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Efficient exploration and learning of whole body
kinematics

Matthias Rolf, Jochen J. Steil and Michael Gienger

Abstract—We present a neural network approach to early
motor learning. The goal is to explore the needs for boot-
strapping the control of hand movements in a biologically
plausible learning scenario. The model is applied to the control
of hand postures of the humanoid robot ASIMO by means of
full upper body movements. For training, we use an efficient
online scheme for recurrent reservoir networks consisting of
supervised backpropagation-decorrelation output adaptation and
an unsupervised intrinsic plasticity reservoir optimization. We
demonstrate that the network can acquire accurate inverse
models for the highly redundant ASIMO, applying bi-manual
target motions and exploiting all upper body degrees of free-
dom. We show that very few, but highly symmetric training
data is sufficient to generate excellent generalization capabilities
to untrained target motions. We also succeed in reproducing
real motion recorded from a human demonstrator, massively
differing from the training data in range and dynamics. The
demonstrated generalization capabilities provide a fundamental
prerequisite for an autonomous and incremental motor learning
in an developmentally plausible way. Our exploration process
– though not yet fully autonomous – clearly shows that goal-
directed exploration can, in contrast to “babbling” of joints
angles, be done very efficiently even for many degrees of freedom
and non-linear kinematic configurations as ASIMOs.

Index Terms—Motor Learning, Neural Networks, Generaliza-
tion, Humanoid Robots

I. INTRODUCTION

In early childhood, motor learning is an essential and
crucial part of development. According to one hypothesis
of developmental psychology, which has been explored in
recent years, this learning may be based on so called “motor
babbling” [1]. In robotics, this concept is mostly picked up
as a random exploration of joint angles [2], [3]. On the
other hand, it was observed that small children rather act goal
directed and direct their movements towards salient objects in
their field of view [4]. Different models for motor babbling
and early movement learning have therefore been proposed
mostly concerned with the acquisition of reaching skills by
learning the mapping from hand and/or objects perception to
motor variables. In this paper, we investigate hand movements
and concentrate on bimanual actions, which involve coupled
motion of the whole upper body and – as it turns out – can
not be simply combined from learning both arm movements
separately.
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Fig. 1: A user can demonstrate target movements to ASIMO,
which are then reproduced with a learned inverse kinematics.

We take an experimental and computational approach to in-
vestigate such exploration and learning by means of modelling
in an artificial neural network applied to control the motion
the humanoid robot ASIMO [5].

To this end, we introduce a very efficient neural learning
scheme, which can cope with the typical constraints in devel-
opmental learning. There are three major requirements: data
have to be processed as perceived (online learning), data are
presented in temporal order as they occur in the real world
(temporally correlated presentation), and learning needs to
be efficient and biologically plausible. Note that the desired
combination of online learning and temporal presentation of
data rules out most of the standard learning schemes including
feedforward multi-layer networks, regression, and other batch
schemes.

Neural and biologically plausible learning of motor behavior
has been a long standing topic at the border of neuroscience
and robotics and inspired a huge amount of research in both
domains. It is widely recognized that the cerebellum plays a
central role in motor learning (see e.g. the recent review [6])
and it has been argued that forward models using efference
copies of motor control signals [7] exist. Though we do not
aim at directly modelling a cerebellar network, we argue that
the recent approach to recurrent networks known as reservoir
computing offers an appealing approach to model motor
learning, a connection, which has been explored to some detail
in [8]. Basically, the intrinsic architecture of the cerebellum
constists of three layers. Evidence from neurophysiology exists
that supervised learning takes place in the output layer [6].

