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Level-Set Segmentation with Contour based Object Representation
Daniel Weiler, Florian Roehrbein, Julian Eggert

Abstract— In this paper we present an approach for contour was introduced that yields competitive results by employing
based object representation. To this end we use a curvature only the three color components but considering these image
signal gained by a level-set segmentation method. The advantage o a1res as located in @ common, multi-dimensional feature
of that curvature signal is that it generates no computational L SR
overhead as it is a byproduct of standard level-set segmentation space comparable to the p_rObab_'“St'C color d'_smbuuons
methods. Different methods for the description of the segmented Modeled by means of Gaussian Mixture Models in state-of-
objects, so called object descriptors are presented. The object the-art figure-background segregation algorithms [9], [10],
descriptors are all invariant against translation, rotation and  [11].
scale of the object. Furthermore we show a sparse and memory — Among all segmentation algorithms from computer vision,
e_fﬁ(:lent representation of the_ _des_cnptors for a series of objects. level-set methods provide perhaps the closest link with the
Finally an approach for classification of unknown objects based ™~ g X LS
on “memorized” objects is proposed. biologically motivated, connectionist models as represented
e.g. by [12]. Similar to neural models, level-set methods
work on a grid of nodes located in image/retinotopic space,

N the field of image segmentation, two major approachésterpreting the grid as having local connectivity, and using

can be distinguishedmulti region segmentatiorand local rules for the propagation of activity in the grid. Time
figure-background segregatiorWhile the former tries to is included explicitly into the model by a formulation of the
group similar (by their image features) and related (by thetlynamics of the nodes activity. Furthermore, the external in-
spatial properties like location, etc.) pixels of an image intfluence from other sources (larger network effects, feedback
separate regions, the latter attempts to find a few salient fgem other areas, inclusion of prior knowledge) can be read-
gions of an image considering them as a foreground “figureily integrated on a node-per-node basis, which makes level-
labeling all the reminder without any further differentiationsets appealing for the integration into biologically motivated
as background. In this paper we address the problem gfstem frameworks.
figure-background segregation based on level-set methods|n addition to color and texture, shape is a fundamental
with a special focus on a contour based representation of tfeature of an object. In recent years a large number of shape
segmented objects. descriptors were introduced. In [13] a comprehensive shape

The segmentation occurs by means of level-set methogsview is given. Generally, two types of shape representation
[1], which separate all image pixels into two disjoint regiongan be distinguished: contour-based and region-based meth-
by favoring homogeneous image properties for pixels withinds. While the former exploit only shape boundary features
the same region and dissimilar image properties for pixe{g.g. curvature and perimeter), the latter consider all pixels of
belonging to different regions. The level-set formalism dean object (e.g. area, compactness and geometric moments).
scribes the region properties using an energy functional thiat this paper we address the former contour-based methods.
implicitly contains the region description and that has to be In [14] the population coding of shape in area Vdf
minimized. The formulation of the energy functional datesnacaque monkeys is studied. Based on the tuning of many
back to e.g. Mumford and Shah [2] and to Zhu and Yuille [3]macaque V4 neurons for the curvature of an objects contour,
Later on, the functionals were reformulated and minimizeil is shown that populations of these neurons represent entire
using the level-set framework e.g. by [4] and [5]. In recenghapes. To this end, the responses of 109 neurons in area V4
years level-set methods became a powerful tool for imageere evaluated. The neurons were stimulated by 49 basic
segmentation. State-of-the-art level-set methods are abledivapes. The population responses were arranged on a two-
work on arbitrary feature maps [6]. These feature maps majimensional grid: angular postion (abscissa) times boundary
incorporate the three color components of an image but migbtirvature (ordinate). Based on this population code, the
be extended by any other characteristic property of a regi@urvature signal, i.e. the shape of the original object, that was
(e.g. texture and motion). Most level-set methods assunpeesented to the neurons could be retrieved. The “curvature”
the feature maps to be independent and commonly utilizeagtivity maps shown in [14] are similar to the results we
feature vector composed of three color and three texture coghow in this paper in Sect. IV-B in Fig. 5. Based on
ponents to perform the segmentation [7]. In [8] an approadind motivated by this similarity of level-set segmentation

