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a b s t r a c t

In neural network research on language, the existence of discrete combinatorial rule representations
is commonly denied. Combinatorial capacity of networks and brains is rather attributed to probability
mapping and pattern overlay. Here, we demonstrate that networks incorporating relevant features of
neuroanatomical connectivity and neuronal function give rise to discrete neuronal circuits that store
combinatorial information and exhibit a function similar to elementary rules of grammar. Key properties
of these networks are rich auto- and hetero-associative connectivity, availability of sequence detectors
similar to those found in a range of animals, and unsupervised Hebbian learning. Input of specific word
sequences establishes sequence detectors in the network, and substitutions of words and larger string
segments fromone syntactic category, occurring in the context of elements of a second syntactic class, lead
to binding between them into neuronal assemblies. Critically, these newly formed aggregates of sequence
detectors now respond in a discrete generalizing fashionwhenmembers of specific substitution classes of
string elements are combined with each other. The discrete combinatorial neuronal assemblies (DCNAs)
even respond in the same way to learned strings and to word sequences that never appeared in the input
but conform to a rule. We also show how combinatorial information interacts with information about
functional and anatomical properties of the brain in the emergence of discrete neuronal circuits that may
implement rules and discuss themodel in thewider context of brainmechanism for syntax and grammar.
Implications for the evolution of human language are discussed in closing.

© 2009 Elsevier Ltd. All rights reserved.

The >10,000words of a language can be combined in abundant
ways to yield a virtually unlimited number of possible strings
and a still gigantic number of sentences that conform to the
grammar of the language. Considering only sequences made up
of up to six words, the number of possible strings is > one
septillion (1024) and, assuming that only one out of 1000 (or even
a million) of these possible strings is in fact grammatical, a still
extraordinary number > 1021 (1018) of correct sentences results.
As the average human has only about 2.5 × 109 s to live, it is
clear that only a small fraction of the grammatical strings can
be learned item by item. Still, a random sample of uncommon
sentences presented to competent speakers will inevitably lead
to very similar judgments about their grammaticality. Sentences
and their underlying combinatorial principles must therefore be
deduced, or generalized, from the limited input by each speaker in
a similar fashion. Linguists (Chomsky, 1957; Harris, 1951; Pinker,
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1984; Steedman, 2000) have argued that this combinatorial system
operates on groups of discrete lexical elements (word stems and
affixes) and relates them to discrete higher-order classes of string
segments, the syntactic categories, which can, in turn, be the
substrate of higher-order rules. The beauty of this approach lies in
the fact that the single rule
c → ab
(to be read as: ‘‘symbol c is rewritten as a followed by b’’)
covers large classes of string segments, so that the number of
combined strings c increases exponentially with the number
of string parts a, b. Large numbers of grammatical strings can
therefore be described by a small set of abstract rules for
combining discrete string segments. These descriptions form the
common ground of linguistic theories, although rules and the
principles underlying them have been formulated in different
ways by different syntacticians (Chomsky, 1957; Steedman, 2000;
Tesnière, 1953). An important linguistic proposal therefore is that
surface elements of a sentence are linked by way of abstract
representations operating in a discrete fashion. Here, we ask how
such abstract discrete combinatorial representations may emerge.
The idea of a language as a discrete combinatorial system

