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Abstract—Bayesian inference techniques have been used to
understand the performance of human subjects on a large
number of sensory tasks. Particularly, it has been shown that
humans integrate sensory inputs from multiple cues in an optimal
way in many conditions. Recently it has also been proposed that
causal inference [1] can well describe the way humans select the
most plausible model for a given input. It is still unclear how those
problems are solved in the brain. Also, considering that infants
do not yet behave as ideal observers [2]–[4], it is interesting to ask
how the related abilities can develop. We present a reinforcement
learning approach to this problem. An orienting task is used in
which we reward the model for a correct movement to the origin
of noisy audio visual signals. We show that the model learns to
do cue-integration and model selection, in this case inferring
the number of objects. Its behaviour also includes differences in
reliability between the two modalities. All of that comes without
any prior knowledge by simple interaction with the environment.

I. INTRODUCTION

In recent years it has been suggested that the performance
of human subjects in a large variety of sensory tasks can be
modelled as Bayesian inference. The success of these methods
relies on the fact that they explicitly represent the involved
uncertainties. Recently, such methods have been extended to
the task of model selection, in which the observer not only
has to integrate different cues into a single estimate, but also
needs to select which causal model best describes the stimuli.

While the normative approach has been successful in ex-
plaining how uncertainties should be taken into account, it
does not explain how the knowledge about it develops. This
is particularly important since it has been shown that young
infants are not yet capable of optimal information integration
[2]–[4].

This paper will first give a brief introduction to cue inte-
gration and causal inference and what is known about their
development. After that, we will describe a model of the
development of cue integration abilities based on reinforce-
ment learning. We show that this model is able to explain the
development of cue integration and model selection with only
few assumptions.

A. Cue Integration

To infer the states of the environment we have to rely
on data that we obtain from our senses, including different

Fig. 1. Sketch of the experimental setting. The agent receives signals from
two modalities (audition and vision) that originate from the same or two
different locations.

modalities and representations in different reference frames.
Basic parameters extracted from the input — like position,
color, direction of motion — are called cues for a certain task,
if they provide relevant information about the underlying state
of the world which is not directly observable. There is always
some task-dependent uncertainty regarding the true state given
the sensory input due to the many-to-many mapping between
sensory signals and the states of the world, as well as the
probabilistic relationship between sensory states and their
representation. External factors, e.g. fog can blur our visual
input, or background noise changes the reliability of auditory
signals. Internal variability is present in the trial to trial
variability of neuronal responses to the same sensory stimuli
and is inherent in the projection of visual inputs from a 3D
world onto a 2D retina.

As a specific example, consider the task of estimating the
position of an object, of which the perceptual system obtains
an auditory and a visual signal (Figure 1). Assuming that the
uncertainty in the two signals can be modeled by normal dis-
tributions centered on the object position, the variance σ2 rep-
resents the associated uncertainty. In this case, the uncertainty
can be expressed as the reliability of a cue, given by the inverse
variance 1

σ2 . Figure 2 shows probability distributions for the
true location given the auditory or visually received position
of an object. Both cues have an inherent uncertainty associated
with them, where the auditory cue (received position 10, left
gaussian) has a reliability of 0.25, the visual cue’s reliability
(received position 13, right gaussian) is 0.64.
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Fig. 2. Optimal Integration (middle) of an auditory (left) and a visual (right)
signal with different gaussian uncertainties

A way of getting more reliable estimates is to combine
the information from two or more cues, assuming that their
uncertainty is caused by independent factors, which is true
in many cases. One can use Bayes formula to compute the
probability distribution for an estimate of the true state while
knowing only the cue values and their uncertainties. The
posterior distribution is also a Gaussian where the mean will
be a linear average over the cue means weighted by the
reliabilities of the cues [5]. The resulting distribution has a
higher reliability than either of the single cues (0.89, dark
gray center distribution in Figure 2). The variance σ2

av of the
gaussian in the combined case is computed by

σ2
av =

σ2
aσ2

v

σ2
a + σ2

v

. (1)

Humans have been shown to behave according to such Bayes-
optimal cue combination rules in a wide variety of tasks (e.g.
[6], for a review see [7], [8]).