The fundamental computational principle of reservoir com-
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Fig. 2: Target positions of both hands are fed into the recurrent neural network. The network is trained towards an inverse
kinematics solution by BPDC adaption of output weights and an Intrinsic Plasticity rule within the reservoir. The estimated
joint angles are applied on ASIMO in order to follow a target movement.

puting is to generate a complex nonlinear transformation of the
input signal into a high dimensional vector of the recurrent
network neuron states. Functionally the state vectors can
be regarded as nonlinear temporal feature vectors encoding
information about the the inputs, which enable linear learning
methods at the output neurons. We will show in this paper
that a reservoir network can learn the complex inverse kine-
matics needed to control hand movements, i.e. we apply the
network to an intrinsically static inverse kinematics task, which
however becomes temporal by the requirement of correlated
presentation of data and online learning.

In related work, learning of the inverse kinematics model
as a combination of locally linear low dimensional models
has been very successfully demonstrated in [3], [9]. Learning
redundancy resolution and disambiguation for following a
figure-eight is performed for the humanoid robot at ATR,
which shows that locally the inverse model is sufficiently
smooth to be approximated by a simple function estimator.
The same weighted regression scheme has also been used in
[10] to learn goal directed movements based on parameterizing
a predefined dynamical system or nonlinear oscillators for
rhythmic movements [11]. By definition, these schemes are
local and can not extrapolate to untrained regions of the
mapping. The approach to learn or design restricted behavior
primitives has been criticized in [12], [13], because gen-
eralization to new patterns is practically impossible. More
recent work applies this approach for imitation learning of
simple manipulations with a small torso robot [14]. While our
approach also predicts tasks and motor outputs and assumes
that sensori-motor patterns are stored in a combined model, it
differs in several important aspects from previously introduced
schemes. Like in [13], we learn a distributed representation,
but rather in a fully recurrent neural network and not using
explicit motor inputs. Most important, our learning scheme is
completely online and efficient enough to learn while running
in a behaving robot. We demonstrate that our network can
learn the inverse kinematics with a high degree of accuracy
and, if training data are suitable, can generalize to structurally
similar motions and even to completely untrained inputs.

II. TASK AND NEURAL NETWORK APPROACH

A. Inverse Kinematics and Body Couplings

Given some target coordinates of end-effectors u∈Rn, an
inverse kinematics gives the joint angels q∈Rm for the robot
that apply the end-effector targets. On ASIMO, we control
the 3D cartesian positions of both hands by a six-dimensional
input variable u(t) = ul,r(t) ∈ R6, l = left, r = right.
The outputs are the control variables for a total number of
15 degrees of freedom (m = 15). Each arm is moved by
controlling three rotational degrees of freedom in the shoulder,
one in the ellbow and one in the wrist. Therefore each arm is
– regarding the task to position the hand – redundant on its
own. Additionally, we control four degrees of freedom in the
hip: its height over ground and the rotation around all three
spatial axes. The last degree of freedom is the head’s pan-
orientation that is without effect on the task, but also controlled
and learned. The hip-control not only introduces additional
redundancy in the control problem, but kinematically couples
both arms: a change in the hip configuration moves both end-
effectors. If for instance the right hand shall be moved utilizing
the hip motion, but the left hand shall be fixed, also the left
arm’s joints have to be moved. This whole-body motion is
neither trivially to control nor to learn. However, including
the body movements enlarges the total operational range of the
hands since the upper body can e.g. be leant in the direction of
targets. Second, it allows more play for subsequent movements
since joint limits can be effectively avoided.

B. Neural Architecture

The whole body inverse kinematics is learned by a recurrent
neural network which receives subsequent target coordinates
for both hands as input u(t) = ul,r(t) ∈ R6. As output, the
network shall produce the set of joint angles/control variables
q(t) such that the target position is reached (F l,r(q(t)) =
ul,r(t)), where F l,r : R15 → R6 denotes the forward
kinematics of the system. We also learn a next-step prediction
of the target positions ul,r(t + 1), which can be used for
autonomous behavior generation, but this application is beyond
the scope of the current paper. The overall target output is
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Connection Sparseness Init. range
Input-Reservoir 0.2 0.1
Input-Output 1.0 0.1
Reservoir-Reservoir 0.02 0.02
Reservoir-Output 0.2 0.1
Output-Reservoir 0.2 0.1

