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Abstract

Biological systems can generate robust and complex be-
haviors through limited local interactions in the presence
of large amount of uncertainties. Inspired by biological
organisms, we have proposed a gene regulatory network
(GRN) based algorithm for self-organizing multiple robots
into different shapes. The self-organization process is op-
timized using a genetic algorithm. This paper focuses on
the empirical analysis of robustness of the self-organizing
multi-robot system to the changes in tasks, noise in the
robot system and changes in the environment. We investigate
the performance variation when the system is optimized
for one shape and then employed for a new shape. The
influence of noise in sensors for distance detection and self-
localization on the final positioning error is also examined.
In case of a complete self-localization failure, we introduce a
recovery algorithm based on trilateration combined with a
Kalman filter. Finally, we study the system’s performance
when the number of robots changes and when there are
moving obstacles in the field. Various simulation results
demonstrate that the proposed algorithm is efficient in shape
formation and that the self-organizing system is robust to
sensory noise, partial system failures and environmental
changes.

1. Introduction

In a multi-robot system (MRS), robots are supposed to
work together efficiently and reliably to accomplish tasks
that are intrinsically distributed in space, time, or function-
ality. However, these properties are often achieved at the cost
of increasing system complexity, especially in control and
communication [17]. It is usually not hard to implement
a centralized controller for multi-robot systems that can
perform complex tasks in a well-defined environment [16].
Unfortunately, multi-robot systems with a centralized con-
troller will often perform rather poorly under unknown
dynamic environments. Therefore, distributed methods are

more attractive for multi-robot systems due to their robust-
ness, flexibility, and adaptivity.

Designing a distributed, self-adaptive multi-robot system
is however nontrivial. As indicated by Nolfi and Flore-
ano [23], it is tedious to predict an emerging behavior
resulting from a given set of local interaction rules in a
distributed control system. It is even more intractable to
identify the rules behind an observed global behavior.

Biological organisms have evolved to perform and survive
in a world characterized by rapid changes, abundant uncer-
tainties, and limited information [24]. For this reason, re-
searchers have recently turned to biological systems for dis-
tributed control principles. For example, swarm intelligence,
now an efficient, distributed computational methodology for
solving complex problems, was inspired from behaviors of
social insects. Among other applications, swarm intelligence
has shown to be a successful approach to solving MRS
problems [6], [12], [21], [22], [25], [31].

Distributed self-organization control has also widely ob-
served in the embryonic development of all biological or-
ganisms. With the rapid advances in systems biology [1], it
has been found that the embryonic developmental process
is largely under the control of the gene regulatory networks
(GRNs), which are a number of genes that interact with each
other and with the environment. It appears, however, that not
much work has been conducted on multi-robot systems using
GRNs or cellular mechanisms until recently, though research
on pattern formation in biological development has relatively
a long history in mathematical biology [9], [14], [19]. A
cell-based approach to self-assembly of arbitrary 2D shapes
is proposed using multi-agents [2], where each agent can
be represented as a cell, which can produce gradient infor-
mation that can be perceived by their neighbors. Reference
points must be selected among the agents so that the whole
system can grow along them to formulate a shape. Shen
et al. [26] proposed a digital hormone model (DHM) as a
bio-inspired distributed control method for robot swarms and
self-organization. Essentially, they applied Turing’s reaction-
diffusion model [30] to describe the interactions between the
hormones. The DHM integrated dynamic network, topolog-



ical stochastic action selection, and distributed controlby
hormone reaction-diffusion. Taylor [29] suggested a gene
regulatory network inspired real-time controller for a group
of underwater robots. A genetic algorithm (GA) was applied
to evolve the controller for a simple clustering task. Mamei
et al. [20] proposed a decentralized morphogen gradient
based approach to swarm robot pattern generation, where
robots can communicate with their neighbors to receive
and propagate morphogen gradients and estimate the local
density of robots. A decentralized approach to formation
control for swarms of mobile agents was proposed in [3],
where the predefined shape information is superimposed on
the agents coordinate systems using a container, and then
a gas expansion model is employed to disperse the robots
within the container. Most recently, a gene regulation based
algorithm for multi-robot construction has been suggested
in [10], where the shape information is embedded into the
regulatory dynamics. It has been shown with a theoretic
proof that robots will converge to the target shape asymp-
totically.

