and posterior

frame

 

 

linear
rebound

2 4 6 8 10 12 14 16 18
0
0

1

frame

 

 

linear
rebound

(5)

Method Average distance
to ground truth
position

Average standard
deviation of pos-
terior

(1) 2.12px 17.15px
(2) 2.12px 17.15px
(3) 2.15px 22.58px
(4) 1.89px 14.65px
(5) 2.38px 40.10px

Fig. 5. Tracker evaluation results for scenario 1 (figure 2(a)) using different switching
criteria for prediction models. For each of the five switching criteria its specific quality
measures are shown for both models in the first plot and its switching behavior in the
second plot. In the table, the average distance to ground truth position and the average
standard deviation of the posterior of the methods are shown. This table reveals that
the object is tracked successfully throughout the entire sequence. Methods 1, 2 and 4
exhibit the lowest standard deviation of posterior and appropriate points in time for
switching (a big rebound occurs at frame 9 and a small rebound at frame 14).
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Fig. 6. This figure shows the tracker evaluation results for the scenario 2 (figure 2(b))
using different switching criteria for prediction models. For each of the five switching
criteria its specific quality measures are shown for both models in the first plot and
its switching behavior in the second plot. In the table the average distance to ground
truth position and the average standard deviation of posterior of the methods are
shown. This table reveals that the object is tracked successfully throughout the entire
sequence. Methods 1 and 4 exhibit the lowest standard deviation of posterior and
appropriate points in time for switching (big rebounds occur at frames 7, 14 and 20
and small rebounds at frame 24, 27 and 29).

4 Evaluation

We have evaluated the five methods for switching between prediction models
by means of two scenarios. One is the scenario with one big rebound shown in
figure 2(a). Another one with a series of rebounds is shown in figure 2(b). The
results of the comparative evaluations can be seen in figures 5 and 6. In no case in
the evaluations, the tracker loses the object. From all the five switching methods
the “highest posterior peack value” and “modified Kullback-Leibler-divergence”
turn out to be the best ones, since they switch at the most appropriate points
in time and provide the lowest standard deviation of posterior.
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5 Conclusion

In this paper we presented a Bayesian tracking framework in combination with
multiple structurally different prediction models. In an introductory example
it is first shown that a generic motion prediction model, e.g. a linear one, is
inappropriate for extreme situations like a rebound. A rebound model alone is
also inappropriate since it is unselective and so quite sensitive to measurement
disturbances.

A good solution is to use multiple prediction models, each of them is spe-
cialized for different situations. Appropriately switching between the prediction
models increases the overall predictive capability which the tracking performance
benefits from. An essential gain of this concept consists in a further possibility for
measurement to revise prediction by completely replacing an unsuitable predic-
tion model by a more suitable one, whereas on a single prediction model tracking
framework it is only possible to revise prediction by tuning model parameters.

The question remains how or what is the optimal criterion for switching
between models. To clarify this question five appropriate quality measures as
switching criteria are evaluated by means of real-world scenarios. The finding of
the evaluations is that prediction by switching between multiple models leads in
all cases to more reliable tracking results (in terms of average distance to ground
truth position and average standard deviation of posterior, see figures 5 and 6)
as compared to the single prediction model case. “Highest posterior peak value”
and “modified Kullback-Leibler-divergence” turned out to be the best switching
criteria.

References

1. Arulampalam, S., Maskell, S., Gordon, N.: A Tutorial on Particle Filters for Online
Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Process-
ing 50, 174–188 (2002)

2. Triesch, J., v.d. Malsburg, C.: Democratic Integration: Self-Organized Integration
of Adaptive Cues. Neural Computation 13(9), 2049–2074 (2001)

3. Spengler, M., Schiele, B.: Towards Robust Multi-Cue Integration for Visual Track-
ing. Machine Vision and Applications 14(1), 50–58 (2003)

4. Zhong, Y., Jain, A.K.: Object Tracking using Deformable Templates. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22, 544–549 (2000)

5. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 25, 564–577 (2003)

6. Isard, M., Blake, A.: CONDENSATION - Conditional Density Propagation for
Visual Tracking. International Journal of Computer Vision 29, 5–28 (1998)

7. Li, X.R., Jilkov, V.P., Ru, J.: Multiple-Model Estimation with Variable Structure
- Part VI: Expected-Mode Augmentation. IEEE Transactions on Aerospace and
Electronic Systems 41(3), 853–867 (2005)

8. Bar-Shalom, Y.: Multitarget-Multisensor Tracking: Applications and Advances,
vol. III. Artech House, Norwood (2000)

9. Doucet, A., Godsill, S., Andrieu, C.: On Sequential Monte Carlo Methods for
Bayesian Filtering. Statistics and Computing 10(3), 197–208 (2000)

10. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathemat-
ical Statistics 22, 79–86 (1951)