BPDC-Learning
Rate-Start 0.15
Rate-End 0.025
ε 0.002

IP-Learning
Rate-Start 0.015
Rate-End 0.0025
µ 0.1

TABLE I: Network structure and learning parameters

Algorithm 1 Online reservoir learning algorithm
Require: set network size, sparsity, initial weights and states

1: for k < iTrainIterations do
2: get input u(k)
3: get target d(k)
4: execute network forward iteration (1),(2)
5: apply BPDC rules (5), (6)
6: apply IP rules (8), (9)
7: end for

d(t) = (ul,r(t + 1) ; q(t))∈R21. The actual network outputs
are denoted with (ûl,r(t+ 1) ; q̂(t)).

The respective network consists of 6 input-, 21 output- and
300 hidden “reservoir”-neurons. The output nodes receive the
neuron activities from both input and reservoir (see. fig. 2).
The reservoir receives the values of input and – in a recurrent
loop – from the output nodes. Input is fully connected to
the output, while the remaining connections are sparse with
only 20% of the possible connections present. The reservoir
is internally connected with sparsity 2%.

Formally, we consider the recurrent reservoir dynamics

x(k+1) = Wnety(k) + Winu(k), (1)
y(k) = f(x(k)), (2)

where k is the discrete time step, xi, i = 1 . . . N are the
neural activations, and y = f(x) is the vector of neuron
activities obtained by applying parameterized Fermi functions
component-wise to the vector x as

yi = fi(xi, ai, bi) = (1 + exp(−aixi−bi))−1. (3)

The R-dimensional vector u(k) = (u1(k), . . . , uR(k))T

denotes the inputs at time step k. We assume that the neurons
are enumerated such that the first O= 21 neuron activations
xi, i = 1 . . . O serve as output values. In our setting we can
thus write

x(k) =
(
ûl,r(k + 1)T , q̂(k)T , xO+1(k) . . . xN (k)

)T
(4)

C. Online Learning Rules
Our setup involves two learning rules that work in parallel.

Connections to the output nodes are adapted with the super-
vised Backpropagation-Decorrelation (BPDC) rule (see fig. 2).
All other connections are randomly initialized from a uniform
distribution and stay fixed (see tab. I). Additionally, an unsu-
pervised Intrinsic Plasticity (IP) rule is applied in the reservoir
neurons in order to optimize information transmission.

Backpropagation-Decorrelation: Output connections are
adapted by the backpropagation-decorrelation (BPDC) learn-
ing rule, which has been introduced in [15], [16]. It can cope
with feedback from output to the internal neurons [17]. A
further strength of the BPDC rule is its capability to train
the input-to-output weights comprising the linear feedforward
path in a common framework together with the reservoir-
to-output weights. A formalism to derive the corresponding
weight updates ∆w(k) was given in [15], [16] and leads to the
following BPDC rule [15] for reservoir-to-output connections,
i.e. for i = 1 . . . O, j = 1 . . . N

∆wij(k) = η̄(k)f(xj(k−1))γi(k) (5)

and input-to-output connections, i.e. for i = 1 . . . O, r =
1 . . . R respectively

∆wir(k) = η̄(k)ur(k−1))γi(k). (6)

For time k and error ei(k) = (xi(k)− di(k)) we have

γi(k) = −ei(k) +
∑
s∈0

wisf
′(xs(k−1))es(k−1). (7)

The time-dependent parameter

η̄(k) = η
1

‖f(x(k−1))‖2 + ‖u(k−1)‖2 + ε

can be interpreted as a time and context dependent learning
rate. It scales the BPDC learning rate η with a factor depen-
dent on the overall network and input activities and a small
regularization constant ε, e.g. ε = 0.002. The BPDC learning
constitutes an error correction rule with time-dependent learn-
ing rate η̄(k), input predicate yj(k) = fj(xj(k)), and modified
error γi(k).