B. Causal Inference

An underlying assumption of cue integration is that all the
cue-values are caused by the same object or event. But how
often is only a single object the cause of all sensory stimuli?
As a simple example consider an orienting task, for example
turning your head to a person that is talking. To identify the
target point for the movement, one can use the visual position
of that person and the direction of its voice, but better ignore
the ringing of a phone and the visual input from a computer
screen. To be able to make this distinction, one has to have a
mechanism that decides when and which signals to integrate
[9]. One way of doing this is to decide for each pair of stimuli
if they come from the same object, that is computing the prob-
ability of a common cause given the two cue values. Figure 3
shows the distribution of the probability of a common cause
for the difference between positional estimates of two cues
with different reliabilities (0.25 and 0.64) and as example for
a uniform prior P (common) = P (distinct) (for the detailed
equation and its derivation see [1]). Given this distribution,

it is possible to decide if the auditory and visual signals are
likely to come from the same physical object and should be
integrated or if they are better used independently. In the
following we will refer to this decision as model selection
(generated by common cause vs. distinct causes). In [1] it
was shown that humans act in accordance with a Bayesian
model that implements causal inference. This means that they
integrate according to different models depending on the inter-
stimulus-difference in space [10] or time delay [11].

C. Development of Cue Integration and Causal Inference

Cue integration is not innate. Nardini et al. [2] and Gori et
al. [3] showed for different cues that young children sometimes
do not integrate information from all their modalities. In
orienting tasks with single- or multisensory stimuli infants
younger than 8 month did not show the decrease in response
time that is typical for an integration process [4]. In recordings
in kitten superior colliculus (SC), the brain area that is re-
sponsible for integrating information for orienting movements,
neurons initially show only unisensory excitability. They start
to react to multisensory inputs only one month after birth
[12]. Experiments by Wallace and Stein [13] in newborn
monkeys revealed multisensory neurons, but could not find
the integration abilities that are found in adult animals.

It could also be shown that the neuronal basis for the causal
inference process is not present at birth in both cats [12]
and monkeys [13]. Multisensory neurons in the SC of adult
animals show a tight spacial alignment between the centers
of their receptive fields for one sense. Multiple cue signals
are only integrated if they fall within the combined receptive
field, that is if they are close together in space. The receptive
field of a single cue is small and well defined if it has a high
reliability and grows with increasing uncertainty. Since the
SC is responsible for controlling the targets for eye and head
movements, a spatial task, auditory receptive fields are larger
than the visual ones in all multisensory neurons. Additionally,
Wallace and colleagues [13] found an increase in receptive
field size with growing distance of the centers from the straight
ahead position.

In the SC of newborn kittens and monkeys the size of most
receptive fields is much bigger than in adult cats. Signals that
are far apart still get integrated in those neurons. For owls [14],
[15] and for cats [16] it could be shown that the alignment
of the centers of multimodal receptive fields is also plastic.
If reared in artificial environments, where visual and auditory
signals were only showed separately , the animals developed
multisensory neurons with only weak or no spatial alignment
between the receptive fields of the two modalities.

Unfortunately there are no psychophysical experiments
about causal inference in human infants yet. One could repeat
the experiments and analyses from [1] with infants or children
of different age. Körding and colleagues tested adults in a mul-
tisensory orienting task similar to the one we use in this paper.
Afterwards they analysed the data with Bayesian methods, to
predict for which stimuli people inferred a common cause.
They found a dependence on the spacial difference between
the signals.



2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 3

Fig. 3. Probability distribution of a common cause of an auditory signal
with σa = 2 and a visual one with σv = 1.25 given the difference between
these estimates. The grey-shaded area show where one explanation of the
data is most probable. The area above 0.5 marks the differences that favor
a common cause, in the ones below two distinct causes are more probable.
The probability distribution for the distance given distinct causes is uniform
whereas in the common case it is a multiplication of the two gaussian that
represent the uncertainty of the signals. The point where the curve crosses
the equality line is at the distance where the probability predicted by the
combined gaussian is lower than 0.04.

It is plausible to assume that the ability to integrate cues
could be learned from the statistics of the environment. Many
events in our world do not only stimulate one sensory modality
but usually two or more. Additionally, the signals of the
different cues for one event are usually close together in
time and/or space. Those environmental statistics should favor
creatures that are able to integrate signals from different cues
because they get a faster and more reliable estimate of the
state. But how to find out if an initial estimate was right or
wrong? This is only possible if there is an interaction with
the environment that gives feedback about the quality of the
estimate. In the following section we will develop a model
that can learn to do cue integration and causal inference from
scratch within biological constraints.

