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Abstract more attractive for multi-robot systems due to their robust

ness, flexibility, and adaptivity.

Biological systems can generate robust and complex be- Designing a distributed, self-adaptive multi-robot syste
haviors through limited local interactions in the presenceis however nontrivial. As indicated by Nolfi and Flore-
of large amount of uncertainties. Inspired by biological ano [23], it is tedious to predict an emerging behavior
organismsl we have proposed a gene regu|atory networr(esulting from a given set of local interaction rules in a
(GRN) based algorithm for self-organizing multiple robots distributed control system. It is even more intractable to
into different shapes. The self-organization process is opidentify the rules behind an observed global behavior.
timized using a genetic algorithm. This paper focuses on Biological organisms have evolved to perform and survive
the empirical analysis of robustness of the self-organjzin in & world characterized by rapid changes, abundant uncer-
multi-robot system to the changes in tasks, noise in théainties, and limited information [24]. For this reason; re
robot system and changes in the environment. We investigaf@archers have recently turned to biological systems for di
the performance variation when the system is optimizedributed control principles. For example, swarm intelfige,
for one Shape and then emp|oyed for a new Shape_ Theow an EfﬁCient, distributed Computational methOdOIOgy fo
influence of noise in sensors for distance detection ane selfolving complex problems, was inspired from behaviors of
localization on the final positioning error is also examined social insects. Among other applications, swarm intetitgee
In case of a complete self-localization failure, we introda  has shown to be a successful approach to solving MRS
recovery algorithm based on trilateration combined with a Problems [6], [12], [21], [22], [25], [31].

Kalman filter. Fina”y’ we Study the system’s performance Distributed Self-organization control has also Wldely ob-
when the number of robots changes and when there argerved in the embryonic development of all biological or-
moving obstacles in the field. Various simulation resultsganisms. With the rapid advances in systems biology [1], it
demonstrate that the proposed algorithm is efficient in shaphas been found that the embryonic developmental process
formation and that the self-organizing system is robust tdS largely under the control of the gene regulatory networks
sensory noise, partial system failures and environmenta(GRNs), which are a number of genes that interact with each
changes. other and with the environment. It appears, however, thiat no
much work has been conducted on multi-robot systems using
GRNs or cellular mechanisms until recently, though redearc
on pattern formation in biological development has re&yiv

a long history in mathematical biology [9], [14], [19]. A

In a multi-robot system (MRS), robots are supposed tccell-based approach to self-assembly of arbitrary 2D shape
work together efficiently and reliably to accomplish tasksis proposed using multi-agents [2], where each agent can
that are intrinsically distributed in space, time, or fuont be represented as a cell, which can produce gradient infor-
ality. However, these properties are often achieved atdbe ¢ mation that can be perceived by their neighbors. Reference
of increasing system complexity, especially in control andpoints must be selected among the agents so that the whole
communication [17]. It is usually not hard to implement system can grow along them to formulate a shape. Shen
a centralized controller for multi-robot systems that canet al. [26] proposed a digital hormone model (DHM) as a
perform complex tasks in a well-defined environment [16].bio-inspired distributed control method for robot swarmd a
Unfortunately, multi-robot systems with a centralized con self-organization. Essentially, they applied Turing’aaton-
troller will often perform rather poorly under unknown diffusion model [30] to describe the interactions betwédwen t
dynamic environments. Therefore, distributed methods arbormones. The DHM integrated dynamic network, topolog-

1. Introduction



ical stochastic action selection, and distributed conbipl have become one of the most challenging yet fascinating
hormone reaction-diffusion. Taylor [29] suggested a geneesearch topics in systems biology [13], [15], [18]. To this

regulatory network inspired real-time controller for agpo end, a large number of computational models for GRNs have
of underwater robots. A genetic algorithm (GA) was appliedbeen suggested [5], [7], [11], [28]. Among others, ordinary

to evolve the controller for a simple clustering task. Mameior partial differential equations have been used to model
et al. [20] proposed a decentralized morphogen gradiernthe reaction kinetics of regulatory systems. For example,
based approach to swarm robot pattern generation, whetbe expression of a gene with negative auto-regulation in
robots can communicate with their neighbors to receivea uni-cellular organism can be described by the following

and propagate morphogen gradients and estimate the locdifferential equations:

density of robots. A decentralized approach to formation

control for swarms of mobile agents was proposed in [3], dg: = —749; + g f(pi) Q)
where the predefined shape information is superimposed on dt