has been questioned in the neural network literature. It is
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well known that grammatical knowledge can be extracted
from the statistical properties of sentences, their patterns and
probabilities of co-occurrence and substitution of lexical elements
and syntactic phrases (Brent, 1993; Elman, 1990; Hanson &
Negishi, 2002). Now, it has been argued that neural networks
can extract statistical properties of strings but do not include
representations or processing components that can be likened to
linguistic rules operating on defined classes of discrete lexical
and syntactic units (Elman et al., 1996; Rumelhart & McClelland,
1987; Seidenberg & Elman, 1999). In contrast to algorithmic rule
systems, the generalization capacities documented in networks
are, according to established views, not related to rule formation
but rather to a non-algorithmic probabilistic process arising
from superposition of patterns (Elman et al., 1996; Seidenberg
& Elman, 1999). Even if complex symbol strings with similar
structure lead to the emergence of similar activation landscapes
in hidden units (Elman, 1990; Hanson & Negishi, 2002), this
does not imply that there is a neuronal entity in these networks
that uniquely processes all strings of a certain syntactic type, a
network equivalent of a discrete combinatorial rule. The gradual
adjustment of weights in probabilistic, interactive and domain-
general systems yielding generalization behavior of networks is
still compatible with the statement ‘‘No rules operate in the
processing of language’’ (McClelland & Patterson, 2002).
One critique of the linguistic rule-based approach to combina-

torial processes has been that it is not grounded in brain mech-
anisms. Recent proposals (Pulvermüller, 2003a; Schnelle, 1996a,
1996b; van der Velde & de Kamps, 2006) have tried to close
this gap by postulating neuronal entities for discrete grammati-
cal representations, but have not yet successfully addressed the
question of how linguistic representations may emerge and be
bound to words in the learning human brain. Linguistic struc-
ture can be represented explicitly in a network, for example by
way of neuronal representations of symbolic grammatical prin-
ciples.(grammatical constraints, (Smolensky, 1990, 1999)). Emer-
gence of discrete grammatical representations may, however, also
be driven, at least in part, by associative learning of combinatorial
information immanent to word strings. This present neurocom-
putational study asks whether combinatorial information can, in
principle, lead to the emergence of discrete neuronal representa-
tions carrying the representational and processing role of linguistic
rules.
Neural network approaches to serial order problems have suf-

fered, in a manner similar to abstract linguistic work, from us-
ing network architectures that are not in very good agreement
with known features of the central nervous system. In the neu-
ral network literature, it has frequently been argued that in-
corporating neuroanatomical and neurofunctional principles into
artificial networks can be beneficial, both for theoretical and
practical purposes (Garagnani, Wennekers, & Pulvermüller, 2007;
O’Reilly, 2001; Palm, 1982; Sommer & Wennekers, 2003; Wen-
nekers, Garagnani, & Pulvermüller, 2006; Wermter et al., 2004).
One of the important features of the cortical network is its auto-
associative character. Neurons that are close to each other, in the
same hypercolumn, area or region, have a high probability of be-
ing connected by excitatory synapses (Braitenberg & Schüz, 1998;
Young, Scannell, & Burns, 1995) and can therefore strongly link
with each other if they become frequently active at the same time.
However, in one type of layered network frequently used to sim-
ulate serial order processing, such links between adjacent neural
elements of one compartment are usually indirect, through inter-
vening layers (Elman et al., 1996), thereforemaking it impossible to
directly connect neural elements when building higher-order rep-
resentations that could implement rules. A major basis of learning
in the neocortex is unsupervised synaptic modification driven by
coincident or correlated neuronal activation, but most neural net-
work simulations still use supervised error-driven learning, which

is more difficult to relate to neocortical mechanisms (O’Reilly,
2001). In this present work, we demonstrate that brain-inspired
networks of artificial neurons with strong auto-associative links
can learn, by Hebbian learning, discrete neuronal representations
that can function as a basis of syntactic rule application and gener-
alization.
As rules and the problem of rule generalization are defined in

different ways in the cognitive and linguistic literature, we here
formulate the problem addressed by this work:
Rule generalization: Given that a, b are lexical categories and

