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Level-Set Segmentation with Contour based Object Representation

Daniel Weiler, Florian Roehrbein, Julian Eggert

Abstract— In this paper we present an approach for contour
based object representation. To this end we use a curvature
signal gained by a level-set segmentation method. The advantage
of that curvature signal is that it generates no computational
overhead as it is a byproduct of standard level-set segmentation
methods. Different methods for the description of the segmented
objects, so called object descriptors are presented. The object
descriptors are all invariant against translation, rotation and
scale of the object. Furthermore we show a sparse and memory
efficient representation of the descriptors for a series of objects.
Finally an approach for classification of unknown objects based
on “memorized” objects is proposed.

I. I NTRODUCTION

I N the field of image segmentation, two major approaches
can be distinguished:multi region segmentationand

figure-background segregation. While the former tries to
group similar (by their image features) and related (by their
spatial properties like location, etc.) pixels of an image into
separate regions, the latter attempts to find a few salient re-
gions of an image considering them as a foreground “figure”,
labeling all the reminder without any further differentiation
as background. In this paper we address the problem of
figure-background segregation based on level-set methods,
with a special focus on a contour based representation of the
segmented objects.

The segmentation occurs by means of level-set methods
[1], which separate all image pixels into two disjoint regions
by favoring homogeneous image properties for pixels within
the same region and dissimilar image properties for pixels
belonging to different regions. The level-set formalism de-
scribes the region properties using an energy functional that
implicitly contains the region description and that has to be
minimized. The formulation of the energy functional dates
back to e.g. Mumford and Shah [2] and to Zhu and Yuille [3].
Later on, the functionals were reformulated and minimized
using the level-set framework e.g. by [4] and [5]. In recent
years level-set methods became a powerful tool for image
segmentation. State-of-the-art level-set methods are able to
work on arbitrary feature maps [6]. These feature maps may
incorporate the three color components of an image but might
be extended by any other characteristic property of a region
(e.g. texture and motion). Most level-set methods assume
the feature maps to be independent and commonly utilize a
feature vector composed of three color and three texture com-
ponents to perform the segmentation [7]. In [8] an approach
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was introduced that yields competitive results by employing
only the three color components but considering these image
features as located in a common, multi-dimensional feature
space comparable to the probabilistic color distributions
modeled by means of Gaussian Mixture Models in state-of-
the-art figure-background segregation algorithms [9], [10],
[11].

Among all segmentation algorithms from computer vision,
level-set methods provide perhaps the closest link with the
biologically motivated, connectionist models as represented
e.g. by [12]. Similar to neural models, level-set methods
work on a grid of nodes located in image/retinotopic space,
interpreting the grid as having local connectivity, and using
local rules for the propagation of activity in the grid. Time
is included explicitly into the model by a formulation of the
dynamics of the nodes activity. Furthermore, the external in-
fluence from other sources (larger network effects, feedback
from other areas, inclusion of prior knowledge) can be read-
ily integrated on a node-per-node basis, which makes level-
sets appealing for the integration into biologically motivated
system frameworks.

In addition to color and texture, shape is a fundamental
feature of an object. In recent years a large number of shape
descriptors were introduced. In [13] a comprehensive shape
review is given. Generally, two types of shape representation
can be distinguished: contour-based and region-based meth-
ods. While the former exploit only shape boundary features
(e.g. curvature and perimeter), the latter consider all pixels of
an object (e.g. area, compactness and geometric moments).
In this paper we address the former contour-based methods.

In [14] the population coding of shape in area V4of
macaque monkeys is studied. Based on the tuning of many
macaque V4 neurons for the curvature of an objects contour,
it is shown that populations of these neurons represent entire
shapes. To this end, the responses of 109 neurons in area V4
were evaluated. The neurons were stimulated by 49 basic
shapes. The population responses were arranged on a two-
dimensional grid: angular postion (abscissa) times boundary
curvature (ordinate). Based on this population code, the
curvature signal, i.e. the shape of the original object, that was
presented to the neurons could be retrieved. The “curvature”
activity maps shown in [14] are similar to the results we
show in this paper in Sect. IV-B in Fig. 5. Based on
and motivated by this similarity of level-set segmentation
curvature signals to the primate visual cortex we evaluate in
this paper curvature based object descriptors and sparse and
memory efficient representation of these descriptors.