II. METHODS

A. An orienting task

We decided to use an orienting task for our experiment —
a task that is performed by infants and adults frequently each
day, whenever the eyes and/or the head are moved towards an
interesting object or event. The setting consists of 25 discrete
positions at different angles from the observer in the horizontal
plane (similar to Figure 1).

At each timestep we presented two cues, one representing
an auditory signal, the other a visual one. In half of the trials,
the two signals were emitted from a common position; in
the rest they were caused by two independent events. The
agent observed each position corrupted by Gaussian noise
corresponding to the uncertainty of the cue. The standart
deviation of the Gaussian (the square root of the inverse

reliability) was bigger for the auditory signal (Figure 2), as
the acuity of human audition is in most cases worse than the
visual acuity for judgments on space (e.g. [17]). We defined
a state by the agent’s actual position estimates for both vision
and audition.

After receiving these signals, the agent had to decide where
the original signals came from and perform an orienting move-
ment to the estimated position. Depending on the distance
between the true position and the target of the movement,
it receives a reward. The function for the reward decreases
linearly with distance from the true position, but has an added
peak at distance zero (see Equation 2).

rew(e) =


2ζ + 1 + ζ

2 , e = 0
2ζ + 1 − 2e , 0 < e ≤ ζ

0 , e > ζ

(2)

with e as the minimum of the distances between the movement
target and the true positions. We chose this function to mimic
an additional energy cost for small correction movements that
are necessary if there is a small position error. The maximal
position error ζ that still provided a reward was set to 4. There
was no difference in reward between finding the position of
the visual or the auditory cue. If the movement target was
close to both true positions (in the distinct case) the cue with
minimum distance to the movement position determined the
amount of reward.

B. A reinforcement learning model

Reinforcement learning (RL) [18] is a general set of prob-
lems in which an agent has to solve the optimal control
problem without necessarily knowing the reward function
determining the rewards or costs of actions in particular states
of the world and without necessarily knowing the dynamics
governing the state transitions resulting from control. In the
family of algorithms considered here, the agent learns a policy
that associates a control signal i.e. an action with each state it
can be in. The goal is to learn a control policy that maximizes
the total reward that is obtained through the executed actions.

One biologically plausible way of learning the best state-to-
action mapping, i.e. the one that maximizes reward, is temporal
difference (TD) learning [18]. In a given state there is a
prediction of the expected reward for every possible action.
During learning, the obtained reward is compared to the reward
prediction based on all previous experience. This is the TD-
error. If the difference is negative, that means there was less
reward than expected, it lowers the probability of the executed
action given the previous state, and vice versa for positive
differences. Additionally the error-signal is used to update the
reward-predictions. The mechanism has been found to well
describe activities of dopaminergic neurons in the brain, whose
activity depends not on the received reward but on the TD-
error [19].

The total expected sum of rewards when in state s and
choosing action a is the so-called Q-values q(s, a), which can
be stored in tabular form. We used a reinforcement learning
algorithm called SARSA [20]. Equation 3 shows the learning
rule, with ε being the learning rate that is exponentially
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decreasing over time, and r(s, a) being the true reward. Since
we only simulate a single step in time, there is no term for
future expected reward at the new state.

q(st, a)new = q(st, a)old + ε(r(st+1, a) − q(st, a)old) (3)

The policy should favor the actions that promise the highest
reward given the current state. We use the softmax function
(equation 4) for the mapping between Q-values and state-
action probabilities.

P (a|s) =
eqa,s/τ∑
a′ eqa′,s/τ

(4)

with qas being the predicted reward of an action a when
in state s and τ is a parameter that influences the tendency
towards either exploration of the state space, which increases
acuity of the global reward predictions, or exploitation, which
tries to achieve the maximum reward at the moment.

It can be shown that a one-step SARSA with exponentially
decaying learning rate converges to the optimal policy [21]
under some technical constraints, which are all fulfilled in our
model. This is important, because it guarantees that using this
learning algorithm results in the policy providing the highest
possible average reward.

III. RESULTS

A. Learning causal inference with fixed cue reliabilities

The fact that learning was performed with a very well
studied algorithm has the advantage that its convergence and
optimality properties can be applied to the given problem. The
utilized learning algorithm has been shown to converge to the
optimal solution in terms of the highest expected total reward
[21]. Therefore, we are assured that the solution found by
the learner is optimal, in the sense that the total expected
reward obtained by the agent is maximal. Figure 4 shows
how the obtained reward changes over time (black curve).
For comparison the red curve marks the reward that would
be obtained with the Bayes-optimal action in each step in the
sense of a model selection approach. Such an action is defined
as going towards the estimate of the cue with higher reliability
if the probability of two distinct causes is bigger than 0.5. If
it is more probable that both signals have a common cause
(compare Figure 3), the optimal action is the weighted sum of
the two estimates, where the weights are proportional to the
reliabilities of the cues.