BPDC learning is a supervised learning technique, and has
linear complexity O(N) in the number of neurons N . Thus,
the combination of IP reservoir adaptation (described below)
and BPDC learning stays in the O(N) complexity range, such
that the forward iteration of the recurrent network (1), (2)
becomes the computationally limiting factor (O(N2) for a
fully connected network). In fact, our implementation utilizes
sparse matrix multiplication, such that the overall execution
and training of sparse networks with a limited number of
connections per node also scales linear in the number of
nodes. This efficiency renders the scheme ideally suited for
implementation on robots for execution and learning in real
time.

Intrinsic Plasticity: In order to improve the reservoir
online, we use an adaption rule introduced by Triesch [18]
and adopted for reservoir optimization in [19]. It is an un-
supervised, efficient self-adaptation rule to optimize informa-
tion transmission of the reservoir neurons by adapting the
parameters ai, bi of the Fermi transfer functions fi(x, ai, bi) =
(1+exp(−aix−bi))−1 used in the network equation (3). The
parameters a, b are updated by the following online gradient
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(a) First training pattern, com-
bined out of concurrent circu-
lar movements, first to the left,
then to the right.
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(b) Second pattern, consisting
out of a figure “eight” for
the left, and circles for the
right hand

Fig. 3: Training patterns used for the training.

rule with learning rate ζ in time step k:

∆b(k) = ζ

(
1−

(
2 +

1
µ

)
y(k) +

1
µ
y(k)2

)
, (8)

∆a(k) = ζ
1

a(k)
+ x(k)∆b(k). (9)

We call the joint application of rules (8), (9) to the non-output
reservoir neurons intrinsic plasticity (IP) learning. It is local
in time and space and therefore efficient to compute and is
applied at each time step k after iteration of the network
dynamics (1), (2), as shown in algorithm 1.

III. RESULTS

A. Exploration

In order to explore the kinematics and to acquire ground
truth training data, we apply an explicit exploration phase.
In that exploration phase, we use an analytic velocity-based
feedback controller. That whole body motion (WBM) con-
troller [20] uses all upper body degrees of freedom of ASIMO
to perform a target motion of both hands. In resolving the
redundancy it selects one particular out of the infinite number
of solutions based on additional criteria like distance to the
joint limits [20]. It is important to note here that the goal of
learning is not to replicate the velocity mapping, that is solved
by the existing controller. Rather, we learn a pure feedforward
control, that solves the inverse kinematics directly on position-
level. Thus, the joint angles necessary to realize a desired hand
position are immediately available. This is not the case for
the velocity-based feedback controller, which has to iteratively
approach the target.

To acquire data, we first choose a target motion of the hands
xl,r(t), t = 1, ..., T . We provide this trajectory as target to
the analytic WBM controller, that applies it on the real robot
with a rate of 5Hz. During that execution the robots joint
angles are recorded, i.e. at each t, the current joint values q(t)
are memorized. This recording yields a full set of training
data u(t) = xl,r(t) and d(t) = (xl,r(t + 1) ; q(t)). We only
train on one temporal sequence, which can have arbitrary
length and form. Notably, training data generated in this
fashion are imperfect, but realistic. Since the demonstration
and execution of targets to the controller is also temporal, a
target xl,r(t) is never exactly reached when the current joint
angles are measured, so that xl,r(t) and q(t) do not exactly
correspond. Nevertheless we will show that this restriction

does – depending on the target data – not seriously harm the
learned kinematics solution.

In the current setup, we only apply motions within a fixed
vertical plane in front of ASIMO, i.e. the forward/backward
component stays fixed. We show results for two distinct
training targets xl,r(t). The first is a combination of circular
movements (see figure 3a) with different speeds and directions
with the plane. The motion roughly captures all top/down and
left/right combinations of left and right hand and has a total
length of T = 256 samples. For comparison, we use a figure
“eight” for the left hand and circles for the right hand (figure
3b) with a total length of T =64 timesteps. Here, the left/right
orientations of both arms are exactly coupled. Thus it contains
no situations where both hands point towards the middle or
both hands point away from it.