The paper is organized as follows. In Sect. II we describe
the level-set method applied for image segmentation and the
approaches to extract a curvature signal from the level-set

3327



function. Section III introduces the proposed method for
translation, scale and rotation invariant object description
based on a curvature signal. The results of the proposed
algorithms are presented in Sect. IV. A short discussion
finalizes the paper.

II. L EVEL-SET SEGMENTATION

A. Standard Level-Set based Region Segmentation

Level-set methods are front propagation methods. Starting
with an initial contour, the figure-background segregation
task is solved by iteratively moving the contour according
to the solution of a partial differential equation (PDE).
The PDE is often originated from the minimization of an
energy functional. The solution to the PDE constitutes an
initial value problem that is solved by a gradient descent.
Depending on the initialization of the problem (i.e. on the
initial contour) the gradient descent will, in cases of reliable
initialization, succeed in finding the global minimum of the
energy functional or, in cases with unreliable initialization,
fail in doing so and be stuck in a local minimum. Famous
representatives of energy functionals for image segmentation
problems are those by Mumford and Shah [2] and by Zhu
and Yuille [3]. While the former work in its original version
on gray value images (i.e. on scalar data), utilize the mean
gray value of a region as a simple region descriptor and
were only later extended to vector valued data [6] (e.g.
color images), the latter use more advanced probabilistic
region descriptors that are based on the distributions of each
feature channel inside and outside the contour. In many cases
it is sufficient to model these distributions by uni-modal
Gaussian distributions. In some rare cases the distributions
are approximated in a multi-modal way [5] e.g. by Gaussian
Mixture Models or Nonparametric Parzen Density Estimates
[15]. Within a region the models of all features together add
up to the region descriptor.

Similar to state-of-the-art figure-background segregation
algorithms [9], [10], [11], level-set methods use a smooth-
ness term to control the granularity of the segmentation. A
common way is to penalize the length of the contour, that can
be formulated in the energy functional by simply adding the
length of the contour to the energy that is to be minimized.
In doing so, few large objects are favored over many small
objects as well as smooth object boundaries over ragged
object boundaries.

Compared to “active contours” (snakes) [16], that also
constitute front propagation methods and explicitly represent
a contour by supporting points, level-set methods represent
contours implicitly by a level-set function that is defined over
the complete image plane. The contour is defined as an iso-
level in the level-set function, i.e. the contour is the set of all
locations, where the level-set function has a specific value.
This value is commonly chosen to be zero, thus the inside and
outside regions can easily be determined by the Heaviside
functionH(x) 1.

1H(x) = 1 forX > 0 andH(x) = 0 forX ≤ 0 .

The proposed object description framework is based on a
standard two-region level-set method for image segmentation
[5], [8], [17]. In a level-set framework, a level-set function
φ ∈ Ω 7→ R is used to divide the image planeΩ into two
disjoint regions,Ω1 andΩ2, whereφ(x) > 0 if x ∈ Ω1 and
φ(x) < 0 if x ∈ Ω2. Here we adopt the convention thatΩ1

indicates the background andΩ2 the segmented object. A
functional of the level-set functionφ can be formulated that
incorporates the following constraints:

• Segmentation constraint: the data within each regionΩi
should be as similar as possible to the corresponding
region descriptorρi.

• Smoothness constraint: the length of the contour sepa-
rating the regionsΩi should be as short as possible.

This leads to the expression2

E(φ) = ν

∫

Ω

|∇H(φ)|dx −
2

∑

i=1

∫

Ω

χi(φ) log pi dx (1)

with the Heaviside functionH(φ) and χ1 = H(φ) and
χ2 = 1 − H(φ). That is, theχi’s act as region masks,
sinceχi = 1 for x ∈ Ωi and 0 otherwise. The first term
acts as a smoothness term, that favors few large regions
as well as smooth regions boundaries, whereas the second
term contains assignment probabilitiesp1(x) andp2(x) that
a pixel at positionx belongs to the inner and outer regionsΩ1

andΩ2, respectively, favoring a unique region assignment.
Minimization of this functional [1] with respect to the

level-set functionφ using gradient descent leads to

∂φ

∂t
= δ(φ)