the agents coordinate systems using a container, and then dp;

a gas expansion model is employed to disperse the robots ar b +apg @

within the container. Most recently, a gene regulation dase  nere g; is the expression level (measured by the con-
algorithm for multi-robot construction has been suggesteqdaniration of its mRNA product) of geneand p; is the

in [10], where the shape information is embedded into thqncentration of protein. v, and~p are the decay rate of
regulatory dynamics. It has been shown with a theoretiGnrnA and protein concentration, respectively, and o,
proof that robots will converge to the target shape asympyye the synthesis rate of mMRNA and protein concentration,

totically. _ o _ _ respectively. f(x) is a sigmoid function, which can be
The purpose of this paper is to investigate in more depthyefined as:
B

the property of the self-organization algorithm suggested
in [10]. We focus on analyzing the robustness of the system f(z) = on + gn
to changes in target shape, number of robots in the syste
obstacles in the environment, and sensory noises or ev
failure in self-localization. These analysis are impottim

understanding the dynamics of the system and for practica}h
implementation on real robots. %

®)

rWhereﬂis the maximum expression levél,is the activation
efficient, and is known as the Hill coefficient.

In a multi-cell organism, the expression of the genes
a cells can also be influenced by the gene product

: . . . transcription factors) of other cells. Thus, it is necegsa
The paper is organized as follows. Section 2 introduce b ) *»

. A i . o model the intercellular communication. In addition te th
briefly existing approaches to computational modeling of:.

. ~internal dynamics of the cell, we should also include exdern
GRNSs. The GRN based method for self-organizing mU|t"factors such as protein gradients and physical interagtion

robot systems is presented in Section 3. To evaluate thSetween cells into the GRNs model. Salazar-Ciudad et

robustness of the proposed method, we conduct a varietgl_ [27] proposed a GRN model with reaction-diffusion
of case studies on the GRN based self-organizing SySte%echanism as follows:

in Section 4, where we also introduce a trilateration based
algorithm combined with a Kalman filter to recover the drij _ Fi(Xi,w)—viai;+D; V25, 1<i<n1<j<m
position of robots that completely fail in self-localizari dt @)

Conclusions of the paper are summarized in Section 5. wherez;; is the concentration of gene produgin cell .

The first term specifies the production of;, the second
2. Computational Modeling of Gene Regula- term is its degradation, and the last term specifies the
tion diffusion component at diffusion rat®;. f; is a nonlinear
update function of gene produgt which is usually defined

As we mentioned in Section 1, the process of individualas @ sigmoid function ag(z) = 1=. u is the vector of
development is under the control of gene regulatory netexternal input signalsy; is the degradation rate of product
works. When a gene is expressed, information stored in ah 7 IS the number of gene products, andis the number
organism’s genome is transcribed into mRNA and translate@f cells.
into proteins®. Some of these proteins are transcription
factors that can regulate the expression of their own gene8. GRN Based Self-Organization of Multi-
or others. Understanding cellular organization and génergRohots
biological principles such as robustness and evolvability

o . _ The objective of the multi-robot construction is to deploy

1. Most recent findings in molecular biology suggest that gemeession ltipl b if | defined di . |
is also subject to epigenetic regulations such as DNA meibylahistone muitiple robots uni Orm_y on a predefined two- 'me_n5|9na
modification and RNA silencing. shape, for example: a circle or a square, through a diséibut



control approach. Each robot only knows its local informa-neighborhood varies according to the target shapes and the
tion without any global observer. number of robots in the environment. Take the circular shape
In our GRN inspired control model, we assume thatas an example, the neighborhood size can be definéﬁ%s
each robot corresponds to a single cell. Within each cell'svhere L is the length of the circumference, aid is the
genome, there are two genes, one for x-position and ontotal number of robots to be deployed on the circle. However,
for y-position in a 2D environment. Each gene can produceve will show in the simulations that the performance of the
a protein. Each protein can provide the following threesystem is not sensitive to this parameter setup.
functions. First, it can regulate the expression of the gene When a robot detects a neighboring robot, it will sense
that produces the protein (i.e. auto regulation), thussitig ~ the protein concentration emitted from that neighbor s¢ tha
the robots’ behavior. Second, it is can interact with a @erta it can keep itself away from that neighbor to avoid collision
'morphogen gradient’ in the environment, which containsSumming up the concentration of the diffused proteins from
information on the target shape. Third, it can diffuse intoall neighbors, we have
environment, which can thus be perceived by its neighboring N N
robots to prevent collision of the robots. ~ ~
Inspired by equations (1)-(4), the system dynamics of the Diw = ZD;I’ Diy = ZD;?/ (11)
GRN for multi-robot construction are defined as follows: =t =t