The purpose of this paper is to investigate in more depth
the property of the self-organization algorithm suggested
in [10]. We focus on analyzing the robustness of the system
to changes in target shape, number of robots in the system,
obstacles in the environment, and sensory noises or even
failure in self-localization. These analysis are important for
understanding the dynamics of the system and for practical
implementation on real robots.

The paper is organized as follows. Section 2 introduces
briefly existing approaches to computational modeling of
GRNs. The GRN based method for self-organizing multi-
robot systems is presented in Section 3. To evaluate the
robustness of the proposed method, we conduct a variety
of case studies on the GRN based self-organizing system
in Section 4, where we also introduce a trilateration based
algorithm combined with a Kalman filter to recover the
position of robots that completely fail in self-localization.
Conclusions of the paper are summarized in Section 5.

2. Computational Modeling of Gene Regula-
tion

As we mentioned in Section 1, the process of individual
development is under the control of gene regulatory net-
works. When a gene is expressed, information stored in an
organism’s genome is transcribed into mRNA and translated
into proteins 1. Some of these proteins are transcription
factors that can regulate the expression of their own genes
or others. Understanding cellular organization and general
biological principles such as robustness and evolvability

1. Most recent findings in molecular biology suggest that geneexpression
is also subject to epigenetic regulations such as DNA methylation, histone
modification and RNA silencing.

have become one of the most challenging yet fascinating
research topics in systems biology [13], [15], [18]. To this
end, a large number of computational models for GRNs have
been suggested [5], [7], [11], [28]. Among others, ordinary
or partial differential equations have been used to model
the reaction kinetics of regulatory systems. For example,
the expression of a gene with negative auto-regulation in
a uni-cellular organism can be described by the following
differential equations:

dgi

dt
= −γggi + αgf(pi) (1)

dpi

dt
= −γppi + αP gi (2)

where gi is the expression level (measured by the con-
centration of its mRNA product) of genei and pi is the
concentration of proteini. γg andγP are the decay rate of
mRNA and protein concentration, respectively.αg and αp

are the synthesis rate of mRNA and protein concentration,
respectively.f(x) is a sigmoid function, which can be
defined as:

f(x) =
β

θn + xn
(3)

whereβis the maximum expression level,θ is the activation
coefficient, andn is known as the Hill coefficient.

In a multi-cell organism, the expression of the genes
in a cells can also be influenced by the gene product
(transcription factors) of other cells. Thus, it is necessary
to model the intercellular communication. In addition to the
internal dynamics of the cell, we should also include external
factors such as protein gradients and physical interactions
between cells into the GRNs model. Salazar-Ciudad et
al. [27] proposed a GRN model with reaction-diffusion
mechanism as follows:

dxij

dt
= fj(xi,u)−γixij+Dj∇2xij , 1 ≤ i ≤ n, 1 ≤ j ≤ m

(4)
wherexij is the concentration of gene productj in cell i.
The first term specifies the production ofxij , the second
term is its degradation, and the last term specifies the
diffusion component at diffusion rateDj . fj is a nonlinear
update function of gene productj, which is usually defined
as a sigmoid function asf(x) = 1

1+ex . u is the vector of
external input signals.γi is the degradation rate of product
i. n is the number of gene products, andm is the number
of cells.

3. GRN Based Self-Organization of Multi-
Robots

The objective of the multi-robot construction is to deploy
multiple robots uniformly on a predefined two-dimensional
shape, for example: a circle or a square, through a distributed



control approach. Each robot only knows its local informa-
tion without any global observer.

In our GRN inspired control model, we assume that
each robot corresponds to a single cell. Within each cell’s
genome, there are two genes, one for x-position and one
for y-position in a 2D environment. Each gene can produce
a protein. Each protein can provide the following three
functions. First, it can regulate the expression of the gene
that produces the protein (i.e. auto regulation), thus adjusting
the robots’ behavior. Second, it is can interact with a certain
’morphogen gradient’ in the environment, which contains
information on the target shape. Third, it can diffuse into
environment, which can thus be perceived by its neighboring
robots to prevent collision of the robots.