[

ν div

(

∇φ

|∇φ|

)

+ log
p1

p2

]

(2)

with the smeared-out delta-functionδ(φ) as a numerically
approximation to the derivation ofH(φ) e.g.:

δ(φ) =
1

π
·

τ

τ2 + φ2
. (3)

A region descriptorρi(f) that depends on the image fea-
ture vectorf serves to describe the characteristic properties of
the outer vs. the inner regions. The assignment probabilities
pi(x) for each image position are calculated based on an
image feature vector viapi(x) := ρi(f(x)). The parameters
of the region descriptorρi(f) are gained in a separate step
using the measured feature vectorsf(x) at all positions
x ∈ Ωi of a regioni.

B. Signed-Distance Functions and Curvature Signals

In general, level-set methods evaluate exclusively the sign
of the level-set function to determine an object and its
surroundings. The exact value of the level-set function is not
considered by most approaches. Signed-distance functions
[18] are a common means of regulating the value of the
level-set function, as they enforce the absolute value of the
gradient of the level-set function to be one.

|∇φ| = 1 . (4)

2Remark thatφ, χi andpi are functions over the image positionx.

3328



Fig. 1. The way from a level-set function to the curvature signal. Starting in the upper left. From the level-set-function (upper left) the curvatureκ (upper
right) of each position of the level-set function and the level-set iso-contour∂Ω (lower left) can be derived. Tracing the level-set iso-contour∂Ω and
reading the curvature valuesκ at the position of the contour yields the curvature signalC(ψ) (lower right).

Thus many level-set algorithms requiring the computation
of the gradient become simpler and furthermore, the value
of the level-set function corresponds to the distance from the
contour. A common signed distance regularization equation
evaluates the difference of the absolute value of the gradient
to the requested value one:

∂φ

∂t
= −S(φ0) (|∇φ| − 1) (5)

with S(φ0) as a smeared out signum function e.g.:

S(φ0) =
φ0

√

φ2
0 + 1

. (6)

More advanced methods for the level-set reinitialization can
be found in e.g. [19], [20], [21], [22], [23]

The curvatureκ of the boundary∂Ω, whereφ(x) = 0 if
x ∈ ∂Ω between the regionsΩ1 and Ω2 is defined as the
divergence of the normal

N =
∇φ

|∇φ|
(7)

yielding

κ = ∇ ·

(

∇φ

|∇φ|

)

. (8)

The curvatureκ features positive values for convex regions
of the boundary, zero for straight regions of the boundary
and negative values for concave regions, respectively.

Starting at an arbitrary boundary point, walking (counter
clock wise) along the boundary and collecting the curvature
valuesκ yields a curvature signalκ(ψ) (see Fig. 1). The
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curvature signal exhibits a period of2π. One period ofκ(ψ)
with ψ ∈ [0; 2π[ will be denoted as the curvature signal
C(ψ) of a segmented level-set objectΩ2.

Remark: One property of level-set methods for image seg-
mentation are segmented regionsΩ2 that are not connected.
In our case we assume that the segmented level-set objectΩ2

features only one continuous curvature and thus does not
consist of two or more unconnected regions. This is without
loss of generality as in the case of two or more unconnected
regions, the proposed methods can be applied to each region
separately.

III. C ONTOUR-BASED, SCALE AND ROTATION

INVARIANT OBJECT REPRESENTATION

A. Curvature Function in Spatial Domain

The curvature signalC(ψ) of a segmented level-set object
Ω2 can already be used as an object descriptor. Such a
descriptor would be translation invariant but not scale or
rotation invariant. To achieve a scale invariant representation,
the lengthL of the boundary∂Ω is normalized to2π, which
corresponds to the perimeter of the unit circle. The lengthL

of the boundary is defined as follows:

L(∂Ω) =

∫

Ω

∂Ω dx . (9)

The scale invariant normalization ofC(ψ) requires a scale
factor

s =
2π

L(∂Ω)
(10)

which yields the final scale normalized curvature signal

C̃(ψ) =
1

s
· C(ψ) =

L(∂Ω)

2π
· C(ψ) . (11)