) o o __curvature signals to the primate visual cortex we evaluate in
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function. Section Il introduces the proposed method for The proposed object description framework is based on a
translation, scale and rotation invariant object descriptiostandard two-region level-set method for image segmentation
based on a curvature signal. The results of the proposgs], [8], [17]. In a level-set framework, a level-set function
algorithms are presented in Sect. IV. A short discussiop € Q2 — R is used to divide the image plarie into two

finalizes the paper. disjoint regions£2; and 2, where¢(x) > 0 if z € Q; and
o(x) < 0if z € Q. Here we adopt the convention thag

Il. LEVEL-SET SEGMENTATION indicates the background arfe, the segmented object. A

A. Standard Level-Set based Region Segmentation functional of the level-set functiop can be formulated that

| hod ; . hod _incorporates the following constraints:
Level-set methods are front propagation methods. Startlng. Segmentation constraint: the data within each re@lpn

){Mti an |r:|t|aclj (l;on_ttour,t. th? flgurg-ba}[ﬁkgrour;d segregzt]on should be as similar as possible to the corresponding
ask is solved by iteratively moving the contour according region descriptop;.

to the sol_ution of a partial differential _99“‘?‘“0_” (PDE). Smoothness constraint: the length of the contour sepa-
The PDE is _often orlglnated_ from the m|n|m|zat|o_n of an rating the regiong2; should be as short as possible.
energy functional. The solution to the PDE constitutes an .

initial value problem that is solved by a gradient descenil.—hIS leads to the expressfon

Depending on the initialization of the problem (i.e. on the 2

initial contour) the gradient descent will, in cases of reliable  E(¢) = V/ |VH(¢)|dzx — Z/Xi(¢) logp;dz (1)
initialization, succeed in finding the global minimum of the Q i=1g

energy functional or, in cases with unreliable initialization, b the Heaviside functionf (¢) and y1 = H(¢) and
fail in doing so and be stuck in a local minimum. Famou , = 1— H(¢). That is, they;’s act as region masks,

representatives of energy functionals for image segmentatigp,ce xi = 1 for z € Q; and 0 otherwise. The first term
problems are those by Mumford and Shah [2] and by Zhyqs a5 a smoothness term, that favors few large regions

and Yuille [3]. While the former work in its original version 45 \yell as smooth regions boundaries, whereas the second
on gray value images (i.e. on scalar data), utilize the meqgyy contains assignment probabilitiesz) andp (z) that
gray value of a region as a simple region descriptor and sixe| at position: belongs to the inner and outer regidiis

were only later extended to vector valued data [6] (€.Qnq,, respectively, favoring a unique region assignment.
color images), the latter use more advanced probabilistic \jinimization of this functional [1] with respect to the

region descripto_rs t_hat are base_zd on the distributions of eagha|.get functions using gradient descent leads to
feature channel inside and outside the contour. In many cases
it is sgﬁicignt to model these distributions by u.ni-r.nod-al 99 — 5(¢) |:I/div ( V¢ > o IQ] @)
Gaussian distributions. In some rare cases the distributions ot Vol D2
are approximated in a multi-modal way [S] e.g. by Gaussiajith the smeared-out delta-functiaf{¢) as a numerically
Mlxture_ Models or Nonparametric Parzen Density Estimatégpproximation to the derivation dff (¢) e.g.:
[15]. Within a region the models of all features together add
. . 1 T

up to the region descriptor. o) ==— —— . 3

L . . T 7—2 + ¢2

Similar to state-of-the-art figure-background segregation
algorithms [9], [10], [11], level-set methods use a smooth- A region descriptop;(f) that depends on the image fea-
ness term to control the granularity of the segmentation. fure vectorf serves to describe the characteristic properties of
common way is to penalize the length of the contour, that cdhe outer vs. the inner regions. The assignment probabilities
be formulated in the energy functional by simply adding the;(z) for each image position are calculated based on an
length of the contour to the energy that is to be minimizedmage feature vector vig;(z) := p;(f(z)). The parameters
In doing so, few large objects are favored over many smatif the region descriptop;(f) are gained in a separate step
objects as well as smooth object boundaries over raggeding the measured feature vectdifs) at all positions
object boundaries. x € Q; of a region:.