Ai, Bj lexical atoms

a = {A1, A2, . . . , Ai, . . . , Am}
b = {B1, B2, . . . , Bj, . . . , Bn},

the rule that a sequence ab is acceptable can be generalized from a
set of l encountered strings AiBj even if the input is sparse, i.e. l�
n×m. A critical question is whether the combinatorial information
in the input leads to the emergence of abstract representations
that (i) bind lexical categories and (ii) are functionally discrete and
anatomically distinct from lexical representations. Note that the
general question can be asked at different levels (choosing lexical
items, phrases orwhole sentences as constituent elements) and the
argument about the development of higher-order representations
stays the same.
This study employs networks, which, like the cortex, include

auto- and hetero-associative connections andmechanisms for reg-
ulating excitation. (Knoblauch & Palm, 2001; Palm, 1980; Will-
shaw, Buneman, & Longuet-Higgins, 1969). These networks are
pre-structured insofar as they have built-in neuronal devices for
sequence detection. As the networks map coincident neuronal
activation (Gutig, Aharonov, Rotter, & Sompolinsky, 2003; Hebb,
1949; Tsumoto, 1992) driven by the co-occurrence and substi-
tution patterns of string segments in sentences, they ‘‘grow’’
putative network equivalents of discrete rules, which we will call
discrete combinatorial neuronal assemblies (DCNAs) here. We illus-
trate the learning processes, especially the interaction between
structural network properties and the combinatorial information
about string part substitutions that give rise to putative rule rep-
resentations, and give examples of the specificity of the networks’
generalization behavior.

1. General network structure

We started with a set of n string segments, or ‘‘words’’, each
implemented as a discrete neural unit here called an input unit.
In fact, neuroscience evidence indicates that not single neurons,
but, instead, large overlapping neuronal assemblies – or ‘‘word
webs’’ – are the biological counterpart of words (Demonet, Thierry,
& Cardebat, 2005; Garagnani, Wennekers, & Pulvermüller, 2008;
Pulvermüller, 1999). We simulated words by single input units to
keep the complexity of the simulation at a manageable level, as-
suming that any processes invoked by combinatorial information
of single unit activationwould also becomemanifest in simulations
replacing single units by neuronal groups. Neuroscience support
for the existence of discrete neuronal units for words and mor-
phemes comes from neurophysiological research revealing qual-
itatively different brain responses to linguistic and nonlinguistic
stimuli (Pulvermüller, 2001; Shtyrov, Pihko, & Pulvermüller, 2005).
A word-related input unit was fully activated by the appearance of
its corresponding word in the input and lost activity exponentially
thereafter (for parameters, see Methods).
In addition to the word-related input units, which together

formed the network’s ‘‘lexicon’’, there was an array of n2 neuronal
units each responding maximally to one specific sequence of input
unit activations. Sequence detectors specifically responding to
input patterns have been found in a range of animals, including
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Fig. 1. Illustration of the mechanism for sequence detection and structure of the network model used in Simulation I and II. Parts A–C: Illustration of the mechanism of a
sequence detector specialized for the string AB, which activates neuronal units αβ in sequence. Figure part A: Additive inputs to the sequence detector through a weak (from
α) and strong connection (from β). Figure part B: Stimulation with the critical sequence AB and the inverse sequence BA (upper diagram): Note the order selectivity of the
SD unit, whose activity level only crosses the threshold for input AB. Figure part C: Maximal activation values of the sequence detector are shown as a function of the time
delay between first and second word occurrence for both critical (AB) and inverse (BA) input sequence. Figure part D: Network model. The word-related input unit area of
the network (labeledWW, as it includes ‘‘word webs’’) projects onto the sequence detector (SD) area via hetero-associative synaptic connections (H). Initially, the in-column
connections from WW to area SDs are ‘‘strong’’ (dark gray), the in-row connections are ‘‘weak’’ (light gray), and all remaining connections, including the auto-associative
connections (A), are ‘‘very weak’’ (see Materials and Methods). Thus, sequence detector SDij is selective for word i followed by word j. In addition, there are ‘‘very weak’’
auto-associative recurrent connections (A) within area SD.

