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Audio Proto Objects for Improved Sound Localization

Tobias Rodemann, Frank Joublin, and Christian Goerick

Abstract— In this article we present a new framework for
auditory processing that combines feature extraction and grou-
ping processes to form what we call audio proto objects. These
proto objects combine an arbitrary number of audio features
in a compact representation that allows a more precise sound
localization and also better interfacing to behavior-control in
robotics. We compare our standard sound localization system
with the new approach in several scenarios to demonstrate the
potential of the new approach.

Accepted for IROS 2009, October 11 – 15, 2009 in St. Louis, USA

I. I NTRODUCTION

When talking about robot audition two specific sub-tasks
dominate in literature: Speech recognition including sound
source separation to improve the signal-to-noise ratio on the
one side and sound localization on the other side. Both pro-
cesses transform a low-level audio signal into a high-level,
more symbolic representation for generation of behavior.
While this process is well-defined in speech recognition, for
the task of localization the transition from the signal to the
behavior level is often designed ad-hoc. In most applications
( [1]–[3]) low level localization features like ITD and IID
are converted into probabilities for different positions.In
a second stage the currently most likely position of the
sound source is extracted, e.g. by finding the peak in a
position map. In the final stage the robot’s attention or gazeis
shifted towards this position. Because one normally wants to
avoid responding to spurious background activity, a threshold
operation is often applied. Furthermore, since instantaneous
single-sample measurements are unreliable under real-world
conditions, measurements are normally integrated over time
to smoothen the result. Finding an optimal integration time
constant under varying conditions is difficult. It is also chal-
lenging to decide when to read-out the position estimation.
Earlier position estimations are often too noisy since they
use only part of the available cues while later responses (e.g.
second onset in same word) are often affected by echoes to
some degree. A different type of problem is that it is difficult
to base the decision whether to attend to a stimulus or not
purely on the signal’s position or energy. Other audio features
like sound length or pitch might be more suited to separate
relevant from ’noise’ stimuli.

To solve these issues we propose to use a concept that
was inspired by the work of Bregman [4] on auditory
scene analysis (ASA). Our idea is to perform bottom-up
segmentation of audio signals along the time or frequency
domain and then compute compressed audio features over
the full segment length. These compressed features, plus
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time information on the segment, are combined into what
we call an audio proto object. These audio proto objects
may correspond to whole utterances or tones, but might
as well be combinations or fragments of sound objects.
We will show that this representation is well suited for
tasks like sound localization with selective attention. Both
precision and reliability of sound localization are improved
and it is easier to filter irrelevant stimuli before moving the
robot. In this article we will first describe how we perform
the basic segmentation process based on the signal energy
only. After the segmentation process we outline how we
represent feature values over the full segment using averages
or histograms. We will then describe in more detail the audio
features used in our system: signal energy, sound direction
(azimuth) via IID and ITD, energy slope and the length
of segments. Other features like pitch and spectral energy
have been tested, but will not be discussed in the scope of
this paper. Later on we will report on several experiments
in a real-world environment we have done to compare a
standard sound localization approach as described in [1] with
our new concept. We demonstrate that the mean localization
error is comparable to standard approaches with well-tuned
integration constants and in some scenarios even better. We
also show that in scenarios with several alternating speakers
the integration over different utterances of the same speaker
is possible. Finally we show an example where, based on
two simple filters, the majority of background noise signals
could be ignored in an experiment with a humanoid robot
in free interaction. Figure 1 shows the system’s architecture
with feature preprocessing, segmentation, audio proto object
generation, filtering, grouping, and motor control modules.