Inspired by equations (1)-(4), the system dynamics of the
GRN for multi-robot construction are defined as follows:

dgi,x

dt = −azi,x + mpi,x
dgi,y

dt = −azi,y + mpi,y

(5)

dpi,x

dt = −cpi,x + kf(zi,x) + bDi,x
dpi,y

dt = −cpi,y + kf(zi,y) + bDi,y

(6)

wheregi,xandgi,y are the expression levels of theith robot’s
gene for x-position and y-position, respectively.pi,x and
pi,y are the concentration of theith robot’s proteins for x-
position gene and y-position gene, respectively.

In order to embed the 2D target shape, which is global
information, into the regulatory dynamics, we definef(zi)
to be the following sigmoid functions:

f(zi,x) = 1−e−zi,x

1+e−zi,x

f(zi,y) = 1−e−zi,y

1+e−zi,y
,

(7)

where zi,x andzi,y are the gradients along x-axis and y-
axis, respectively, of a predefined functionh at the robot’s
current expression level, which are defined as:

zi,x =
∂h

∂gi,x
, zi,y =

∂h

∂gi,y
, (8)

where the functionh defines the target shape on which the
robots are supposed to be deployed uniformly. The prede-
fined functionh can be seen as the morphogen gradients for
cell sorting in the early development of biological organisms.
To facilitate the generation of the desired dynamics, we
definedh to be the square of the target shape function. For
example, if we want to deploy the robots onto a unit circle,
the shape function can be defined as:

s(gi,x, gi,y) = g2
i,x + g2

i,y − 1 = 0 (9)

Then functionh can be defined as:

h = (g2
i,x + g2

i,y − 1)2. (10)

We use Di to define the protein diffusion that aims at
keeping the robot away from its neighbors. The size of

neighborhood varies according to the target shapes and the
number of robots in the environment. Take the circular shape
as an example, the neighborhood size can be defined as2πL

N ,
whereL is the length of the circumference, andN is the
total number of robots to be deployed on the circle. However,
we will show in the simulations that the performance of the
system is not sensitive to this parameter setup.

When a robot detects a neighboring robot, it will sense
the protein concentration emitted from that neighbor so that
it can keep itself away from that neighbor to avoid collision.
Summing up the concentration of the diffused proteins from
all neighbors, we have

Di,x =

Ni
∑

j=1

D
j
i,x, Di,y =

Ni
∑

j=1

D
j
i,y (11)

whereNi denotes the number of its neighbors, andD
j
i,xand

D
j
i,yare the diffusion along x-axis and y-axis, respectively,

on robot i emitted from the neighbor robotj, which is
defined as:

D
j
i,x =

(gi,x − gj,x)
√

(gi,x − gj,x)2 + (gi,y − gj,y)2
(12)

D
j
i,y =

(gi,y − gj,y)
√

(gi,x − gj,x)2 + (gi,y − gj,y)2
, (13)

where the directions ofDj
i,x and D

j
i,y are defined to be

the one from robotj to robot i along x-axis and y-axis,
respectively.

Initially, the robots are located randomly in a 2D space.
By following the dynamic defined in Equations (5) and (6),
the robots can be deployed uniformly on the predefined
shape autonomously. In other words, the system can con-
verge to an equilibrium state defined by the target shape.
Essentially, the shape information is the global information,
which can be nicely embedded into the dynamics of each
individual robot through the functionf(zi). It must be
stressed, however, that each robot does not know its target
position beforehand.

During the movement to the target shape, each robot is
regulated by two dynamics. One is the morphogen gradient
embedded in the regulation dynamics that drive the robot
to the predefined shape, and the other is diffusion dynamics
that is used to avoid collision between the robots. A good
balance of the two dynamics can be achieved by optimizing
the parameters in the model using a genetic algorithm, as
we will discuss in Section 4.

A major concern of the gene regulatory network based
self-organization algorithm is that under which condition
the robots will converge to the target shape. Fortunately,
we are able to provide a theoretic proof of the system’s
convergence to the target shape according to the Lyapunov
theory as stated in the following theorem.



Theorem 1: For the dynamic system described by Equa-
tions (5)-(6), the systems states in Equation 5 will converge
asymptotically to the predefined shapeh(gx, gy) = 0, if
m · k ≤ a · c andk, c, a,m > 0.

The reader is referred to [10] for a detailed proof of the
convergence.