To achieve also a rotation normalization, i.e. a normaliza-
tion with respect to the starting point on the contour and a
rotation of the object, the scale normalized curvature signal
C̃(ψ) has to be aligned to the phaseϕ1 of its fundamental
frequency, which yields a final translation, scale and rotation
invariant curvature signal

Ĉ(ψ) = C̃(ψ + ϕ1) . (12)

The phaseϕ1 of the fundamental frequency of the curvature
signal is defined by Fourier series [24] as follows:

ϕ1 = ∠





2π
∫

0

Ĉφ(ψ)e−iψ dψ



 . (13)

Remarks: 1) For curvature signals that exhibit a period of
n · 2π with n ∈ N and n > 1 the fundamental frequency
vanishes, i.e. its magnitude becomes zero and thus no phase
can by detected. In this case the phase of the first overtone,
whose magnitude is not zero should be used for rotation
normalization. 2) For circles, whose curvature signals are
straight lines, no phases can be detected at all. To be able

to handle also that case, a pre-test for circles has to be done,
which might e.g. be done by evaluating

¬circle =

2π
∫

0

(

C̃(ψ) − 1
)2

dψ (14)

which equals zero for scale normalized circles.
Implementing the above developed contour-based, scale

and rotation invariant object representation, the curvature
signals for a single object vary depending on its scale
and rotation due to numerical quantization errors. For this
purpose we decided to collect normalized curvature signals
Ĉi(ψ) of the same objects but with different scales and
rotations. To combine all these curvature signals to one
common representative signal for the object – the object
descriptorC̄(ψ) – we propose three different methods.

The first methods uses the mean curvature signal as defined
by

C̄M (ψ) =

∑

i

Ĉi(ψ)

∑

i

1
(15)

as an object descriptor̄C(ψ).
The second method exploits a Gaussian approximation of

the distribution (overi) of the collected curvature signals
Ĉi(ψ) as an object descriptor̄C(ψ), defined as follows:

C̄G(ψ) = N
(

µ(ψ), σ2(ψ)
)

(16)

whereµ(ψ) equalsC̄M (ψ) andσ2(ψ) is defined as follows:

σ2(ψ) =

∑

i

(

Ĉi(ψ) − C̄M (ψ)
)2

∑

i

1
. (17)

The third method represents the object descriptorC̄(ψ)
extensively in a grid based way – a histogram that reflects
a non-parametric representation of the distribution of the
collected curvature signalŝCi(ψ), defined as follows:

C̄H(ψ) = H(ψ,m) = (hm(ψ)) . (18)

The histogramH(ψ,m) = (hm(ψ)) is defined as:

hm(ψ) =

∑

i

(

H(Ĉi(ψ) − bm) −H(Ĉi(ψ) − bm+1)
)

∑

i

1

(19)
with bins indexed bym and borders of the histogram
bins defined bybm. This object descriptor (the histogram
H(ψ,m) = (hm(ψ))) is similar to the neural activity maps
shown in [14]. Here the authors show neural responses in a
two-dimensional grid. One axis corresponds to the angular
positionψ and the other axis to the curvature valueκ.
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B. Curvature Function in Frequency Domain

So far we looked at the objects level-set curvature signal
C(ψ) only in the spatial domain. In the context of periodical
signals Fourier analysis constitutes a means of evaluating
these signals. A periodical signalC(ψ) with the period
T = 2π and the angular frequencyω = 2π

T
= 2π

2π
= 1

can be written as [24]:

C(ψ) =

∞
∑

n=−∞

cne
inψ (20)

with the complex Fourier coefficients

c(n) =
1

2π

2π
∫

0

C(ψ)e−inψ dψ . (21)

To achieve scale invariance the curvature signal needs to be
scaled analog to Eq. 11 in spatial domain. This yields the
scale invariant complex Fourier coefficients

c̃(n) =
1

s
· c(n) (22)

with the scale factors as defined in Eq. 10.
To achieve rotation invariance two methods are possible. In

the first method, the phaseϕ1 of the fundamental frequency
has to be determined as in Eq. 13. All complex Fourier
coefficients can be rotation normalized by the following
equation:

ĉF (n) = einϕ1 · c̃(n) . (23)

The second method we propose for rotation invariant
object representation completely ignores the phases of the
Fourier coefficients and uses only their magnitude