Figure 5 shows a subsection of the learned Q-values for one
representative action (action “12”) given all possible states. A
state is defined by both the estimated position of the visual
(x-axis) and the auditory (y-axis) stimulus. In blue areas
the predicted reward is close to zero, whereas red means
high values. If neither of the two cues is close to 12, there
should be no reward expected, because the uncertainty covers
only much smaller deviations, so the probability of a large
deviation is close to zero. If one looks at the states where
the visual signal has position 12 (vertical dashed line “V”)
and the auditory one is far off, the expected reward has a
high value that correlates with the reliability of the visual cue.
Because the auditory reliability is smaller, the values at the
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Fig. 4. The black graph shows the change in the obtained reward over training
with the exponentially decreasing temperature parameter of the softmax
starting at 30 and reaching a value of 1 after 500,000 Iterations. The red curve
is the reward when performing the Bayes-optimal action (see text). Each point
in each graph is the average reward over 1000 consecutive iterations.
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Fig. 5. Top: Q-value plots for all states and a specific action (here move to
position 12). Each pixel value represents the expected reward given an auditory
and a visual signal and performing action 12. Dark blue equals values around
zero, red means highest rewards.

horizontal dashed line “A” at 12 are smaller than the ones
mentioned before. Nevertheless, the Q-values along the line
are again higher than the ones in the surrounding. These two
lines correspond to states where the agent bases its decision
exclusively on one of the two cues.

But note that the highest values of all states lie in the
center along the dash-dotted line “I”. There the uncertainty
of the estimate is smaller than for either audition or vision
alone. This is a clear sign of cue integration. At the arrows
in Figure 5 the Q-values are smaller than what would be
expected for an unisensory estimate. This also results from
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Fig. 6. Q-Values for all states and 3 actions in a fully trained foveated agent. The actions represent from left to right movements to position 0, 6 and 12. In
the left plot the movement is determined mainly by the auditory stimulus, in the right one it is completely determined by vision. The middle plot shows an
intermediate state, where close-by visual and auditory stimuli are integrated and for far away ones only a single cue is used to decide which action is taken.

a cue integration process which predicts seeing a reward with
action 12 only with low probability if the single cue estimates
both are slightly bigger or smaller than 12. Such a case would
instead favor a movement towards neighbouring positions (say
action 13 or 11).

Since all true positions lie on a circle, are equally probable
and provide equal reward all Q-value plots show the same
shape. That means lines “A” and “V” are always where the
associated cue equals the action, and the diagonal line “I” is
always where the two lines cross and has the same slope. The
slope of “I” depends on the difference in reliability of the cues
(see also next subsection).

B. Learning causal inference with foveation

To simulate the effect of foveated vision with decreasing
acuity towards the outside of the retina, we changed the
spatially homogeneous reliability of the visual cue into a
function of the distance from the center (position 12). This
shape of the retina leads to a higher reliability of vision over
audition close to the fovea and the other way around at large
distances from it. Even in this more complex scenario our
model learns to act in an optimal way.

As can be seen in Figure 6, the global shapes of the Q-value
functions now changes with the performed action. In the right
subplot, which represents a movement to the fovea (action 12),
the darkest red area (global maximum) is a narrow line where
the visual position equals the action, meaning that it is best to
only use the visual cue. The benefit from integrating both cues
in this case is smaller than one position, so there is no diagonal
maximum in the center. However in the left plot (far from
the fovea) it is nearly inverse. Here, the higher maximum has
a horizontal extent, where the auditory stimulus matches the
movement position (action 0). The line is not as thin as in the
bottom plot because the auditory cue has the same reliability
everywhere, which is worse than the best visual one. Because
of this there is also an integration diagonal, although it is hard
to see because of the borders of the plot. Nevertheless you
can clearly see the notches (that are referred to in Figure 5
with arrows) in the upper left and lower right corner. In the
central subplot one can clearly recognize the global maximum
in the diagonal. The slant of it is one if both cues are equally
uncertain, gets bigger when visual estimates are more reliable

and smaller if the auditory is more trustworthy. In general there
is a correlation between the slant of the integration area and the
optimal integration weights for each cue. As another example
Figure 5 shows a diagonal with another different slant (more
towards the visual signal), because there the visual reliability
is higher than the auditory one.