fly, frog and monkey (Barlow, Hill, & Levick, 1964; Hubel,
1995; Reichardt & Varju, 1959), and it is therefore likely that
sequence detectors exist in the human brain as well. The human
perisylvian language cortex houses anatomically pre-structured
neuronal wiring sufficient to form >100 sequence detectors for
each word pair sequence possible in a language with ∼104
lexical entries (Pulvermüller, 2003b). Sequence specificity was
implemented by a pair of connections of each sequence detector,
which provided it with input from two input units via a ‘‘weak’’
and a ‘‘strong’’ connection. Only if the strong input arrived at the
sequence detector within a time interval 1t after the weak input,
a non-linear interaction of input effects led to a powerful input
to the sequence detector, which exceeded its threshold. Whereas
the input sequence AB elicited a full sequence detector activation,
the inverse sequence BA failed to activate this sequence detector
(Figure 1 Knoblauch & Pulvermüller, 2005; Figure 1 Pulvermüller,
2003b). There was one specific elementary sequence detector
for each of the n2 possible sequential combinations of the n
word-related input units in the networks (Fig. 1(D), see Methods

for further details).1 Because each section of cortex is known
to have both rich hetero-associative connectivity with other
cortical sites and even richer within-area auto-associative local
connections (Braitenberg & Schüz, 1998; Young, Scannell, Burns,
& Blakemore, 1994), we implemented global hetero-associative
connections between input units and sequence detectors and auto-
associative connections between each pair of sequence detectors.
These connections all had ‘‘minimal’’ weights.

1 Note that, for a vocabulary of 104 words, this implies that 108 sequence detec-
tors are available for learning in the network at the onset of learning (Pulvermüller,
2003b). Neuroimaging evidence indicates that there are cortical areas, most likely
in the periphery of the perisylvian cortex and certainly including part of Broca’s
area (Dapretto & Bookheimer, 1999), which are relevant for processing informa-
tion about serial order and, potentially, grammatical rules. It appears that, within
the perisylvian cortex, there are rich reciprocal connections between adjacent and
even distant areas, thus providing a basis for the multiple weak links required for
the large number of sequence detectors postulated (Catani, Jones, & Ffytche, 2005;
Pandya & Yeterian, 1985; Young et al., 1995).
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2. Methods

2.1. Neuron model

Each neuronwasmodeled as a simple leaky integrator unit. The
membrane potential x(t) follows the differential equation
τ · dxi(t)/dt = −xi(t)+Σjwjiyj(t),
where t is time, τ is the leak time constant, yj is the output
of a synaptically coupled neuron j, and wji is the (excitatory or
inhibitory) strength of the synaptic coupling from neuron j to
neuron i. The output yi is a linear function of xi with saturation,
i.e., yi = xi and 0 ≤ i ≤ 1. For synaptic learning we used a Hebbian
coincidence rule with constant decay rate,
dwij(t)/dt = −D+ rfpre(yi)fpost(yj),
where the synaptic weight wij(t) was restricted to an interval
[0;wmax]. HereD is the decay rate, r is the learning rate, and fpre and
fpost are sigmoid functions of pre- and post-synaptic neural activity,
respectively. For the simulations we used the Fermi function
fpre/post(y) = 1/(1+ exp(−β(y−Θ)))
with, typically, Θ = 0.8, β = 1000,D = 0.00001, and r = 1.
The model was implemented using the Felix++ simulation soft-
ware (Knoblauch, 2003). Differential equations were numerically
solved using the fourth-order Runge–Kuttamethodwith a step size
of 0.01 time units.

2.2. Network model

The network model consists of two connected arrays of
neuronal elements or ‘‘areas’’. The first array included word-
related input units (or ‘‘word webs’’, WW) and was considered
the network analogue of the brain-internal neuronal assemblies
processing lexical elements in the perisylvian cortex of the
left hemisphere. This ‘‘lexicon area’’ comprised 20 simple leaky
integrate units, one per word. The occurrence of a word in the
input was simulated by an instantaneous increase of activity of its
corresponding input unit followed by an exponential decay (leak
time constant τWW = 10) to mimic sustained excitation in active
memory (Fuster, 1997, 2003).
The second array consisted of neuronal elements connected to