ĉ|F |(n) = |c̃(n)| . (24)

Equation 24 neglects some information of the curvature
signal. In our experience the reduced information is still able
to act as an object descriptor. In particular when comparing a
“new” object descriptor to descriptors given in a “memory”
(see Ch. III-C for a detailed discussion). Furthermore, it is
not necessary to use all Fourier coefficientsĉ(n) with n ∈ Z.
Also the firstN Fourier coefficientŝc(n) with |n| ≤ N are
sufficient to represent the objects contour. Disregarding the
higher Fourier coefficients is equivalent to a low-pass filtering
of the curvature signal, thus very similar objects, that differ
only in high details on their surface, are represented by the
same object descriptors. This observation would also occur
due to quantization errors, when leaving the mathematical
formulation and going to real implementations. Furthermore
this constitutes a well received generalization property of the
proposed approach.

Following the above discussion, Eq. 23 and Eq. 24 with
|n| ≤ N leads to a discrete object descriptor. Together with
a series of curvature signals in frequency domainĉi(n),
acquired at different scales and rotations, again three different
methods of obtaining object descriptors̄c are proposed.
Analog to those in ch. III-A an object descriptorc̄M (n) based
on the mean values (cp. Eq. 15),c̄G(n) = N (µ(n), σ2(n))

a Gaussian (i.e. parametric) distribution (cp. Eq. 16) and
c̄H(n,m) a non-parametric, histogram-based distribution (cp.
Eq. 18) are proposed.

C. Object classification

Until now the objects are segmented and represented by
an object descriptor, derived from a curvature signal of the
object’s contour. For the object descriptor three different
methods of creating a scale and rotation invariant represen-
tation were presented. One in the spatial domain (Eq. 12:
Ĉ(ψ)) and two in the frequency domain, with and with-
out considering the phase information (Eq. 23:ĉF (n) and
Eq. 24: ĉ|F |(n), respectively). Independent from those we
have presented three methods for collecting the information
of a series of object descriptorŝCi(ψ) or ĉi(n) for the
same objects. These methods are based one the mean values
(Eq. 15), a Gaussian distribution (Eq. 16) and a histogram
that approximates the distribution (Eq. 18). As every method
of object descriptor creation can be combined with every
method of object descriptor collection we arrive at nine
different methods for obtaining an object descriptor (C̄(ψ)
and c̄(n) in spatial and frequency domain, respectively) of
one object, as depicted in Fig. 2.

mean gaussian full

space

frequency (mag only)

frequency (mag+phase)

Fig. 2. Three different methods of representing the curvature signal (left
column) and three different methods of collecting a serious of curvature
signals for the same object and creating an object descriptor (top row).

In this section we will develop a method to use a number
of known (“memorized”) object descriptors to recognize an
unknown object based on its object descriptor derived from
its curvature signal. For this purpose all nine above proposed
methods may be used to build an object descriptor database
(“memory”) C̄k(ψ) and c̄k(n) of known objectsk. The
object descriptor of e.g. an unknown objectĉ|F |(n) can be
compared to all known object descriptorsc̄|F |

k (n) by e.g.
computing the corresponding Euclidean distances

dk = ||c̄
|F |
k (n) − ĉ|F |(n)|| =

∑

n

(

(c̄
|F |
k (n) − ĉ|F |(n))2

)

.

(25)
In this way the most probable object is found by determining
the indexkmin of the minimal distance

kmin = argmin(dk) . (26)

For a given number of objects and when all objects’
descriptors are known (“memorized”), the length of the
object descriptors, i.e. the number of components in the
vectorsc̄k(n) can be reduced. Even with such a sparse object
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descriptor representation, unknown objects can sufficiently
well be assigned to a known object from the database
(“memory”). In the following we will present two methods
to reduce the number of descriptor dimensions.