4. Robustness Analysis and Failure Recovery

While it is nice to have the theoretic convergence proof for
the proposed self-organization system, it is still unclearhow
robust the convergence is against changes or uncertainties
in the system and environment. For this purpose, several
case studies are carried out on the system to verify its
efficiency for shape formation and analyze its robustness
in the presence of various of uncertainties which a real
multi-robot system is very likely subject to. The efficiency
verification and robustness analysis consists of the following
steps. First, the parameters of the self-organization algorithm
are optimized using a genetic algorithm for a given target
shape and a given number of robots. Second, we examine
the performance of the system when the number of robots
changes and when the target shape changes. Third, we study
the influence of the diffusion dynamics on the convergence
of the system. Finally, system’s robustness to sensory noise,
self-localization failure and changes in the environment are
studied.

4.1. Parameter Tuning Using A Genetic Algorithm

In Equations (5) and (6), five parameters, i.e.,a, m, c,
k, andb, need to be set up for the system. Generally, these
parameters can be determined heuristically provided that the
convergence condition in Theorem 1 can be satisfied. In
implementing the system, we found that the setup of the
parameters influences greatly on the time for the robots to
converge to its final position and the trajectory length of
the robots. Therefore, a genetic algorithm with simulated
binary crossover (SBX) [4] is adopted at first to optimize
these parameters to minimize the convergence time, provided
that the conditions for the system’s convergence as stated in
Theorem 1 are not violated.

In the simulation study for minimizing the convergence
time, we set up the number of robots to be 10, and set the
population size of the GA to 20. The crossover probability
is set to 0.9 and the distribution index for the SBX is
20. Mutation probability is by default set to be inversely
proportional to the number of the decision variables, which
is 5 in our case, therefore, is set to be 0.2, and the distribution
index for mutation is set to be 20. The parameter setup,
except for the population size, has been recommended in [4].
The simulation is run for 10 generations, which is relatively
small, however, is found to be sufficient for optimizing the

gene regulatory dynamics. All parameters in the dynamic
system are initialized randomly between 1 and 200.

We define the target shape as a unit circle centered at (0,
0) and of a radius of 1. The robot system consists of 10
robots randomly distributed in the environment. During the
deployment, the robots should approach to the unit circle
while avoiding collision.

Since the final goal of the multi-robot system is to
distribute the robots evenly on the circle, the position error
to the target shape should be as small as possible after the
system converges. Therefore, we define a threshold for the
averaged position error between the robots’ final position to
the target shape as a constraint of this optimization problem
when using the GA. In the following experiments, we set
this the threshold to be1

r·N , wherer is the circumference the
circle, andN is the total number of robots to be deployed
on the circle. This distance constraint will be applied to all
the following simulations for circle construction.

Fig. 1 shows the profile of average convergence time
of the multi-robot system over generations. We can see
that the system’s convergence time decreases dramatically
over the first generations, which shows that the GA-based
optimization is effective.

In the following, we perform a number of tests to verify
the efficiency and robustness of the GRN-based multi-robot
self-organization algorithm. In the experiments, we use the
optimized solution at the 10th generation, unless otherwise
stated. The parameters are as follows:k = a= 89.2685,c =
7.0350,b = 23.5424, andm = 3.4584.
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Figure 1. Average convergence time of the robot sys-
tem over generations using the GA.

4.2. Deployment of Multiple Robots to a Unit Circle

The purpose of this case study is to compare the per-
formance of the system using the parameters achieved by
the GA in the previous section when the number of robots
changes. The target shape is the same as in the previous
section. Four groups of robots have been used to evaluate
the proposed algorithm, which contains 5, 10, 15 and 20
robots, respectively. We performed 35 independent runs for
each group, and the results of the resulting convergence



time (averaged over the robots) and average position error
(averaged over the robots) are plotted in Fig. 2, where
both the mean and standard deviation have been plotted.
Due to space limit, we plot here only the trajectories with
20 robots in Fig. 3. Two observations can be made from
Fig. 2. First, the average position error does not increase
as the number robots increases. Second, the convergence
process becomes much slower when the number of the
robots increases. However, it must be pointed out that the
increase in convergence time is mainly attributed to the time
needed for the final tuning for an even distribution of the
robots on the target shape, refer to the results in Section 4.4.
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Figure 2. Mean and standard deviation of the (a)
convergence time and (b) position error for 5, 10, 15
and 20 robots distributed to a circle.