Compared to “active _contours (snakes) [;L(?], that aIs%_ Signed-Distance Functions and Curvature Signals
constitute front propagation methods and explicitly represent i )
a contour by supporting points, level-set methods represent'n general, Ievel—set_methods evalqate exclus!vely the sign
contours implicitly by a level-set function that is defined oveP! the level-set function to determine an object and its

the complete image plane. The contour is defined as an igrroundings. The exact value of the level-set function is not
level in the level-set function, i.e. the contour is the set of affonsidered by most approaches. Signed-distance functions

locations, where the level-set function has a specific valuE-8] aré a common means of regulating the value of the

This value is commonly chosen to be zero, thus the inside afY€!-set function, as they enforce the absolute value of the
outside regions can easily be determined by the Heavisigkadient of the level-set function to be one.
function H () 1. Vol =1 . 4)

1H(z) = 1for X > 0andH(z) = 0for X <0 . 2Remark thatp, x; andp; are functions over the image positian

3328



105

o ] | | 1

level-set-function curvature map

level-set iso-contour curvature signal

Fig. 1. The way from a level-set function to the curvature aigStarting in the upper left. From the level-set-function (upper left) the curvatueper
right) of each position of the level-set function and the level-set iso-cor@ui(lower left) can be derived. Tracing the level-set iso-contotx and
reading the curvature valuesat the position of the contour yields the curvature sighgly) (lower right).

Thus many level-set algorithms requiring the computation The curvature: of the boundand), whereg¢(z) = 0 if
of the gradient become simpler and furthermore, the value € 992 between the region€, and 2, is defined as the
of the level-set function corresponds to the distance from thdivergence of the normal
contour. A common signed distance regularization equation Vo

evaluates the difference of the absolute value of the gradient = W (7)
to the requested value one:
06 yielding
== —5(60) IVl - 1) (5) K=V (%) | ®)
Vo
with S(¢o) as a smeared out signum function e.g.: The curvatures features positive values for convex regions
bo of the boundary, zero for straight regions of the boundary
S(¢o) = \/ﬁ . (6) and negative values for concave regions, respectively.
0

Starting at an arbitrary boundary point, walking (counter
More advanced methods for the level-set reinitialization caclock wise) along the boundary and collecting the curvature
be found in e.g. [19], [20], [21], [22], [23] valuesk yields a curvature signat(y) (see Fig. 1). The
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curvature signal exhibits a period 2f. One period of<(v))  to handle also that case, a pre-test for circles has to be done,
with ¢» € [0;2n[ will be denoted as the curvature signalwhich might e.g. be done by evaluating
C(v) of a segmented level-set obje@s.
Remark: One property of level-set methods for image seg- r _ 2
mentation are segmented regiofis that are not connected. —circle = / (C () — 1) dy (14)
In our case we assume that the segmented level-set dbject 0
features only one continuous curvature and thus does not
consist of two or more unconnected regions. This is withoythich equals zero for scale normalized circles.
loss of generality as in the case of two or more unconnectedImplementing the above developed contour-based, scale

regions, the proposed methods can be applied to each regi@ﬁd rotation invariant object representation, the curvature

separately. signals for a single object vary depending on its scale
and rotation due to numerical quantization errors. For this

I1l. CONTOUR-BASED, SCALE AND ROTATION purpose we decided to collect normalized curvature signals
INVARIANT OBJECT REPRESENTATION Ci(¢y) of the same objects but with different scales and

rotations. To combine all these curvature signals to one

common representative signal for the object — the object
The curvature signal’(¢) of a segmented level-set objectdescriptorC(y) — we propose three different methods.