d%’"t‘” = —QZj g + MPi g whereN; denotes the number of its neighbors, dagmand
dzit,y — —az{y + mpiy, ©) D ,are the diffusion along x-axis and y-axis, respectively,
’ ’ on roboti emitted from the neighbor robot, which is
Wit — —cpi + kf(2i0) + Dy @ definedas
dp;
Gt = —Piy + kf(2iy) +0Diy Di - (Giz — 9j.2) (12)
whereg; .andyg; ,, are the expression levels of tifé robot's Y (Gie — 95,2)2 F (Giy — Giy)?
gene for x-position and y-position, respectively., and
pi, are the concentration of th&" robot's proteins for x- Dl — (9iy — 9jw) (13)
Y ?

position gene and y-position gene, respectively. V(9w — 95.0)2 + (Giy — 9jy)?
In order to embed the 2D target shape, which is global o . _ ]
information, into the regulatory dynamics, we defifigz;) ~ Where the directions oD; . and D;  are defined to be

to be the following sigmoid functions: the one from robotj to robot i along x-axis and y-axis,
— respectively.
f(zig) = e ) Initially, the robots are located randomly in a 2D space.
f(Ziy) = 1—8::@7 By following the dynamic defined in Equations (5) and (6),
’ “+e %ty

_ _ the robots can be deployed uniformly on the predefined
wherez; , andz; , are the gradients along x-axis and y- shape autonomously. In other words, the system can con-
axis, respectively, of a predefined functiénat the robot's  verge to an equilibrium state defined by the target shape.

current expression level, which are defined as: Essentially, the shape information is the global informmti
oh oh which can be nicely embedded into the dynamics of each
Zig = i Ziy = 99iy’ (8) individual robot through the functiory(z;). It must be

) i ) stressed, however, that each robot does not know its target
where the functiorh defines the target shape on which the position beforehand.

robots are supposed to be deployed uniformly. The prede- During the movement to the target shape, each robot is
fined functionh can be seen as the morphogen gradients fOFeguIated by two dynamics. One is the morphogen gradient
cell sorting in the early development of biological orgamss o hedded in the regulation dynamics that drive the robot
To facilitate the generation of the desired dynamics, W&, the predefined shape, and the other is diffusion dynamics
definedh to be the square of the target shape function. Fog, ¢ s ysed to avoid collision between the robots. A good
example, if we \{vant to deploy .the robots onto a unit circle,pance of the two dynamics can be achieved by optimizing
the shape function can be defined as: the parameters in the model using a genetic algorithm, as
(@ we will discuss in Section 4.
A major concern of the gene regulatory network based
Then function’ can be defined as: self-organization algorithm is that under which condition
h= (g2, +g¢2, —1)>2 (10) the robots will converge to the target shape. Fortunately,
bToIny we are able to provide a theoretic proof of the system’s
We use D; to define the protein diffusion that aims at convergence to the target shape according to the Lyapunov
keeping the robot away from its neighbors. The size oftheory as stated in the following theorem.

$(GiaGiy) = Giw T 95y —1=0



Theorem 1 For the dynamic system described by Equa-gene regulatory dynamics. All parameters in the dynamic
tions (5)-(6), the systems states in Equation 5 will congerg system are initialized randomly between 1 and 200.

asymptotically to the predefined shap¢g,,g,) = 0, if We define the target shape as a unit circle centered at (0,

m-k<a-candk,c,a,m > 0. 0) and of a radius of 1. The robot system consists of 10
The reader is referred to [10] for a detailed proof of therobots randomly distributed in the environment. During the

convergence. deployment, the robots should approach to the unit circle

while avoiding collision.