A. Comparison to related work

The term audio proto objects is closely related to both
audio streams ( [4], [5]) and visual proto objects [6]. Audio
streams are the result of a segmentation process operating
on a number of audio features. Our approach uses a strongly
compressed representation of audio features in the form of
mean values or histograms. While audio streams are better
suited for speech recognition, they are often too cumbersome
to be a basis for operations on the behavior level. We argue
that for many robotics applications, there is a number of
problems which are not tackled by the current approaches.
One is that the robot needs to distinguish between relevant
stimuli like user commands and distractors such as phone rin-
ging, foot-steps, or people talking with each other. However,
this separation has to be flexible depending on the situation.
We also believe that robots need to understand how many
sound sources are around them, which characteristics they



Fig. 1. System architecture (the preprocessing module is described in more
detail in Fig. 3).

have and how sound sources are related to each other (i.e.
who is talking to whom). These are difficult challenges that
will require a higher level representation of audio signals.
Due to the length of raw audio signals in complex situations
(imagine following a dialog) these representations will need
to be very condensed, otherwise the relevant characteristics
can’t be extracted.

II. A UDIO PROTO OBJECTS

In this section we introduce the concept of audio proto
objects as a high-level, compact representation of audio
signals for linking with other sensory modalities or behavior
control in robots. We assume that, after sound acquisition
and preprocessing, a number of audio features are computed.
One or more of these features are used for the segmen-
tation process that defines the borders of a segment. The
segmentation is described below. The next processing stage
computes compressed audio features over the whole segment
and also calculates derived features (start and length of
the segment) based on the segmentation process. Finally,
compressed audio cues and derived features are combined
to one entity that we term audio proto object.

A. Segmentation process

One of the most critical aspects for the generation of audio
proto objects is the definition of segments. In this work,
we use only a simple energy-based segmentation process.
We assume that relevant sounds are sequential, so that a
separation in time is sufficient. A proto object starts when
the signal energy exceeds a thresholdθ and ends when the
energy falls below this threshold. The parameterθ depends
on the hardware characteristics and needs to be adapted to
the background noise level. Fig. 2 gives an example of the
segmentation process.

Our approach is currently limited to situations where spea-
kers alternate without any overlap. Nevertheless a number of
realistic scenarios will be of the type that can be handled in
our approach and literature has shown a number of solutions
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Fig. 2. Example of energy-based segmentation for sound data recorded on
our robot Asimo. The energy was computed after the spectral subtraction
removed stationary background noise.

for separating concurrent sounds in real-world applications
[5], [7], [8].

B. Feature compression

The feature compression stage integrates cues over all
samples and provides a description of the feature over
the full segment length. The new representation can be a
scalar value, like average signal energy, or a vector over
different frequency channels or positions. In any case, the
representation is independent of the size of the segment.
Specifically, in the audio proto object, energy is represented
as the mean value over all samples in the segment (of length
L).

Penergy=
1
L ∑

s∈S

A(s) , (1)

where A(s) is the sum of signal envelope values over all
frequency channels in samples andS the set of all samples
in the segment. The representation of the localization is the
accumulated position evidence for all samples:

Pposition(α) = ∑
s∈S

E(α,s), (2)

where α is the azimuth angle of the source, andE(α,s)
the evidence for azimuth angleα in samples. E(α,s) is
integrated over time with a constantτ, see [1].

III. SYSTEM

The basic system architecture (see Fig. 1) is based on
the one presented in [1], extended by several preprocessing
elements (see Fig. 3 (left)) and modules for the generation,
filtering, and grouping of proto objects. Localization as the
main audio feature used in this article is based on the
Interaural Intensity (IID) and the Interaural Time Difference
(ITD) as cues. A model of the precedence effect is used
to reduce the impact of echoes and spectral subtraction
is employed to reduce background noise. Sound data was
recorded on a humanoid robot head modeled after Honda’s
Asimo, see Fig. 3 (right). We are using two human-inspired
ears mounted on the sides of the robot. The head is in a
noisy, very echoic (T60 = 810ms) lab room of size 12 x 11 x



Fig. 3. Left: Sketch of system’s preprocessing architecture.Right: Asimo-
like robot head with two human-inspired ears mounted on a pan-tilt element.