Q2 can already be used as an object descriptor. Such aThe first methods uses the mean curvature signal as defined

descriptor would be translation invariant but not scale doy

A. Curvature Function in Spatial Domain

rotation invariant. To achieve a scale invariant representation, D i (1)
the lengthL of the boundary)() is normalized t@m, which =M ;
corresponds to the perimeter of the unit circle. The lerigth CH(Y) = ST (15)
of the boundary is defined as follows: i
L(09) = / 90 de . (9 asan object descriptdr(v)).
Q The second method exploits a Gaussian approximation of

the distribution (over:) of the collected curvature signals

The scale invariant normalization @f(v) requires a scale Ci(4) as an object descripta (1), defined as follows:

factor )
s _
= T (10) CE W) = N (u(®), *(¥)) (16)
which yields the final scale normalized curvature signal  wherep(v) equalsCM (v)) ando?(v) is defined as follows:
~ 1 L(oQ
cw =-cw =T ow) . a 5 (¢() - (@)’

o* () = -

. . o . . 17
To achieve also a rotation normalization, i.e. a normaliza- (17)

tion with respect to the starting point on the contour and a
rotation of the object, the scale normalized curvature signal

C(1) has to be aligned to the phage of its fundamental The third method represents the object descrigt¢r)

frequency, which yields a final translation, scale and rotatiof<t€nsively in a grid based way — a histogram that reflects
invariant curvature signal a non-parametric representation of the distribution of the

collected curvature signat§ (), defined as follows:

1

CW)=CW+e¢) . (12) Y
CH(¥) = H(p,m) = (hm(¢)) (18)

The phasep; of the fundamental frequency of the curvature
signal is defined by Fourier series [24] as follows: The histogramf (¢, m) = (h,,,(v)) is defined as:

2T . .

.y ( [ dw) | w7 (H(C () = b) = H(E () — b))

0 ms 1

Remarks: 1) For curvature signals that exhibit a period of ' (29)

n - 2r with n € N andn > 1 the fundamental frequency with bins indexed bym and borders of the histogram
vanishes, i.e. its magnitude becomes zero and thus no phases defined byb,,. This object descriptor (the histogram
can by detected. In this case the phase of the first overton®&(v, m) = (h.,(¢))) is similar to the neural activity maps
whose magnitude is not zero should be used for rotaticshown in [14]. Here the authors show neural responses in a
normalization. 2) For circles, whose curvature signals ardwo-dimensional grid. One axis corresponds to the angular
straight lines, no phases can be detected at all. To be abpmsitions and the other axis to the curvature vakie
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B. Curvature Function in Frequency Domain a Gaussian (i.e. parametric) distribution (cp. Eq. 16) and

So far we looked at the objects level-set curvature signal_ (7, m) anon-parametric, histogram-based distribution (cp.
C(y) only in the spatial domain. In the context of periodicaFd: 18) are proposed.
signals Fourier analysis constitutes a means of evaluatigg Object classification

these signals. A periodical signal'(y)) with the period . .
T = 2r and the angular frequency = 2= — 2= — | Until now the objects are segmented and represented by

can be written as [24]: Nz an object descriptor, derived from a curvature signal of the
' object’s contour. For the object descriptor three different

> in methods of creating a scale and rotation invariant represen-
Cly) = Z cnc™” (20) tation were presented. One in the spatial domain (Eq. 12:
_ T C(y)) and two in the frequency domain, with and with-
with the complex Fourier coefficients out considering the phase information (Eq. 28:(n) and
2 Eq. 24:¢Fl(n), respectively). Independent from those we
¢(n) = 1 /C(d))e_i"w dip . (21) have presented three methods for collecting the information
2m J of a series of object descriptors®(y)) or ¢'(n) for the