pairs of word representations in the first (lexicon) area. Hetero-
associative connections between areas was such that the second
(grammar) array included 20 × 20 = 400 leaky integrate units
(leak time constant τSD = 1), one for each possible sequence of the
20 words represented in the lexicon area. The unit in the ith row
and jth column of the array (Figs. 3 and 4) represents the sequence
of word i followed by word j. At the start of the simulations,
the neuronal units of the second array received a ‘‘weak’’ input
from input unit i and a ‘‘strong’’ input from unit j (w parameters
were set to 0.5 for weak and 1.0 for strong connections). These
asymmetric connectionsmake the neuronal element in the second
array respond most strongly to the sequence ij of input unit
activations (Figure 1c Knoblauch & Pulvermüller, 2005; Figure
1c Pulvermüller, 2003b). The neuronal elements in the second
array therefore extract information about the serial order of
words and can be considered elementary sequence detectors (SDs).
Furthermore, in addition to the weak and strong connections of an
SD to a pair of input units, there were initially ‘‘very weak’’ hetero-
associative connections from the input units to the SD array (w =
0.1) and, importantly, auto-associative connections in the SD area
of the network (w = 0.1). The SDii units on the diagonal (Figs. 3
and 4) received ‘‘very strong’’ input from the input units and can
be thought of as functionally equivalent to word representations
in the grammar area.
Anatomical realism also includes implementation of inhibitory

circuits (Markram et al., 2004; O’Reilly, 2001). Following the
previous work (Knoblauch & Palm, 2001; Palm, 1982), area SD
included two inhibitory neuron populations, in addition to the

Fig. 2. Four overlapping stages of syntactic learning are illustrated schematically
(from top to bottom): Starting stage (0), enabling of sequence detector (E),
substitution mapping (SM), rule assemblage (RA), and rule generalization (RG).
For explanation, see Results. Gray nodes correspond to word-related input units,
segregated for first word elements (left) and second word elements (top). Central
white or black nodes correspond to sequence detectors.

excitatory SD cells. One population received only local input from
the SDs, whereas neurons from the second inhibitory population,
similarly to their excitatory neighbors, received also external
inputs from the WW cells. The purpose of this architecture
was to increase network capacity and stabilize overlapping cell
assemblies (Aviel, Horn, & Abeles, 2005).

2.3. Learning and testing procedures

There were two training or learning phases: In the first training
phase, we presented the word pairs from the training set while
the effect of the auto-associative – or recurrent – connections
in the sequence detector area remained weak (e.g., by balancing
excitatory and inhibitory feedback). The training set of to-be-
learned word strings corresponded to the non-zero table-entries
of Figs. 3 and 4 (left parts). When a sequence was ‘‘presented’’,
the first word stimulated its corresponding input unit for a single
time step, followed by a delay of 1t = 7 time units, after
which the subsequent word in the string stimulated its respective
neuronal unit etc. In-between string ‘‘presentations’’, there was a
break of 100 time units to allow network activity to go back to a
resting level. In this regime, the SD units were largely unaffected
by feedback and their activity and strengthening of their synaptic
links was determined by bottom up, WW to SD, activation (as
in Pulvermüller (2003b)). As indicated in Fig. 2, the functional
result was a strengthening of the synaptic connections between
sequence detectors and their respective pairs of input units i and j
(enabling, E, and sequence mapping, SM). In addition, links to the
units on the diagonal (SDii, SDjj) were strengthened.
In the second learning phase, or ‘‘replay phase’’, the network

was in a feedback dominated attractor regime, with auto-
associative connections being fully effective. (Knoblauch & Palm,
2001), while the word sequences from the training set were
presented again several times (1t = 0.1). In this case, word
sequences in the input activated a larger set of neuronal units in the
SD area. This yielded the strengthening of (initially ‘‘very weak’’)
hetero-associative connections from the activated input units to
the set of activated SD units, and, importantly, to the strengthening
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Fig. 3. Combinatorial information and network result in Simulation I. Diagram on the left: Matrix of substitutions and co-occurrences of nouns and verbs in a fairy tale
(left). Data are given in a binary fashion. Diagram on the right: Network of word-related input units and sequence detectors that formed during learning of the set of
strings. Grey circles in the periphery represent word-related input units corresponding to the words in the diagram on the left. The central matrix shows sequence detectors
corresponding to word pair sequences. Filled black circles indicate enabled sequence detectors. Red and black lines display strengthened hetero- and auto-associative
connections, respectively. At the upper left, an aggregate of enabled sequence detectors has formed,which represents a putative network correlate of a discrete combinatorial
rule.