2.8 m. We are using a set of 57 different sound files recorded
at different positions in this room. A subset was used for
calibrating the audio-motor mapping, the remaining 47 files
were used for evaluation. We used a Gammatone Filterbank
(GFB) [9] with 100 frequency channels that spans the range
of 100 - 2000 Hz, where, due to background noise in this
frequency range, performance for our standard system still
shows potential for improvement.

A. Filtering, grouping and short-term memory

A big advantage of the proto object concept is that proto
objects can be easily filtered depending on their condensed
features. As an example, proto objects that are too short
or don’t have enough energy, can be neglected for sound
localization or other behaviors. The proto object concept can
be extended to group proto objects from the same source
together since they have similar features. For grouped proto
objects, feature measurements can be integrated thereby
improving localization performance. While the standard tem-
poral integration approach makes some (implicit) assumption
about the auditory scene (e.g. sounds close in time are from
the same source) the proto object approach allows a more
explicit and flexible integration.

We use position to group audio proto objects together, but
in certain situations also cues like pitch or spectral content
might be helpful to distinguish different sound sources. In
scenario 2 (see below) a grouping of proto objects could
even be done based on energy and segment length (due to
slightly different characteristics of speakers’ speech volume
and segment length), but this probably would not apply in
most scenarios.

We do not perform an offline clustering of proto objects
but rather employ a sequential procedure where for every
new proto object it is decided if it is integrated with other
proto objects. Grouping is done by evaluating the position
vector Pnew

Position(α) of the new proto object and comparing
it to the position vectorsP j

Position(α) of all proto objects
in short-term memory. If the position vectors are similar
(S(new, jmin) > TS), the closest proto objectjmin is updated,
otherwise a new entry in memory is created. An update is
done by adding the position evidence from the new proto
object to the old representation:

Proto Object Position Similarity
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Fig. 4. Scalar product similarity measure between different proto object
positions for two different speakers at azimuth angle 10° and-10° (left) and
at 30° and 60° (right). The dialog structure is visible in both plots.

P jmin
Position(α) → P jmin

Position(α)+Pnew
Energy∗Pnew

Position(α) (3)

All position evidence is multiplied with the proto object
energy Pnew

Energy. Additionally, activity decays exponentially
over time and very weak proto objects are removed from
short-term memory. SimilarityS(i, j) is based on the scalar
product of normalized position evidence vectors of the two
proto objects. Fig. 4 shows the pairwise position similarity
of proto objects for two dialog settings. Based on this figure
we estimated the optimal similarity threshold to beTS= 0.6.

B. Localization with population-coded cues

Our standard sound localization system maps pairs of ITD
and IID values to azimuth position candidates using a pre-
calibrated audio-motor map. Cue pairs are measured for spe-
cific frequency channels whenever an onset occurs. There are
normally only very few onsets in a single word for a specific
frequency channel. Considering that cue measurements are
noisy and, especially for ITD, ambiguous, mapping single
cue pairs naturally produces a large number of candidate
positions. Only in the integration over many channels and
over time the necessary robustness and precision is gained.
This integration is a summation of position estimations over
all channels and a leaky integration over time. Because the
audio proto object concept allows a grouping of different
frequency channels and onsets over time, a better localization
performance should be reachable. To test this hypothesis,
we combined cue measurements over the complete segment
of the audio proto object and then mapped the result to
a position estimation. In order to retain information about
the distribution of cue values in the proto object, individual
measurements are re-encoded into a population code. For
ITD and IID each, we use a set of nodes with response
centers at -0.9, -0.8,...,0,...,0.8,0.9. Every single measurement
of ITD or IID leads to an activation in the nearest nodes
(with a Gaussian distance kernel of width 0.1) and all
measurements for a single audio proto object are added
up. There is one population code vector for each frequency
channel so that the population-coded cue representations
for a single proto object have a size of 2 (ITD+IID) *
NFreqChannels* Nnodes. During calibration we measured the
population response by averaging over all 10 calibration files.
Cue to position mapping is performed by combining all cue
measurements for the whole proto object as described above
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Fig. 5. Population coded representation of binaural localization cues (left:
IID , right: ITD) for azimuthα = 50°. Data is integrated over 10 different
sounds for each angle.