) ] ) ) same objects. These methods are based one the mean values
To achieve scale invariance the curvature signal needs to Hf'q 15), a Gaussian distribution (Eq. 16) and a histogram

scaled analog to Eq. 11 in spatial domain. This yields thg,o¢ approximates the distribution (Eq. 18). As every method
scale invariant complex Fourier coefficients of object descriptor creation can be combined with every

(n) = 1 (n) (22) method of object descriptor collection we arrive at nine
an=75-an different methods for obtaining an object descriptof(«))
with the scale factos as defined in Eq. 10. andc(n) in spatial and frequency domain, respectively) of

To achieve rotation invariance two methods are possible. fne object, as depicted in Fig. 2.
the first method, the phasg of the fundamental frequency

has to be determined as in Eqg. 13. All complex Fourie ‘ mean gaussian ’ ‘ ful ’
coefficients can be rotation normalized by the following A\ A\
equation: . -

&F (n) = ™1 . &(n) . (23) T i i

The second method we propose for rotation invariar| frequeney(magoniy)
object representation completely ignores the phases of t i i
Fourier coefficients and uses only their magnitude frequency,(mag+phase) W, O
elfl(n) = Je(n)| - (24)

Fig. 2. Three different methods of representing the cureasignal (left
Equation 24 neglects some information of the curvatureolumn) and three different methods of collecting a serious of curvature
signal. In our experience the reduced information is still ab¥9nals for the same object and creating an object descriptor (top row).
to act as an object descriptor. In particular when comparing a . . .
. .o ject | P P . ; N P g In this section we will develop a method to use a number
new” object descriptor to descriptors given in a “memory

(see Ch. IlI-C for a detailed discussion). Furthermore, it igf known (*memorized”) object descriptors to recognize an

not necessary to use all Fourier coefficiei(is) with n < Z. unknown object based on its object descriptor derived from

Also the first V' Fourier coefficientsi(n) with |n| < N are its curvature signal. For this purpose all nine above proposed

sufficient to represent the objects contour. Disregarding ﬂg;ethods may be used to build an object descriptor database

higher Fourier coefficients is equivalent to a low-pass filterin "?emory) .Ok(w) and & (n) of known_quectsk. The

. - . .. Dbject descriptor of e.g. an unknown objétt!(n) can be
of the curvature signal, thus very similar objects, that differ . R
only in high details on their surface, are represented by ﬂ%)mpar_ed to all known opject de_scnptoaf_g (n) by e.g.
same object descriptors. This observation would also occhipmputing the corresponding Euclidean distances
due to quantization errors, when leaving the mathematica} _ |AF1.\ _ AlF] _ ZAFl N AR 2
formulation and going to real implementations. Furthermor?k 16 (n) = =)l zn: <(C’“ (n) = &7 (n)) )
this constitutes a well received generalization property of the (25)
proposed approach. In this way the most probable object is found by determining

Following the above discussion, Eq. 23 and Eq. 24 witthe indexk,,;, of the minimal distance

|n| < N leads to a discrete object descriptor. Together with Fomin = arg min(dy) (26)
a series of curvature signals in frequency doméim), m '
acquired at different scales and rotations, again three differentFor a given number of objects and when all objects’
methods of obtaining object descriptoésare proposed. descriptors are known (“memorized”), the length of the
Analog to those in ch. l1I-A an object descripi@Y (n) based object descriptors, i.e. the number of components in the
on the mean values (cp. Eq. 15f;(n) = N (u(n),02(n))  vectorséy(n) can be reduced. Even with such a sparse object
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descriptor representation, unknown objects can suffigientivith