4. Robustness Analysis and Failure Recovery ~ Since the final goal of the multi-robot system is to
distribute the robots evenly on the circle, the positioroerr

While it is nice to have the theoretic convergence proof fort0 the target shape shouild be as small as possible after the

the proposed self-organization system, it is still unch system converges. Therefore, we define a threshold for the

: . . .averaged position error between the robots’ final positon t
robust the convergence is against changes or uncertauntl(?rsI

. . . e target shape as a constraint of this optimization proble
in the system and environment. For this purpose, SeVeTdihen using the GA. In the following experiments, we set
case studies are carried out on the system to verify ity "o e chold to bel:, wherer is the circumference the
¢ﬁ|C|ency for shape for.mat|on and ana_ly_ze its rObusmeSf’:ircle andN is the tortal number of robots to be deployed
n the presence Of. various of uncgrtalntles wh|ch 2 T4, the circle. This distance constraint will be applied to al
multi-robot system is very likely subject to. The efficiency the following simulations for circle construction
verification and robustness analysis consists of the fatigw Fig. 1 shows the profile of average conve.rgence time
steps. F_irs_t, the parameters O.f the sel_f-organizatiqrmltgn of thé multi-robot system over generations. We can see
;r]z oept;nr":(ljzzd T\,Sé?qgnirgggftg ?g%%rtghrgggénz g\ll\v/:neizrr%(iar&gat the system’s convergence time decreases dramatically
P 9 ' : over the first generations, which shows that the GA-based
the performance of the system when the number of robots timization is effective
changes and when th_e target shape _changes. Third, we stud In the following, we p.erform a number of tests to verify
the influence of the diffusion dynamics on the CONVETgeNCe e efficiency and,robustness of the GRN-based multi-robot
of the system. Finally, system’s robustness to sensoryenois

L ) . . self-organization algorithm. In the experiments, we use th

self-localization failure and changes in the environmeet a . . b ) .

studied optimized solution at the 10 generation, unless otherwise
' stated. The parameters are as follows: a= 89.2685,c =

_ _ , _ 7.0350,b = 23.5424, andn = 3.4584.
4.1. Parameter Tuning Using A Genetic Algorithm

1800

In Equations (5) and (6), five parameters, i®.,m, c, 2 1600}
k, andb, need to be set up for the system. Generally, these %1400
parameters can be determined heuristically provided Heat t $ 12001,
convergence condition in Theorem 1 can be satisfied. In g 1000
implementing the system, we found that the setup of the g 90
parameters influences greatly on the time for the robots to 2 izz
converge to its final position and the trajectory length of 200 ]

the robots. Therefore, a genetic algorithm with simulated 2 * generation 10
binary crossover (SBX) [4] is adopted at first to optimize
these parameters to minimize the convergence time, provide-igure 1. Average convergence time of the robot sys-
that the conditions for the system’s convergence as stated f€m over generations using the GA.
Theorem 1 are not violated.

In the simulation study for minimizing the convergence
time, we set up the number of robots to be 10, and set thd.2. Deployment of Multiple Robots to a Unit Circle
population size of the GA to 20. The crossover probability
is set to 0.9 and the distribution index for the SBX is The purpose of this case study is to compare the per-
20. Mutation probability is by default set to be inversely formance of the system using the parameters achieved by
proportional to the number of the decision variables, whichthe GA in the previous section when the number of robots
is 5 in our case, therefore, is set to be 0.2, and the disioitbut changes. The target shape is the same as in the previous
index for mutation is set to be 20. The parameter setupsection. Four groups of robots have been used to evaluate
except for the population size, has been recommended in [4lhe proposed algorithm, which contains 5, 10, 15 and 20
The simulation is run for 10 generations, which is relativel robots, respectively. We performed 35 independent runs for
small, however, is found to be sufficient for optimizing the each group, and the results of the resulting convergence



time (averaged over the robots) and average position error
(averaged over the robots) are plotted in Fig. 2, where
both the mean and standard deviation have been plotted.
Due to space limit, we plot here only the trajectories with
20 robots in Fig. 3. Two observations can be made from
Fig. 2. First, the average position error does not increase
as the number robots increases. Second, the convergence
process becomes much slower when the number of the
robots increases. However, it must be pointed out that the
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increase in convergence time is mainly attributed to thetim
needed for the final tuning for an even distribution of the
robots on the target shape, refer to the results in Sectian 4.
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Figure 2. Mean and standard deviation of the (a)
convergence time and (b) position error for 5, 10, 15
and 20 robots distributed to a circle.