Table 1
Outcome of Simulation I using the network depicted on the right of Fig. 3 to determine verb (second string element) activation as a consequence of noun (first string element)
input. Top: It can be seen that, after stimulation of first string segments (listed in column on the left), activation levels of second string segments (indicated at the top) were
close to each other for second segments of learned substitution strings and for new, not previously learned, ‘‘substitution neighbors’’ (green array). Second elements of
learned ‘‘unsubstitution strings’’, where first and second string elements always learned in only one sequence, were also activated when their corresponding first segments
occurred, but no activation and therefore generalization to new strings could be observed. Bottom: Activation of learned and unlearned second string segments after first
segment presentation to the network. Mean activation values, standard errors and minimum and maximum values for learned substitution and unsubstitution strings are
listed alongside with those for unlearned substitution, unsubstitution, row and column neighbors. Note the similar results for learned and not-learned strings involving the
substitution strings and the clear difference between learned sequences and not-learned neighbor sequences in the case of lack of substitutions.

of auto-associative connections between the co-activated SD units
within the sequence detector area (rule assemblage, RA, s. Fig. 2).
Finally, in the testing phase (where rules generalization, RG,

was observed, s. Fig. 2) the network was again in the feedforward
regime. Due to the learned hetero-associative connections, the
network now was capable of generalizing word sequences that
never occurred before. We tested this by stimulating individual
input units i = 1, . . . , 10, corresponding to the first item of the
learnedword sequences, and examining themaximal activity state
of the possible second word-related input units j = 11, . . . , 20
brought about by connections via the sequence detectors SDij. The
results shown in Tables 1 and 2 therefore indicate the syntactic
priming (Pickering & Branigan, 1999; Pulvermüller & Shtyrov,
2003) of word-related input unit j by word-related input unit i.

3. Results

3.1. General learning processes

Word sequences in the input activated their corresponding
word-related input units. Because word-related input units retain

activity for some time, this resulted in an overlapping pattern
of activation and excitation of critical sequence detectors, which,
in turn, brought about the modification of synaptic weights
between the co-activated neural elements. A sequence detector
was considered to be active when passing the activation threshold
Θ of a bounded linear activation function. All hetero- and auto-
associative connections were modified depending on their co-
occurring pre- and post-synaptic excitation level, with weight
change being proportional to the product of pre- and post-synaptic
excitation level. Below, we illustrate activation and learning
processes, which were observed in partly overlapping intervals, by
referring to the paradigmatic example network shown in Fig. 2.

1. Storage of word sequences: Word-related input units were
activated in a sequential manner, for example the word-
related input units for string elements A1 followed by B1. This
provides the optimal stimulus for the sequence detector A1B1
and stimulates competing sequence detectors less. Therefore,
connections between this critical sequence detector and
the stimulated word-related input units were strengthened
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Table 2
Outcome of Simulation II using the network depicted on the right of Fig. 4 to determine verb (second string element) activation as a consequence of noun (first string element)
input. The green squares at the upper left and the lower right indicate the set of first and second string elements frequently exchanged with each other, where discrete rule
representations emerged. Rule generalization was specific as indicated by the, in average, high activation of not previously learned string representations when they were
within a neighborhood of substituted strings. Activation of first elements spreads to second segments of learned substitution strings and unlearned substitution neighbors
for each discrete assembly specifically, with very little cross-talk, indicating that two distinct discrete combinatorial neuronal assemblies were established. False positive
deviations from the rule pattern (in orange) are due to the infrequent occurrence of atypical sequences (‘‘eagle wants’’, ‘‘woman rises’’) or to cumulative effects of exceeding
learning in both rows and columns of an elementary sequence detector. Misses indicate that some lexical items are not completely bound into the rule pattern. The table at
the bottom shows average values, standard errors, minima, maxima, and number n of second string elements for which calculations were done: The learned strings were
reproduced with similar activity values regardless of whether they were part of a rule pattern or not (left half of table). However, generalization of the rule pattern to new
strings was specific to the neighborhood of the two rule patterns, respectively (left half of the table).