B. Training

For systematic evaluation, the training procedure is orga-
nized in epochs and cycles, where a cycle is one full temporal
presentation of the training motion xl,r(t). In each epoch
we first re-initialize the network-state randomly and present
one cycle to the network without training. Subsequently we
show the complete pattern five times with enabled learning:
after the presentation of each new target position xl,r(t),
the output connections are adapted towards the target output
d(t) = (xl,r(t + 1) ; q(t)) using the BPDC update rule, and
the reservoir neurons are updated with the IP rule. A final
cycle is used to estimate the error of the output joint angles
q̂(t), while learning is disabled. To obtain an interpretable and
realistic error measure, we do not directly compare against
the joint-values in the training data. Instead we compute
the hand positions that would correspond to the estimated
joint angles using a analytical forward kinematic for left and
right hand (F l(·) and F r(·)). The measured error is then the
mean euclidean distance ||·|| between desired and actual hand
positions in meters:

err =
1
2

T∑
t=1

(
||F l(q̂(t))−xl(t)||+ ||F r(q̂(t))−xr(t)||

)
(10)

The error curve for the first training pattern over 150 epochs
is shown in figure 4a. The second pattern is trained for
600 epochs (see fig. 5a) such that – due to the different
pattern lengths – the number of training steps is identical.
During these epochs, the learning rates of both BPDC and IP
are continuously decreased following an exponential function
from a defined start to a defined end value (see table I).
This scheduling is not strictly necessary, but improves the
performance. The plots show the mean error and std.-deviation
over ten different parameter initializations. The two curves
have almost identical characteristics: the first epochs have an
error of approx. 10cm, as the network starts to put each hand
into the center of gravity of its target motion, which have a
radius of 10cm. The error reaches 2.79cm for the first, and
2.95cm for the second training pattern, but is still slightly
decreasing in both cases.
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(a) Error within the evaluation cycles over 150
learning epochs. The plot shows mean and std.
deviation over ten initializations.

(b) Test with the trained synthetic pattern.

(c) Test with the untrained synthetic pattern.

(d) Test with user generated target movements.

(e) Test with user generated target movements.

Fig. 4: Training with the first training pattern (fig. 3a)

(a) Error within the evaluation cycles over 600
learning epochs. The plot shows mean and std.
deviation over ten initializations.

(b) Test with the untrained synthetic pattern.

(c) Test with the trained synthetic pattern.

(d) Test with user generated target movements.

(e) Test with user generated target movements.

Fig. 5: Training with the second training pattern (fig. 3b)
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C. Evaluation

We tested the learned inverse kinematics on the real robot.
Therefore a target motion is iteratively presented to the neural
network and the estimated joint angles q̂ are applied on the
robot. The rate of presentation, and thus control, is thereby
10Hz. Figure 6 shows ASIMO controlled by a network
trained with the first, circular pattern. The target motion is
the second training pattern which is completely new for that
particular neural network. The images show subsequent stages
of the movement in one second intervals and illustrate that all
degrees of freedom (including the hip) are productively used.
The robot hands’ physical movement is plotted in figure 4c.
Figure 5c shows the performance of a network trained with
the second pattern. The displayed deviations from the target
motion thereby arise from a combination of imperfect training
data, the remaining training error of the neural network, but
also the physical dynamics of ASIMO. In both cases the the
training pattern can be reproduced within a reasonable accu-
racy. However, only the network trained with circular pattern
is able to deal with the respectively other synthetic pattern.
The network trained with the “eight”/circle combination fails
to apply the first pattern as it has not learned an independent
left/right movement of both hands.