The first method works with object descriptorsc̄Mk (n) for
each known objectk that are based on the absolute value
of the Fourier coefficients that are represented only by the
mean values of the collected curvature signals

c̄Mk (n) =

∑

i

ĉ
|F |
i,k (n)

∑

i

1
(27)

with ĉ
|F |
i,k (n) as defined in Eq. 24. The number of re-

quired components can be reduced by applying standard
PCA (principle component analysis) [25]. PCA constitutes
a linear transformation, that transforms the original(N+1)-
dimensional (n ∈ {0, 1, ..., N}) objects descriptor̄ck(n) to
a lower,Q-dimensional (Q < N + 1) object descriptor

c̄k(q) = T · c̄k(n) (28)

with the transformation matrixT . The transformation matrix
T is determined by the PCA in a way that investigates the
direction of the greatest variance of the object descriptors’
components. The directions of great variance are preserved,
while the directions with low variance are refused. Every
object descriptor of an unknown objectĉ(n) has now to
be transformed in the low dimensional space via Eq. 28. In
this low-dimensional space, the corresponding known object
descriptor can be found analog to Eq. 25 and Eq. 26. In
this way only the transformation matrixT and thek known
low-dimensional object descriptors have to be memorized.

The second method is also based on the absolute values
of the Fourier coefficients. In contrast to the first method
the distributionc̄k(n) of the descriptors componentn of the
known objectk are assumed to be known. The distribution
might be approximated by a Gaussian distributionc̄k(n) =
N

(

µk(n), σ2
k(n)

)

(cp. Eq. 16) or represented discrete by a
histogramc̄k(n) = Hk(n,m) (cp. Eq. 18). In the following
we will represent the distribution of then’s components of
the k’s known object by

Dk,n
(

ĉ|F |(n)
)

= Dk,n(c) = Pn(c|k) (29)

which equals the conditional probabilityPn(c|k) of the n’s
descriptors component for the object descriptor valuec, given
the known objectk. For a not assigned object descriptorc =
ĉ|F |(n) the classification probabilityP (k|c) for each known
object k, given the object descriptorc can be computed as
follows:

Pk = P (k|c) =
∏

n

Pn(k|c) (30)

The object will than be assign to the known objectkmax with
the highest probabilityPk:

kmax = argmax(Pk) (31)

with

Pn(k|c) =
Pn(c|k) · Pn(k)

Pn(c)
(32)

according to Bayes’ theorem [26]. Without preferring any
object

Pn(k) =
1

K
(33)

whereK denotes the total number of known objects and

Pn(c) =
∑

k

Pn(c ∩ k)

=
∑

k

Pn(c|k) · Pn(k)

=
1

K

∑

k

Pn(c|k) (34)

that finally reads as

Pn(k|c) =
Pn(c|k)

∑

k

Pn(c|k)
(35)

To reduce the number of components in the object descrip-
tor vectors the probabilityPn for a correct classification of
all known objectsk, based only on one single component
can be computed for all componentsn. Choosing only the
Q components with the highest probabilitiesPn to represent
the objects and ignoring the reminding components yields a
new low-dimensional object descriptor. The probabilityPn

accumulates the correct classification of all known objectsk

and thus is defined as the product of all probabilitiesPn,k

of the correct classification of each objectk

Pn =
∏

k

Pn,k (36)

with the correct classification probabilityPn,k for the known
objectk and the object descriptors componentn defined as
follows:

Pn,k =
P
n,k
HIT + P

n,k
CR

P
n,k
HIT + P

n,k
FA + P

n,k
MISS + P

n,k
CR

. (37)

Defining the sets

Sn,k = {c | arg max
k̃

(Pn(k̃|c)) = k} (38)

that contain all valuesc that yield a decision for the known
objectk leads to thehit-probability

P
n,k
HIT = Pn(Sn,k|k) =

∫

Sn,k

Pn(c|k) dc (39)

the false alarm-probability

P
n,k
FA

= Pn(Sn,k|¬k) =
∑

k̃ 6=k

∫

S
n,k̃

Pn(c|k̃) dc (40)

the miss-probability

P
n,k
MISS = Pn(¬Sn,k|k) =

∫

¬Sn,k

Pn(c|k) dc (41)
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and thecorrect rejection-probability

P
n,k
CR

= Pn(¬Sn,k|¬k) =
∑

k̃ 6=k

∫

¬S
n,k̃

Pn(c|k̃) dc . (42)

Both presented methods have in common that the number
of components in the low-dimensional object descriptor
space has to be predefined and is not determined by the
algorithms themselves. Please see Sect. IV for reasonable
values.