Fig. 4. Combinatorial information and network result in Simulation II. Diagram on the left: Matrix of co-occurrences and substitutions of nouns and verbs obtained from
the British National Corpus. Data are given in number of word pair occurrences in the 100-million-word corpus. Diagram on the right: Network of word-related input units
and sequence detectors that formed during learning of the set of noun–verb strings (for explanation, see Fig. 3). At the top left and bottom right, two discrete combinatorial
neuronal assemblies have formed.

specifically. As this happened repeatedly, the sequence detector
is strongly bound to its word-related input units and is then
called ‘‘enabled’’ (stage E in Fig. 2).

2. Mapping of combinatorial information: There is a new input
sequence A1B2, which includes string elements already learned
in one or more different sequences before. This input string
therefore activates its critical sequence detector, and, in
addition, partly activates the previously enabled sequence
detectors connected to its word-related input units. If this
applies to both first and second segments in a string, Ai and Bj,
a set of sequence detectors, which represent the co-occurrence
and mutual substitution of string segments in the past, will be
attached to each word-related input unit by strengthening of
hetero-associative links (stage SM in Fig. 2).

3. Formation of discrete combinatorial representations: Sequential
activation of word-related input units that each have enabled
sequence detectors attached already, leads to co-activation
of these sequence detectors and therefore strengthening of
their auto-associative connections in the sequence detector
array and, thus, development of mutual functional links
between them. (In contrast to the example in the figure, a

more realistic scenario will lead to co-activation of multiple
sequence detectors in each row and column.) In addition,
there is further strengthening of hetero-associative connections
between the activated elementary sequence detectors and
their connected word-related input units. The enabled and co-
activated sequence detectors, each of which represents one
string whose segments have participated in substitutions with
each other, will thus be bound into a discrete higher-order
representation with strong specific functional links, a Discrete
Combinatorial Neuronal Assembly (DCNA; stage RA in Fig. 2).

4. Generalization to new strings:Because of the strong internal links
of the DCNA, future presentation of a learned sequence will
not only activate its corresponding sequence detector, but the
entirety of the DCNA. A new sequential activation of word-
related input units that have never been active in sequence
before but are both separately bound into the DCNA by way
of their attached and enabled elementary sequence detectors
is now possible: The DCNA produces sequential activation
spreading between the neural counterparts of segments of a
new string (illustration in part RG of Fig. 2).
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In an auto-associative network consisting of sequence detec-
tors, the learning of three strings A1B1, A1B2, A2B1 can therefore es-
tablish connections that provide a neural basis for the processing of
a fourth new string A2B2, too (cf. Fig. 3). This basic form of general-
ization follows from associative learning in a pre-structured auto-
associative network including sequence detectors. It remains to be
shown that this type of learning can address aspects of syntactic
rules and especially their specificity.
Below, we look at two data sets of string co-occurrences and

substitutions and ask whether a brain-inspired neural network
confronted with these data will build discrete combinatorial
representations that could mechanistically explain aspects of rule
generalization to new strings.