4.3. Deployment of Multiple Robots to a Triangle

To show the flexibility of the GRN-based self-organization

-4 -2 0 2 4
20robots
Figure 3. The trajectories of 20 robots using GRN-
based method to construct a circle. Initial positions are
denoted as a dot and final positions are denoted as a
small circle.

iy > \/ggi,x +1

If gi,y > _\/ggz,m + 1
1

iy < 3
Ngo’tye that after the first stage of deployment, robots have
been deployed on the unite circle as shown in Fig. 4. By
following the GRN dynamics and using the néwunction,
we can deploy multiple robots to an equilateral triangle.

1
0.5
0

-1 -0.5 0 0.5 1

Figure 4. The relationship between the equilateral
triangle and the unit circle.

In order to ensure ultimate uniform distribution of the
robots, we define robots’ neighbor range todse W
where N refers to the number of robots in the system and
Lcqge refers to the length of the triangle’s edge.

Again, we conducted 35 independent simulation runs for
6, 9, 12, and 15 robots. The results describing the mean

algorithm, we change the target shape from a circle to agnd standarq _deviation of the average convergence tir_‘ne and
equilateral triangle with the same parameter setup as éefor@verage position error are presented in Fig. 5. Similar to

The edge of the triangle ig/3. The formation can be done
in two steps. We first deploy the robots to a unit circle
centered at (0,0) via the mechanism mentioned above. The
we define the new: function as follows:

(gi,r - ?gi,y + @)2
W(giar 9iw) = 4 (930 + ;Tﬁ;gi,y — ¥3)2
(i + 5)

the circle case, the convergence time increase consigerabl
as the number of robots increase, while the position error
fp much less sensitive to the number of robots and are
acceptable. For example, the mean average position error
in case of 15 robots is 0.069, which is reasonably small on
a triangle whose edge length equals32. Notice also that
the convergence time may vary dramatically for different
initial positions.

Fig. 6 shows the trajectories of the robots moving from
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@) Figure 6. The robots’ trajectories moving from random
initial positions to the predefined triangle. The initial
_ positions are represented by “+”, the intermediate posi-
% tions on the unit circle are represented by a dot , and the
5 01 final positions on the triangle are represented by a small
g circle. The trajectories of the first phase deployment
s | g ] ------ (deployment to a circle) are plotted in dashed lines
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Figure 5. Mean and standard deviation of the (a)
convergence time and (b) position error for 6, 9, 12 and
15 robots distributed to a triangle.
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the initial positions to the target positions on the predsfin @)
triangle, where we use 9 robots randomly initialized in a
4z4 2-D environment. From Fig. 6, we can see that the
initially randomly distributed robots can be deployed te th
equilateral triangle uniformly under the control of the GRN
based dynamics. One constraint of the triangle deployment
is that the total number of robots in the system should be
dividable by 3.
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4.4. Influence of the Diffusion on Dynamics > Namber of roboie 2

(b)

In the theoretical analysis of system convergence, we
have omitted the diffusion term for the sake of simplicity Figyre 7. Mean and standard deviation of the (a)
by assuming that the diffusion terms do not influenceconyergence time and (b) position error for 5, 10, 15

the convergence substantially. To empirically verify this and 20 robots distributed to a circle without diffusion.
assumption, we conducted 35 independent runs without the

diffusion term when 5, 10, 15, and 20 robots are distributed
to a unit circle. The results are presented in Fig. 7. Contpareunit circle from their initial positions. From Fig. 8, we
those results with the diffusion term presented in Fig. 2, nacan see that both groups of robots can converge to the
significant difference can be observed in the position errortarget shape eventually, although the robots under the dy-
By contrast, the convergence time becomes much shorter. Asamics with protein diffusion can deploy on the target shape
mentioned in Section 4.2, this is due to the fact that it takesiniformly, whereas the robots controlled by the regulatory
much more time for the robots to adjust their final positiondynamics without the diffusion deploy on the target shape
under the influence of the diffusion dynamics than the timen a random manner. This simple study verifies empirically
for them to converge to the desired shape. that the protein diffusion among the robots do not affect
Fig. 8 shows the robots’ trajectories converging to thesubstantially the system’s ability to converge to the targe



Table 1. Mean and standard deviation of the position
error when the distance measurements are subject to
sensory noise.

shape. Nevertheless a rigorous theoretical proof is stden
investigation.

2 Without noise | 5% noise | 10% noise
mean | 0.0421 0.0437 0.0470
1 S e std 0.024 0.0096 0.010

- Table 2. Mean and standard deviation of position error
8 d when the self-localization is subject to noise.