D. User Interaction

In order to minimize blind spots in the generalization
testing, we incorporated a motion tracking system [21], such
that also naive users can demonstrate target movements just
by holding a markered device in hand (see figure 1). Since it
is – for humans – practically impossible to voluntarily control
both hands at the same time, we restricted the demonstration
to the right hand. However, the left hand is not free on ASIMO
since we apply a constant target on that side. Trying to keep
the left hand fixed does indeed not simplify the task, as left
and right hand motions are coupled by the hip movements.
Also, trying to stabilize one hand was not part of the training
data.

Our setup involves the complete chain of exploration,
learning, user demonstration of a target movement and its
execution on ASIMO, using the recurrent network. Exploration
and learning can be done within less than two minutes. A
demonstrated target movement can be reproduced immediately
and easily be executed in real time. The figures 4d, 4e, 5d and
5e show two user generated movements and their execution on
ASIMO, each under the two discussed training conditions. The
demonstrated movements differ massively from the training
data in both range and dynamics. The network trained with the
purely circular pattern is able to reproduce these movements
with high accuracy even in regions that are spatially distant
from the training pattern. Also the stabilization of the left hand
– though completely untrained – is done with deviations less
than 2cm. Again, the network trained with the “eight”/circle
pattern fails to reproduce the movements. The bad stabilization
performance of the left hand reflects the inability to move both
hands independently along the left/right axis, which was here
not part of the training. Here the left/right leaning degree of
freedom in the hip can not be generalized to the users motion.

Nevertheless the independent top/down movement, which was
part of the training data works accurately.

IV. DISCUSSION AND OUTLOOK

We demonstrated an inverse kinematics task for the highly
redundant humanoid robot ASIMO. In order to apply a target
motion of both hands at the same time, we can exploit all upper
body degrees of freedom. The coordinated use of this non-
linear kinematic chain thereby widely exceeds the difficulties
in (even redundant) single robot arms. Our learning technique
is able to deal with temporally correlated data and online
learning, which are fundamental prerequisites to enable an
incremental acquisition and also an ongoing refinement of
motor skills. Also, it is fast enough to be used in real time on
a real robot system.

We showed that – given proper machine learning techniques
– reasonable generalization is possible even without excessive
sampling of the joint space, but from few, systematically
chosen samples in task coordinates. Our training setup showed
that a spanning of all independent movement axes of both
hands is necessary, but also rather sufficient to acquire an
accurate inverse model for a high range of target positions.
A random sampling of joint values would not only require a
lot of samples in order to cover task relevant dimensions, but
also evokes the fundamental problem of different, inconsistent
solutions for the same target position [22]. With our approach
we can not only learn one functioning, but also a near
optimal solution in terms of comfortable postures since we
learn from a near optimal teacher. This allows very smooth
and natural movements. Both redundancy resolution and op-
timality are therefore a direct result of the task/goal directed
exploration and do not naturally arise from a random joint
space exploration. Besides the exploration or rather spanning
of all possible movement axes, the successful training with
the circular movement thereby only follows the principle of
symmetry: each observed (e.g. top/down) combination of hand
positions has a counterpart where the orientations of both
hands are flipped.

Future work will address an exploration without analytic
inverse kinematic as teacher. The current setup is plausible
in the sense of kinesthetic teaching [23]: the robot’s hands
are guided by a human tutor, while learning takes place
with kinesthetic information. Thereby an “optimization” is
naturally applied by the physics. However, it is desireable to
handle exploration also without teacher and thus in a fully
autonomous way. The main problems here are (i) to deal
with the huge redundancy in humanoid systems and to learn
at least on correct solution out of infinitely many [3] and (ii)
to cover the task relevant space in an efficient way, avoiding
to get stuck in postures that will never be used.
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Fig. 6: ASIMO controlled with a learned inverse kinematics solution. The network was trained with a first training pattern and
is here tested on the second pattern. The network exploits all degrees of freedom in arms and hip.
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