well be assigned to a known object from the database P™(kle) = w (32)
(“memory”). In the following we will present two methods Pn(c)
to reduce the number of descriptor dimensions. according to Bayes’ theorem [26]. Without preferring any
The first method works with object descriptat¥ (n) for  object
each known object that are based on the absolute value P (k) = 1 (33)
of the Fourier coefficients that are represented only by the K
mean values of the collected curvature signals where K denotes the total number of known objects and
> éfln) P'(c) = > P"(cnk)
Mo\ i k
' (n)=——— (27)
;1 = Y P(clk)- P"(k)
k
with &l%l(n) as defined in Eq. 24. The number of re- _ 1 S P(elk) (34)
quired components can be reduced by applying standard K -
PCA (principle component analysis) [25]. PCA constitute%h t finall q
a linear transformation, that transforms the origifisl+ 1)- at finally reads as
dimensional ¢ € {0, 1,..., N'}) objects descripto¢(n) to Pr(k|c) = P"(clk) (35)
a lower,Q-dimensional < N + 1) object descriptor S Pr(clk)
k
ck(q) =T - cx(n) (28) To reduce the number of components in the object descrip-

with the transformation matri¥’. The transformation matrix tor vectors th.e probability™ for a correct glassnﬂcauon of
all known objectsk, based only on one single component

T is determined by the PCA in a way that investigates thé

o . : : can be computed for all components Choosing only the
direction of the greatest variance of the object descnptorZ%i components with the highest probabilities to represent

components. The directions of great variance are preserv ; ) : L )
b 9 P ?hé objects and ignoring the reminding components yields a

while the directions with low variance are refused. Ever¥]ew low-dimensional object descriptor. The probabify

object descriptor of an unknown objeétn) has now to e .
be transformed in the low dimensional space via Eq. 28 I%ccumulates the correct classification of all known objécts
~~ . and thus is defined as the product of all probabilitis*

this low-dimensional space, the corresponding known obje%1 e :
descriptor can be found analog to Eq. 25 and Eq. 26. I%Pthe correct classification of each objdct
this way only the transformation matrik and thek known pr — H Pk (36)
low-dimensional object descriptors have to be memorized. &

The second method is also based on the absolute valuer?n
of thg F_our!ericoefnments. In cgntrast o the first metho bjectk and the object descriptors componentlefined as
the distributioné,(n) of the descriptors componentof the follows:
known objectk are assumed to be known. The distribution ' -, -,
might be approximated by a Gaussian distributiqiin) = prk — Pyir + Per (37)
N (ur(n),o2(n)) (cp. Eq. 16) or represented discrete by a Pk + Pl + Plilig + PL
histogramcy(n) = Hi(n, m) (cp. Eg. 18). In the following
we will represent the distribution of the’s components of
the k’'s known object by Sy = {c| argmax(P"(k|c)) = k} (38)

k

the correct classification probabili™* for the known

Defining the sets

Dk (elF\(n)) — Dn(e) = P™(c|k) (29)  that contain all values that yield a decision for the known
objectk leads to thenhit-probability

which equals the conditional probabilify™(c|k) of then’s
descriptors component for the object descriptor valugven Pk = P™(S,xlk) = / P"(c|k) dc (39)
the known objeck. For a not assigned object descriptos
¢lFl(n) the classification probability’(k|c) for each known
object k, given the object descriptar can be computed as
follows:

Snk

the false alarmprobability

PRl =P (Spil-k) = P™(c|k) de  (40)

Py = P(k|c) = HP"(k;|c) (30) k#k S

The object will than be assign to the known objégt.. with the missprobability

the highest probabilityPy: n " n
gnest probabiiby’ B = PSualt) = [ el de (a1
kmax = arg max(Py) (31) Sk
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and thecorrect rejectionprobability

P = P™(=Snil=k) =Y P™(c|k) de . (42) ‘ l \
Rk -S, ¢ r ‘

Both presented methods have in common that the numk|1 ! : [} ; dfinn i
of components in the low-dimensional object descriptc | N ¥ ' { |
space has to be predefined and is not determined by t A \
algorithms themselves. Please see Sect. IV for reasona ‘ ’
values.

IV. MAIN RESULTS ﬂ
A. Simple database with six basic shapes

We used a simple database for basic tests of the proposcu

method. Figure 3 dep|cts the six basic shapes used for tpiﬁ. 4. Spatial domain object descriptor for the first basiapeh(Fig. 3,

results presented in this section. upper left). The object descriptor is represented by mean values and the
corresponding standard deviation, the parameters of a Gaussian distribution.
The horizontal axis represents the angular positioand the vertical axis

the mean curvature = p and its standard deviatios.