Without noise | 5% noise | 10% noise
=2 -1 0 1 2 mean | 0.0421 0.0428 0.0445
std 0.024 0.0083 0.01

may get lost in the environment due to a complete self-
o localization failure. In other words, some of the robots may
0 $ 8 fail to localize themselves in the global coordinates.
X Ry In this case study, we compare the performance of the
a1 g system with or without a recovery algorithm. The recovery
algorithm is to estimate the positions of the robots experi-
R e— s T 5 encing self-localization failure using the trilateratiorethod
combined the Kalman filter.
() In developing the recovery algorithm, we assume that
robots are equipped with distance sensors that can detect
Figure 8. The trajectories of the robots using the  the relative distances to its neighbors. Therefore, a rtitzdt
GRN-based method with and without protein diffusion,  f3jis to localize itself can get its neighbors’ positionsatiagh
where the small circles denote the robots, and the solid  |ocal communications. We further assume that localization
lines are the moving trajectories. (a) With diffusion; (b)  and distance measurements are contaminated by zero-mean
Without diffusion. white Gaussian noise. All measurements are supposed to be
mutually independent. With these assumptions, a trilatera
tion method can be used to recover the current position of
4.5. Robustness to Sensory Noise the robot that fails to self-localize its position. If thercent
position of the lost robot is denoted by (X, y), which is to be
When we intend to apply the gene regulatory networkestimated, the positions of three neighbors are denoted by
based self-organization algorithm to real robots, we musfX;, y;), where i = 1, 2, 3, and the distances from the lost
take a few additional constraints into account. These conrobot to the three neighbors are measured ;asvilere i =
straints include noise in distance measurement and selft, 2, 3, then the position of the lost robot can be estimated
localization, and eventually a complete failure in self- by solving the following equations:
localization. We first consider the influence of sensory @ois
in this section by deliberately adding noise into the sensor (x—2:)? + (y —y:)? = dj, fori=1,2,3. (14)
measurements and localization. We perform 35 independent ) - o
runs using 10 robots with random position initialization, 10 improve the accuracy of the position estimation, the
and calculate the mean and standard deviation of the findf@/man filter can be applied, which consists of the following
position errors to the unit circle with 5% and 10% noise inMain steps:
robot localization, as listed in Tables 1 and 2, respegtivel 1) State equation:
From the tables, we can conclude that the position errors of
the system are insensitive to the noise in measurements. x(k+1) =F(k)x(k) + G(k)v(k)  (15)

4.6. Recovery from Self-Localization Failures 2) Predict:

%(k + 1|k) = F(k)%(k|k) (16)

We notice from the previous section that the system is -
robust to noise in self-location. In the extreme case, ®bot P(k+1|))=F(k+1)P(kk)F" (k+1)+Q(k) (17)



3) Update: 10

yk+1)=zk+1)-H(k+ )x(k + 1|k)
X(k+1k+1) =%k + 1|k)+K((k + D)y (k)
(18)
where

approximation error
.

z(k+1)=Hk+Dx(k+1)+wk+1) (19)

0 100 200 300 400 500
iteration

Pk+1)k+1) =

(20)  Figure 9. The difference between the estimated position
P(k+1k)-K(k+ 1)H(k + 1)P(k + 1|k)

and the true position of the robot in a typical run.

S(k+1) =H(k+1)P(k+1|/k)H" (k+1)+R(k+1) 2
(21) 15

Kk+1)=Pk+1k)H  (k+1)S(k+1)"! (22)

x(k) = [z,y]T is the system state vector, where
and y are the x-position and y-position of lost robot in
a 2-D environmentF(k) is the state transition matrix,

-1.5

which is defined a¥'(k) = [ (1) (1) } G(k) is defined 22 1 0 1 2

as G(k) = [ T 0 , where is the length of the time Figure 10. The trajectory of the deployment with one