and then comparing the population response with the stored
population responses for all positions. The evidenceW(α)
for a specific angleα is computed as the scalar product
over nodes between the measured valuesmm,c(n) and stored
representationMα

m,c(n) for frequency channelc, cue m (1
= IID, 2 = ITD), and population noden, summed over all
frequency channels and cues in the population:

W(α) =
2

∑
m=1

NFreq

∑
c=1

< Mα
m,c(n),mc,m(n) > (4)

All vectors in the scalar product are beforehand normalized
to mean 0 and norm 1. Fig. 5 gives an example population
code representation of localization cues in the proto object
for a sound at 50° azimuth.

IV. RESULTS

For the analysis of the proto object-based localization we
recorded a number (47) of sound files from different positi-
ons and compared localization results for varying parameter
settings. In a first scenario, source positions vary slowly
from 90 to -90 degrees azimuth bearing, and all sounds are
played in sequence for each position. This corresponds to a
sound source that slowly moves from right to left. In such a
scenario a temporal integration of localization cues is very
beneficial. The second scenario simulates a dialog situation
where two sound sources (speakers) talk in alternation. Both
speakers count from one to ten (in different languages). The
two scenario situations are sketched in Fig. 6.

In the following, errors are given as mean azimuth error
and the percentage of correct estimations (i.e. error = 0).
The peak position in the localization map (over the whole
sound file for the standard approach) is taken as the estimated
position. This procedure favors the conventional approach
since it implicitly solves the problem of determining the
optimal point for the read-out of the position estimation.

A. Temporal integration vs. proto object concept

Comparing the performance of different sound localization
approaches is difficult since the results depend on a large
number of factors (room conditions, recording hardware,
test sounds, and others). We therefore compare our previous
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Fig. 6. Sketch of the two main scenarios used in this paper. Spheres denote
different sounds.

τ mean loc. error percent correct
τ=10 ms 8.0° 46.8%
τ=100 ms 7.8° 47.7%
τ=1000 ms (single) 7.3° 50.1%
τ=1000 ms 6.5° 51.9%
τ=5 s 4.7° 56.6%
τ=20 s 3.9° 62.6%
τ=50 s 3.9° 63.3%

TABLE I

AZIMUTH ERROR FOR SCENARIO1 WITH OUR STANDARD SYSTEM AND

DIFFERENT VALUES OFτ . IN THE singleSETTING, INTEGRATION DOES

NOT EXTEND OVER MORE THAN ONE SOUND FILE EACH.

sound localization system as outlined in [1], which showed
very good performance under high-noise conditions, with
our new, proto-object-based approach, that works on top of
the old system. We vary the temporal integration constant
τ from 10 ms to 50s. Our results (Table I) for scenario 1
show that the performance of the standard system increases
with larger values ofτ, mostly due to the integration over
different sounds.

If we apply the same strategy for the alternating sound
scenario (2) the results are different (Table II). We used three
different settings, one with the sound sources at 10° and
-10° (setting 1), one with sources at 40° and -40° (setting
2) and finally 30° and 60° (setting 3). The last setting is
especially challenging because both sources are on the same
side of the head and therefore mislocalization can arise
easily. In these settings temporal integration does not make
sense for more than a few 100ms.

The problem in the dialog scenario is that with increasing
time constant past measurements get an increasing influence
on the current position estimation. As a result the localization
will either localize only one of the two sources (as for setting
2) or average over the two positions (as in setting 1 and 3).
These results demonstrate that for situations which resemble
dialog scenarios, time constants of integration would opti-
mally be in the range of 100 - 1000ms. However, our results
in scenario 1 have shown, that, if there is just one source,
localization precision could be improved substantially when
using longer integration constants.