. and its standard deviation. The curvature signal starts in
the middle of the great circle that corresponds to a section of
almost constant curvature. This section is followed by a small

section of great concavity, i.e. negative values. Thereafter are
three peaks of positive curvature located, i.e. convex parts of

the contour. Theses peaks correspond to the three corners
in the lower right part of the object. Finally a section with
constant curvature can be observed, that belongs to the great
- circle again.
A histogram based object descripto¥ (v)) (cp. Eq. 18)
is depicted in Fig. 5. The horizontal axis represents the
angular positionyy and the vertical axis the distribution of

the curvatures. Dark areas of the image denote high values

. N /U\J\

Fig. 3. Database with six basic shapes. These basic shapesused to
produce the results shown in this section

These basic shapes where chosen to demonstrate
principles of the approach and to show easily comprehensit '|
examples. The proposed methods are not restricted to the j
basic shapes, but when using more complex shapes, the ¢
vature signals and object descriptors also get more compl
and thus the examples would become less descriptive.

[~

B. Curvature Function in Spatial Domain

Figure 4 depicts a spatial domain object descriptor for theg. 5.  Histogram based object descript6t (v) for the first basic
first basic shape (Fig. 3, upper left). The object descriptor hape (Fig. 3, upper left). The object descriptor is represented by discrete

. _— - S o 2 distributions of the curvature. The horizontal axis represents the angular
based on a Gaussian d'St”bUtﬂﬁ;(w) =N (M(w)’ g (w)) position ¢» and the vertical axis the curvature Dark areas of the image

(cp. Eg. 16). The horizontal axis represents the angula@énote high values (probabilities) and bright areas denote low values
position and the vertical axis the mean curvature= p (probabilities).
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(probabilities) and bright areas denote low values (proba-
bilities). This object descriptor is similar to the population
responses of neurons in area V4, shown in [14].

C. Curvature Function in Frequency Domain and Object[2]
Classification

Figure 6 depicts all six frequency domain object de-[3]
scriptorsc®(n) = N(u(n),o%(n)) based on Gaussian (i.e.
parametric) distributions (cp. Eq. 16) witN' = 15 for the 4
basic shapes shown in Fig. 3. The horizontal axis represents
the component: € {0,1,...,15} of the object descriptor. [5]
The colors denote the different objedts

(6]
(7]
(8]

El

s
o : [10]

:

IHI H

- =
= - = B - —

[11]
Fig. 6. Frequency domain object descriptors for all six digjeeith basic
shapes from Fig. 3. The different colors denote the objects. Shown are the
mean values and standard deviations of each object descriptors compon§i2]
The component: = 4 shows the highest probability to classify all objects
correct.

[13]

In the columnn = 4 in Fig. 6 all six colors, i.e. all six

objects, can clearly be distinguished from each other. Tﬁe
components either have only little variance or, in case @¢f5]
large variance (the one on the top), have a large distance to
their nearest neighbors. Thus the probabffityfor a correct |1
classification of all objects (see Eq. 36) is maximal for the
columnn = 4. Sparse object descriptors for the database ]
basic shapes from Fig. 3 would work quite well, using onI;i)

the fourth component of all non-sparse object descriptors.
(18]

V. CONCLUSION

In this paper we gave a brief introduction to Ievel-se£
methods for image segmentation. We showed the regular-
ization by signed-distance functions and how to create
curvature signal from a given level-set function. Three differ-
ent methods for the translation, scale and rotation invariaf#l
representation of curvature signals were shown. Furtherm 58
we proposed three methods for creating object descrlptors
from a series of curvature signals for the same object. Finall
we introduced an approach for object classification bas %3
on the proposed object descriptors. This object classification
approach included two methods for dimension reduction dif4]
the used object descriptors.

Future work will include the evaluation of the integration[ze]
of the proposed approaches in a larger object detection and
classification framework.
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