) 0 7 ) ) ) ) lost robot. The dashed line represents the trajectory
step interval and is defined as= 0.01 in the simulation.  of the lost robot whose position is estimated with the
H(k + 1) is the observation matrix, and is defined asrecovery algorithm.
H(k +1) = (1) (1] } v(k) and w(k) are zero-mean
white Gaussian process noise and measurement noise W7 Robustness to Environmental Perturbations
covarianceQ(k) andR(k), respectivelyQ(k) is initialized
as Q(1) = cov(Gv) = E((Gv)(Gv)") = GG”. For In this case study, we evaluate the robustness of the system
simplicity, we initialize R(k) as R(1) = cov(ww”) = 1o the changes in the number of robots after shape formation
B(ww") = L z(k) are the measurements to the Kalmanhas already finished and perturbations in the environment,
ﬁlter, Wh|Ch are the estimated |Ocati0n Of the |OSt rObOthi such as a moving obstacle. More Specifica”y’ two scenarios
the above described trilateration method. are considered. In the first scenario, we test if the robats ca
In the case study, ten robots are initially randomly dis-reorganize themselves when additional robots join the team
tributed in the environment. We assume one of the robotafter convergence. In the second test, we check the robots’
loses its position. When this self-localization failure 0% behavior given a moving obstacle in the environment.
the recovery algorithm based on trilateration method com- Fig. 11 plots the trajectories of robots before newcomers
bined with the Kalman filter is triggered. White Gaussianjoin, and the self-reorganization process of the robotsrwhe
noise is added to the distance measurements and the pogie newcomers join the team. This result demonstrates
tions of neighbors. The time interval of the Kalman filter the autonomous re-organization capability of the proposed
is defined to be 0.01. Fig. 9 shows the differences of theapproach, because no additional controlled process isdeed
estimated values and the true values of x-position and yfor re-organization.
position of the lost robot during the recovery process, from Next, we examine the behavior of the robots when there
which we can see that the Kalman filter based recoverys a moving target in the environment. Fig. 12 shows two
algorithm works properly. snapshots captured before an obstacle moves towards the
The convergence process assisted with the position recovebot team and shortly before the obstacle moves away
ery algorithm is shown in Fig. 10. The average convergencérom them. From the snapshots, we can see that the robots
time and position error, as well as the position error of thedeployed on the shape are able to move temporarily away
lost robot with and without Kalman filter based trilateratio to avoid a collision with the obstacle. Although only one
are listed in Table 3. From the Table, we notice thatobstacle is implemented in our simulation, similar behes/io
the Kalman filter has dramatically improved the positionare observed for multiple moving obstacles. This simulkatio
estimation of the lost robot. study demonstrates that the system can autonomously adapt



Table 3. Trilateration recovery with and without Kalman filter.

Convergence time (meat std)

Position error
(mean= std)

The lost robot’s position error (meah std)

With location recovery

609.67+ 103.53

0.105+ 0.024

0.188+ 0.032

Without location recovery| 4073.6+ 3106.30

0.693+ 0.178

5.1377+ 1.803
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(b)

Trajectories of multi-robots during self-
organization in the presence of newcomers. The initial
positions of the robots are denoted by ', the intermedi-
ate positions where the first batch of robots are located

-2

=4

(b)

Figure 12. A set of snapshots of the robot’s behavior

of reacting to a moving obstacle. (a) The obstacle is
moving towards the robots (b) robots are adapting to

avoid the obstacle.

are denoted by ‘o’, and the final positions of all the
robots are denoted by ‘+'. The dash lines represent the

initial deployment trajectories of the first batch of robots
and the solid lines represent the trajectories of all the
robots after incorporating newcomers. (a) 3 robots with

2 newcomers; (b) 8 robots with 4 newcomers.

itself to the environmental changes.

5. Conclusions

the robustness of the system to sensory noise in distance
measurement and self-localization. As an extreme case, we
also look into the case when a complete self-localization
failure occurs. In this case, a location recovery algoriiem
introduced with the help of trilateration and a Kalman filter
Third, we check the re-organization capability of the syste

in two situations. In the first situation, new robots need to
join a set of robots that have converged to the target shape.
In the second situation, an obstacle is moving around in the
region where the target shape is situated.

In this paper, we have presented a number of case studiesThrough all the case studies regarding the effectiveness
investigating the performance of a decentralized GRN basednd robustness of the self-organization algorithm meetion
approach to self-organizing multi-robot systems suggesteabove, we can conclude that gene regulatory network based
in [10]. Three main aspects of the algorithm are studiedmethod for self-organization of multiple robots for forroet
First, we examine the sensitivity of the system’s perforogan is effective, insensitive to parameter setup and robust to
on the changes in the number of robots and the targethanges in the system or in the environment. Nevertheless, i
shape. This is implemented by checking the convergencease of a complete self-localization failure, accuratevery
time and position error of the system using a set of paramef the position information of the lost robot is important
eters optimized for a particular situation. Second, westud so that all robots can be distributed to the target shape. Of
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