In comparison, the audio proto object approach uses



τ \setting Setting 1 (10/-10) Setting 2 (40/-40) Setting 3 (30/60)
τ=10 ms 3.5° (65% ) 10.5° (35% ) 7.5° (35% )
τ=100 ms 3.0° (70% ) 9.0° (30% ) 8° (30% )
τ=1000 ms 3.0° (70% ) 10.0° (25% ) 9.5° (30% )
τ=5 s 6.0° (60% ) 20.5° (35% ) 12° (25% )
τ=20 s 8.5° (55% ) 37.5° (45% ) 13° (15% )

TABLE II

AZIMUTH ERROR FOR THE STANDARD SYSTEM WITH SOURCES AT

DIFFERENT AZIMUTH ANGLE SETTINGS

Filter setting Proto object approach + population coding
ALL 12.4° 8.3°
Top99 12.2° 8.0°
Top90 10.6° 6.7°
Top80 9.0° 5.5°
Top60 6.7° 4.3°
Top40 6.3° 3.9°
Top20 6.1° 3.9°

TABLE III

PERFORMANCE OF PROTO OBJECT SYSTEM FOR SCENARIO1 WITH

DIFFERENT SETTINGS OF ENERGY FILTERING. THE RIGHTMOST

COLUMN DEPICTS RESULTS FOR THE PROTO OBJECT APPROACH WITH

POPULATION CODING OF CUES.

only an integration over samples that are grouped by the
segmentation process. Directly comparing the performance
of standard and proto-object approach is difficult because,
due to the segmentation process, there are on average 1.5
proto objects generated for each sound played. Some of these
proto objects have a very low energy or length and also bad
localization performance. We therefore decided to filter proto
objects with a low energy and use only the remaining ones
for measuring the localization performance. Table III gives
result for different settings of the filter, whereALL means
that no filtering is used andTopXX that only the topXX%
proto objects (in terms of their energy) are evaluated. The
right column provides the results for the population coded
sound localization (see section III-B).

Performance increases substantially when working only
with louder proto objects. Using only 60% of the proto
objects (roughly one per sound as for the standard approach)
the results are better than the ones for thesingle setting in
the standard approach where information can’t be integrated
over several sounds. It is also noteworthy that the population
coded approach is substantially better than the single cue
mapping (a reduction of more than 30% in localization error).

For the second scenario (alternating speakers) the results
are shown in table IV. Again, low-energy proto objects
have been filtered out (1 or 2 per setting). The results are
comparable to the performance of the standard approach for
a setting of the integration constant that is well adapted
to the timescale of the dialog. With the proto objects plus
population coding results are even substantially better. At
this point we are not even using the full potential of the
proto object approach. In the next paragraph we will show
how the grouping of proto objects according to their features

Setting Best standard Proto Object + pop. code
Sources at 10/-10 3.0° (70% ) 3.5° (65% ) 1.5° (85% )
Sources at 40/-40 9.0° (30% ) 8.5° (35% ) 6.0° (50% )
Sources at 30/60 7.5° (35% ) 8.0° (35% ) 4.5° (55% )

TABLE IV

COMPARISON OF AZIMUTH LOCALIZATION PRECISION FOR STANDARD

AND PROTO OBJECT APPROACH FOR VARIANTS OF SCENARIO2.

Scenario Estimated Positions
Two sources (-10/10) -10 / 20
Two sources (-20/20) -30 / 30
Two sources (-30/30) -30 / 40
Two sources (-40/40) -40 / 50
Two sources (-50/50) -50 / 60
Two sources (-60/60) -70 / 70
Two sources (-70/70) -70 / 70
Two sources (-80/80) -80 / 90
Two sources (-90/90) -80 / 90
Two sources (30/60) 30 / 70
Four sources (-20/40/-50/70) -30/50/-50/80

TABLE V

TRUE AND ESTIMATED POSITIONS USING THE PROTO OBJECT APPROACH

AND GROUPING BASED ON POSITION SIMILARITY AFTER TEN

UTTERANCES EACH.

improves the localization further.