In Figure 7, we plotted for a quarter of the state-space (states
0:0 to 12:12), where one of three example actions (1,6,11)
is executed preferentially to highlight some features of the
policy. The upper plot shows the case with constant visual
reliability. In most parts of the state space the visual estimate
dominates the chosen action, but if both perceived estimates lie
close together the action differs from it. The lower plot shows
the same state space but with foveation. Here movements
towards the outside (black) are dominated by the auditory
signal, intermediate ones (dark gray) are influenced by both
signals equally. Orienting to central positions is dominated by
vision, and dominated by audition for visual estimates that are
in the visually most uncertain area.

The results above show that the model actually changes its
strategy depending on whether the inputs make it more likely
to have a common cause or two distinct ones. In the first case
the resulting action is influenced by both inputs, in the latter
preference is given to the more reliable single estimate.

IV. CONCLUSION

There has been great success in explaining human per-
formance in a variety of sensory tasks through Bayesian
inference methods. But a large number of questions remain,
including, how such abilities are learned, given that infants
and young children do not yet perform optimal cue integration.
Furthermore, it is unclear how such learning may be mediated
solely on the basis of unsupervised learning. On the other
hand, there is considerable evidence that animals and humans
learn behaviors mediated by the reward system [19]. The
neuronal signals involved in such learning have furthermore
been shown to agree well with theoretical models related to
reinforcement learning [18].

In the presented work we propose one way how to learn the
ability to integrate two cues when they are probably coming
from a single source and when to not integrate them, if it
is more likely that they originate from different sources. The
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Fig. 7. Policy of a fully trained agent for one quarter of the states (0,0 to
12,12). For three actions (1,6,11) it is shown in which states they predict the
highest reward among all actions. States in which the model prefers action 1
are shown in black, action 6 in dark grey, action 11 in light grey. Top: without
foveation, bottom: with foveation

used task was to orient the agent towards the position in space
with the highest expectation of reward. An auditory and a
visual signal, either from a common or independent positions,
in a discretized 1D world were the only noisy sensory inputs.
The proposed model learned, using the SARSA algorithm, to
behave optimally in this task solely based on the experience
it accumulates while interacting with the environment. The
learner does not start with a specific generative model ab initio
and only has to learn the correct parameters, but it instead
learns to integrate information only based on the feedback
from the environment.

By applying reward depending on the positional error the
agent learned to behave according to the reliabilities of the
single cues. Furthermore, the reinforcement learning based
model also implicitly developed the ability to infer the number
of causes of the input signals. In case the probability of a single
cause is high enough, the model integrates the two signals
with weights relating to their reliabilities. In the other case, it
chooses the position solely based on the estimate of the more
reliable cue. When the reliability of one cue is changing over
positions (e.g. foveation), the agent uses different strategies
depending on the position estimates of the two cues.

As often happens in reinforcement learning models, we
needed to provide a high number of training examples for
the agent to learn good predictions. That is caused by the

need to visit each state-action pair a few times to adapt the
predictions well enough. The numbers are however not so far
away from what we think could happen in a real world process.
Additionally we have not optimized the model with respect to
running time (e.g different combination of learning rates) yet.

The proposed model does not represent the involved un-
certainties of the cues explicitly, but demonstrates behavior
that is guaranteed to be optimal with respect to the expected
total reward. We are not claiming that this is the only way a
biological agent may learn how to do causal inference and how
to integrate cues, when appropriate. Instead, we demonstrated
that a simple reinforcement learning based agent is sufficient
for learning such behavior, without explicitly providing it with
the necessary model and without the agent having to explicitly
represent the involved uncertainties. This suggests that even
if a biological agent does learn causal inference and cue
integration through some form of Bayesian data association
algorithm, such learning could be aided by learning that is
mediated by the reward system.

While previous work has modeled the development of
related abilities such as multisensory association [22], the
continuing task–dependend adaption of cue weights [23], or
multisensory enhancement [24], the present paper proposes a
developmental model that learns cue integration and causal
inference from continued interaction with the environment.
Future work will aim at covering more aspects of multisensory
integration such as the role of time, a more plausible neural
implementation of the Q-function, and the ability to use
sensory representations that implicitly represent uncertainty.
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