4.3. Deployment of Multiple Robots to a Triangle

To show the flexibility of the GRN-based self-organization
algorithm, we change the target shape from a circle to an
equilateral triangle with the same parameter setup as before.
The edge of the triangle is

√
3. The formation can be done

in two steps. We first deploy the robots to a unit circle
centered at (0,0) via the mechanism mentioned above. Then,
we define the newh function as follows:

h(gi,x, gi,y) =
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Figure 3. The trajectories of 20 robots using GRN-
based method to construct a circle. Initial positions are
denoted as a dot and final positions are denoted as a
small circle.
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√
3gi,x + 1
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√

3gi,x + 1
gi,y < 1

2
Note that after the first stage of deployment, robots have

been deployed on the unite circle as shown in Fig. 4. By
following the GRN dynamics and using the newh function,
we can deploy multiple robots to an equilateral triangle.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4. The relationship between the equilateral
triangle and the unit circle.

In order to ensure ultimate uniform distribution of the
robots, we define robots’ neighbor range to bed =

Ledge

(N/3)+1 ,
whereN refers to the number of robots in the system and
Ledge refers to the length of the triangle’s edge.

Again, we conducted 35 independent simulation runs for
6, 9, 12, and 15 robots. The results describing the mean
and standard deviation of the average convergence time and
average position error are presented in Fig. 5. Similar to
the circle case, the convergence time increase considerably
as the number of robots increase, while the position error
is much less sensitive to the number of robots and are
acceptable. For example, the mean average position error
in case of 15 robots is 0.069, which is reasonably small on
a triangle whose edge length equals1.732. Notice also that
the convergence time may vary dramatically for different
initial positions.

Fig. 6 shows the trajectories of the robots moving from
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Figure 5. Mean and standard deviation of the (a)
convergence time and (b) position error for 6, 9, 12 and
15 robots distributed to a triangle.

the initial positions to the target positions on the predefined
triangle, where we use 9 robots randomly initialized in a
4x4 2-D environment. From Fig. 6, we can see that the
initially randomly distributed robots can be deployed to the
equilateral triangle uniformly under the control of the GRN-
based dynamics. One constraint of the triangle deployment
is that the total number of robots in the system should be
dividable by 3.

4.4. Influence of the Diffusion on Dynamics

In the theoretical analysis of system convergence, we
have omitted the diffusion term for the sake of simplicity
by assuming that the diffusion terms do not influence
the convergence substantially. To empirically verify this
assumption, we conducted 35 independent runs without the
diffusion term when 5, 10, 15, and 20 robots are distributed
to a unit circle. The results are presented in Fig. 7. Compared
those results with the diffusion term presented in Fig. 2, no
significant difference can be observed in the position error.
By contrast, the convergence time becomes much shorter. As
mentioned in Section 4.2, this is due to the fact that it takes
much more time for the robots to adjust their final position
under the influence of the diffusion dynamics than the time
for them to converge to the desired shape.

Fig. 8 shows the robots’ trajectories converging to the
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Figure 6. The robots’ trajectories moving from random
initial positions to the predefined triangle. The initial
positions are represented by “+”, the intermediate posi-
tions on the unit circle are represented by a dot , and the
final positions on the triangle are represented by a small
circle. The trajectories of the first phase deployment
(deployment to a circle) are plotted in dashed lines
and the second phase trajectories (deployment to the
triangle) are plotted in solid lines.
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Figure 7. Mean and standard deviation of the (a)
convergence time and (b) position error for 5, 10, 15
and 20 robots distributed to a circle without diffusion.

unit circle from their initial positions. From Fig. 8, we
can see that both groups of robots can converge to the
target shape eventually, although the robots under the dy-
namics with protein diffusion can deploy on the target shape
uniformly, whereas the robots controlled by the regulatory
dynamics without the diffusion deploy on the target shape
in a random manner. This simple study verifies empirically
that the protein diffusion among the robots do not affect
substantially the system’s ability to converge to the target



shape. Nevertheless a rigorous theoretical proof is still under
investigation.
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Figure 8. The trajectories of the robots using the
GRN-based method with and without protein diffusion,
where the small circles denote the robots, and the solid
lines are the moving trajectories. (a) With diffusion; (b)
Without diffusion.