B. Grouping of proto objects via position

We used the position-based grouping process to improve
localization precision and to estimate the number of sound
sources in the different scenarios. For different settingsof
the dialog scenario two main sound sources emerge at the
positions shown in Table V. In addition, one or two additio-
nal weaker sources were found due to localization outliers
but they have very low accumulated position evidence and
will disappear over time.

The results show that the two sources can be extracted and
their position localized with an average error of 5.5°. Even
in a scenario with four separate speech sources the grouping
process correctly determined the number of sources and their
positions. Is has to be noted, that with increasing number
of sources the grouping process becomes more and more
difficult. While two sources can be correctly identified with a
broad range of values of the similarity threshold, more tuning
is necessary for more sources. This process can be improved
if more separating cues are available and similarity is based
on several cues.

When applying the same approach for the first scenario,
the system can for most of the time follow the current source
position (i.e. just one proto object with correct position
estimation), being able to ignore rare spurious proto objects
with wrong position estimations. The system only fails when
the source switches sides since at this point the distribution
of position evidence values changes substantially. Quickly,
however, a new proto object at the correct position will
emerge. When taking as position estimation the peak position
from the strongest proto object, the mean localization error
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Fig. 7. Length and energy of audio proto objects for two typesof sounds:
environmental noise and robot directed speech.

is 4.0°. With the population coding approach the precision
is very high (2.4° average error and 77% correct) and the
target is never lost. Note that this process is iterative and
based only on the measured position. Most of the time the
system can correctly estimate the number and position of
sound sources.

C. Filtering of environmental sounds

Another application of the audio proto object concept is
the filtering of environmental sounds. We recorded sounds on
our humanoid robot Asimo while it was powered up. Sounds
are of two types: environmental sounds like mouse-clicks,
footsteps or door slamming, which the robot is supposed to
ignore, and speech directed to the robot, to which the robot
should orient to. Audio proto objects were extracted for both
databases and feature values for the two sound categories
compared. The databases contained 55 environmental sounds
and 25 speech commands recorded in a realistic scenario.

It turns out that most environmental sounds are rather
short (mean 0.36 s compared to 0.8 s for directed speech)
and have a low mean signal energy (mean 52880 compared
to 97000 for robot directed speech). In Fig. 7 proto object
length and energy are plotted. Using a simple threshold
on length (0.5 ms) and mean signal energy (30000), 80%
of the environmental sound proto objects can be filtered
out while 92% of the speech signals can pass through.
We have successfully implemented the environmental sound
filtering mechanism on our Asimo robot as part of a larger
integrated system similar to [10]. As a result of the filtering
operation, the robot almost exclusively responds to humans
calling the robot, ignoring most of the background noise.
This was reached without any speech-specific audio features.
However, integrating more cues like pitch or formants is
straightforward and could enhance performance.

V. SUMMARY AND OUTLOOK

In the spirit of Bregman’s Auditory Scene Analysis we ha-
ve introduced a new concept for sound processing in robotics
which consists of an energy-based segmentation process and
a feature compression and concatenation stage. The resulting

audio proto objects are a framework for increasing sound lo-
calization performance in typical robotic scenarios, including
a higher precision in multi-source scenarios, integrationover
several utterances of a speaker, combination of different cues
for grouping processes over time, and filtering of specific
sounds. We have also shown that the population coding of
localization cues for the entire proto object can furthermore
reduce the localization error by about 30%.

The audio proto object concept should be extended by
improving the segmentation process, for example through
source separation. This would extend the concept of seg-
ment into the spectral dimension and allow a treatment of
concurrently active sources. Other necessary extensions are
more audio cues for segmentation and grouping, like spectral
structure, formants, or HIST features [11]. These additional
features would allow us to extend the proto object concept
to more types of scenarios. We also plan to extend the
proto object based localization to 2D, combining binaural
and spectral cues as described in [12]. Audio proto objects
can be combined with visual proto objects [10] since their
structure is similar. Both types of proto objects have a
specific position in time and contain compressed feature
representations. Combining the two modalities on the proto
object level could lead to some interesting applications.
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