IV. M AIN RESULTS

A. Simple database with six basic shapes

We used a simple database for basic tests of the proposed
method. Figure 3 depicts the six basic shapes used for the
results presented in this section.

Fig. 3. Database with six basic shapes. These basic shapes were used to
produce the results shown in this section

These basic shapes where chosen to demonstrate the
principles of the approach and to show easily comprehensible
examples. The proposed methods are not restricted to these
basic shapes, but when using more complex shapes, the cur-
vature signals and object descriptors also get more complex
and thus the examples would become less descriptive.

B. Curvature Function in Spatial Domain

Figure 4 depicts a spatial domain object descriptor for the
first basic shape (Fig. 3, upper left). The object descriptor is
based on a Gaussian distributionC̄G(ψ) = N

(

µ(ψ), σ2(ψ)
)

(cp. Eq. 16). The horizontal axis represents the angular
positionψ and the vertical axis the mean curvatureκ = µ

Fig. 4. Spatial domain object descriptor for the first basic shape (Fig. 3,
upper left). The object descriptor is represented by mean values and the
corresponding standard deviation, the parameters of a Gaussian distribution.
The horizontal axis represents the angular positionψ and the vertical axis
the mean curvatureκ = µ and its standard deviationσ.

and its standard deviationσ. The curvature signal starts in
the middle of the great circle that corresponds to a section of
almost constant curvature. This section is followed by a small
section of great concavity, i.e. negative values. Thereafter are
three peaks of positive curvature located, i.e. convex parts of
the contour. Theses peaks correspond to the three corners
in the lower right part of the object. Finally a section with
constant curvature can be observed, that belongs to the great
circle again.

A histogram based object descriptorC̄H(ψ) (cp. Eq. 18)
is depicted in Fig. 5. The horizontal axis represents the
angular positionψ and the vertical axis the distribution of
the curvatureκ. Dark areas of the image denote high values

Fig. 5. Histogram based object descriptor̄CH(ψ) for the first basic
shape (Fig. 3, upper left). The object descriptor is represented by discrete
distributions of the curvatureκ. The horizontal axis represents the angular
position ψ and the vertical axis the curvatureκ. Dark areas of the image
denote high values (probabilities) and bright areas denote low values
(probabilities).
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(probabilities) and bright areas denote low values (proba-
bilities). This object descriptor is similar to the population
responses of neurons in area V4, shown in [14].

C. Curvature Function in Frequency Domain and Object
Classification

Figure 6 depicts all six frequency domain object de-
scriptorsc̄G(n) = N (µ(n), σ2(n)) based on Gaussian (i.e.
parametric) distributions (cp. Eq. 16) withN = 15 for the
basic shapes shown in Fig. 3. The horizontal axis represents
the componentn ∈ {0, 1, . . . , 15} of the object descriptor.
The colors denote the different objectsk.

Fig. 6. Frequency domain object descriptors for all six objects with basic
shapes from Fig. 3. The different colors denote the objects. Shown are the
mean values and standard deviations of each object descriptors component.
The componentn = 4 shows the highest probability to classify all objects
correct.

In the columnn = 4 in Fig. 6 all six colors, i.e. all six
objects, can clearly be distinguished from each other. The
components either have only little variance or, in case of
large variance (the one on the top), have a large distance to
their nearest neighbors. Thus the probabilityPn for a correct
classification of all objects (see Eq. 36) is maximal for the
columnn = 4. Sparse object descriptors for the database of
basic shapes from Fig. 3 would work quite well, using only
the fourth component of all non-sparse object descriptors.

V. CONCLUSION

In this paper we gave a brief introduction to level-set
methods for image segmentation. We showed the regular-
ization by signed-distance functions and how to create a
curvature signal from a given level-set function. Three differ-
ent methods for the translation, scale and rotation invariant
representation of curvature signals were shown. Furthermore
we proposed three methods for creating object descriptors
from a series of curvature signals for the same object. Finally
we introduced an approach for object classification based
on the proposed object descriptors. This object classification
approach included two methods for dimension reduction of
the used object descriptors.

Future work will include the evaluation of the integration
of the proposed approaches in a larger object detection and
classification framework.
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