4.5. Robustness to Sensory Noise

When we intend to apply the gene regulatory network
based self-organization algorithm to real robots, we must
take a few additional constraints into account. These con-
straints include noise in distance measurement and self-
localization, and eventually a complete failure in self-
localization. We first consider the influence of sensory noise
in this section by deliberately adding noise into the sensory
measurements and localization. We perform 35 independent
runs using 10 robots with random position initialization,
and calculate the mean and standard deviation of the final
position errors to the unit circle with 5% and 10% noise in
robot localization, as listed in Tables 1 and 2, respectively.
From the tables, we can conclude that the position errors of
the system are insensitive to the noise in measurements.

4.6. Recovery from Self-Localization Failures

We notice from the previous section that the system is
robust to noise in self-location. In the extreme case, robots

Table 1. Mean and standard deviation of the position
error when the distance measurements are subject to

sensory noise.

Without noise 5% noise 10% noise
mean 0.0421 0.0437 0.0470
std 0.024 0.0096 0.010

Table 2. Mean and standard deviation of position error
when the self-localization is subject to noise.

Without noise 5% noise 10% noise
mean 0.0421 0.0428 0.0445
std 0.024 0.0083 0.01

may get lost in the environment due to a complete self-
localization failure. In other words, some of the robots may
fail to localize themselves in the global coordinates.

In this case study, we compare the performance of the
system with or without a recovery algorithm. The recovery
algorithm is to estimate the positions of the robots experi-
encing self-localization failure using the trilaterationmethod
combined the Kalman filter.

In developing the recovery algorithm, we assume that
robots are equipped with distance sensors that can detect
the relative distances to its neighbors. Therefore, a robotthat
fails to localize itself can get its neighbors’ positions through
local communications. We further assume that localization
and distance measurements are contaminated by zero-mean
white Gaussian noise. All measurements are supposed to be
mutually independent. With these assumptions, a trilatera-
tion method can be used to recover the current position of
the robot that fails to self-localize its position. If the current
position of the lost robot is denoted by (x, y), which is to be
estimated, the positions of three neighbors are denoted by
(xi, yi), where i = 1, 2, 3, and the distances from the lost
robot to the three neighbors are measured as di, where i =
1, 2, 3, then the position of the lost robot can be estimated
by solving the following equations:

(x − xi)
2 + (y − yi)

2 = d2
i , for i = 1, 2, 3. (14)

To improve the accuracy of the position estimation, the
Kalman filter can be applied, which consists of the following
main steps:

1) State equation:

x(k + 1) = F(k)x(k) + G(k)v(k) (15)

2) Predict:

x̂(k + 1|k) = F(k)x̂(k|k) (16)

P(k +1|))= F(k +1)P(k|k)FT (k +1)+Q(k) (17)



3) Update:

ỹ(k + 1) = z(k + 1)−H(k + 1)x̂(k + 1|k)
x̂(k + 1|k + 1) = x̂(k + 1|k)+K(k + 1)ỹ(k)

(18)
where

z(k + 1) = H(k + 1)x(k + 1) + w(k + 1) (19)

P(k + 1)|k + 1) =
P(k + 1|k)−K(k + 1)H(k + 1)P(k + 1|k)

(20)

S(k+1) = H(k+1)P(k+1|k)HT (k+1)+R(k+1)
(21)

K(k + 1) = P(k + 1|k)HT (k + 1)S(k + 1)−1 (22)

x(k) = [x, y]T is the system state vector, wherex
and y are the x-position and y-position of lost robot in
a 2-D environment.F(k) is the state transition matrix,

which is defined asF(k) =

[

1 0
0 1

]

. G(k) is defined

as G(k) =

[

τ 0
0 τ

]

, where τ is the length of the time

step interval and is defined asτ= 0.01 in the simulation.
H(k + 1) is the observation matrix, and is defined as

H(k + 1) =

[

1 0
0 1

]

. v(k) and w(k) are zero-mean

white Gaussian process noise and measurement noise with
covarianceQ(k) andR(k), respectively.Q(k) is initialized
as Q(1) = cov(Gv) = E((Gv)(Gv)T ) = GGT . For
simplicity, we initialize R(k) as R(1) = cov(wwT ) =
E(wwT ) = I. z(k) are the measurements to the Kalman
filter, which are the estimated location of the lost robot using
the above described trilateration method.

In the case study, ten robots are initially randomly dis-
tributed in the environment. We assume one of the robots
loses its position. When this self-localization failure occurs,
the recovery algorithm based on trilateration method com-
bined with the Kalman filter is triggered. White Gaussian
noise is added to the distance measurements and the posi-
tions of neighbors. The time interval of the Kalman filter
is defined to be 0.01. Fig. 9 shows the differences of the
estimated values and the true values of x-position and y-
position of the lost robot during the recovery process, from
which we can see that the Kalman filter based recovery
algorithm works properly.

The convergence process assisted with the position recov-
ery algorithm is shown in Fig. 10. The average convergence
time and position error, as well as the position error of the
lost robot with and without Kalman filter based trilateration
are listed in Table 3. From the Table, we notice that
the Kalman filter has dramatically improved the position
estimation of the lost robot.
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Figure 9. The difference between the estimated position
and the true position of the robot in a typical run.
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Figure 10. The trajectory of the deployment with one
lost robot. The dashed line represents the trajectory
of the lost robot whose position is estimated with the
recovery algorithm.

4.7. Robustness to Environmental Perturbations

In this case study, we evaluate the robustness of the system
to the changes in the number of robots after shape formation
has already finished and perturbations in the environment,
such as a moving obstacle. More specifically, two scenarios
are considered. In the first scenario, we test if the robots can
reorganize themselves when additional robots join the team
after convergence. In the second test, we check the robots’
behavior given a moving obstacle in the environment.

Fig. 11 plots the trajectories of robots before newcomers
join, and the self-reorganization process of the robots when
the newcomers join the team. This result demonstrates
the autonomous re-organization capability of the proposed
approach, because no additional controlled process is needed
for re-organization.

Next, we examine the behavior of the robots when there
is a moving target in the environment. Fig. 12 shows two
snapshots captured before an obstacle moves towards the
robot team and shortly before the obstacle moves away
from them. From the snapshots, we can see that the robots
deployed on the shape are able to move temporarily away
to avoid a collision with the obstacle. Although only one
obstacle is implemented in our simulation, similar behaviors
are observed for multiple moving obstacles. This simulation
study demonstrates that the system can autonomously adapt



Table 3. Trilateration recovery with and without Kalman filter.

Convergence time (mean± std) Position error
(mean± std)

The lost robot’s position error (mean± std)

With location recovery 609.67± 103.53 0.105± 0.024 0.188± 0.032
Without location recovery 4073.6± 3106.30 0.693± 0.178 5.1377± 1.803
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Figure 11. Trajectories of multi-robots during self-
organization in the presence of newcomers. The initial
positions of the robots are denoted by ‘*’, the intermedi-
ate positions where the first batch of robots are located
are denoted by ‘o’, and the final positions of all the
robots are denoted by ‘+’. The dash lines represent the
initial deployment trajectories of the first batch of robots
and the solid lines represent the trajectories of all the
robots after incorporating newcomers. (a) 3 robots with
2 newcomers; (b) 8 robots with 4 newcomers.

itself to the environmental changes.

5. Conclusions

In this paper, we have presented a number of case studies
investigating the performance of a decentralized GRN based
approach to self-organizing multi-robot systems suggested
in [10]. Three main aspects of the algorithm are studied.
First, we examine the sensitivity of the system’s performance
on the changes in the number of robots and the target
shape. This is implemented by checking the convergence
time and position error of the system using a set of param-
eters optimized for a particular situation. Second, we study
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Figure 12. A set of snapshots of the robot’s behavior
of reacting to a moving obstacle. (a) The obstacle is
moving towards the robots (b) robots are adapting to
avoid the obstacle.

the robustness of the system to sensory noise in distance
measurement and self-localization. As an extreme case, we
also look into the case when a complete self-localization
failure occurs. In this case, a location recovery algorithmis
introduced with the help of trilateration and a Kalman filter.
Third, we check the re-organization capability of the system
in two situations. In the first situation, new robots need to
join a set of robots that have converged to the target shape.
In the second situation, an obstacle is moving around in the
region where the target shape is situated.

Through all the case studies regarding the effectiveness
and robustness of the self-organization algorithm mentioned
above, we can conclude that gene regulatory network based
method for self-organization of multiple robots for formation
is effective, insensitive to parameter setup and robust to
changes in the system or in the environment. Nevertheless, in
case of a complete self-localization failure, accurate recovery
of the position information of the lost robot is important
so that all robots can be distributed to the target shape. Of



course, if we only care about that the target shape is properly
covered when there are sufficient robots, the system is also
insensitive to localization failure of a few individual robots.
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