3.2. Simulation I: Emergence of a neuronal rule-equivalent

A network was confronted with a pattern of noun–verb
combinations extracted from a German fairy tale. Small corpora
such as fairy tales have proven useful in illustrating the working
of neuronal networks, and previous research has indicated that,
similar tomathematical approaches exploitingmutual information
of words (Brent, 1993), neural networks can model the formation
of lexical categories (Honkela, Pulkki, & Kohonen, 1995; Knoblauch
& Pulvermüller, 2005). Fig. 2 displays the pattern of sequential
co-occurrences of nouns and verbs within sentences of the text
in matrix form. Nouns that substituted each other in the same
verb context are represented by matrix columns with multiple
filled circles in them. Verbs that replace each other in a given
noun context are represented by matrix rows with multiple
filled circles. The co-occurrence/substitution matrix shows a
rectangle of dot accumulations at the upper left, indicating a
high likelihood of substitutions of the animate nouns Na = {Esel,
Hund, Katze, Hahn, Räuber} in the context of the action verbs
Va = {sass, sprach,machte, legte, sagte} and, vice versa, a high
probability of substitutions between the action verbs in the
respective noun contexts. A rule S → NaVa, which connects the
head of the subject noun phrase with that of the verb phrase,
implies all the observed co-occurrences of string segments along
with additional ones that result from completion of the rule
scheme and thus effective connections within the rectangle at
the upper left. The lower right section of the matrix is sparsely
populated with filled circles indicating absence of multiple
substitutions, reflecting the fact that the remaining nouns and
other heads of noun phrases were not multiply recombined with
the remaining verbs.
Sequential activation of word-related input units according to

the matrix established the corresponding sequence detectors in
the network, so that each filled dot in the substitution matrix
had a corresponding established sequence detector in the syntax
network (cf. left and right diagram in Fig. 3). Whenever a string
segment from an already learned stringwas replaced by a different
string segment, the sequence detector specific to the new string
was activated together with those of the previously learned string,
thus leading to links between the sequence detectors of the
related strings. Because there were multiple substitutions within
both the Na and Va categories in the context of the respective
other category, and substitutions always led to links between
established sequence detectors (rule assemblage mechanism, RA),
multiple links developed for the area of the network densely
populated with established sequence detectors (upper left of
diagrams in Fig. 3). These multiple links led to an increasingly
stronger influence of the enabled sequence detectors for strings
participating in substitutions of both of their segments and
eventually to the formation of a functionally coherent neuronal
assembly composed of elementary sequence detectors. Strings
whose elements did not participate in multiple substitutions

established their corresponding sequence detectors, but did not
link them with others into a neuronal ensemble (lower right of
diagrams in Fig. 3).
After learning, the network was tested for its processing of

learned and novel (‘‘unlearned’’) strings. Four types of strings were
examined: Among the learned strings, there were those also par-
ticipating in substitutions of both their first and second segments
(substitution strings) and the rest, which did not participate in
multiple substitutions (unsubstitution strings). Among the new or
unlearned strings, some had their sequence detector fall into the
high-exchange area of the substitution matrix, with established
and assembly-bound sequence detectors in both the same row and
column (substitution neighbors). Other unlearned strings had their
sequence detector in a neighborhood of unsubstitution strings
(unsubstitution neighbors).
Activation of first string elements participating in substitutions

led to activation spreading to second segments of learned strings
through the established sequence detectors of both types of
previously learned sequences, substitution and unsubstitution
strings (Table 1). It is noteworthy that the difference in activation
between second elements of learned substitution strings and
their not previously learned neighbors was only <2%. Also, the
learned categories, substitution and unsubstitution strings, were
primed equally well (9% difference). Critically, however, there was
a profound difference between not previously learned neighbors of
substitution strings and the neighbors of singular unsubstitution
strings not participating in substitutions. Second elements of not
previously learned neighbors of singular unsubstitution strings
received only <50% of the activation of learned strings and,
critically, also only <50% of the activation of not previously
learned neighbors of substitution strings. This is clear evidence
for discrete processing applying to both learned strings and new
strings that would be covered by a rule operating on classes
of lexical elements. The discrete neuronal representation built
around the sequences participating in substitutions therefore
binds substitution neighbors that have not been learned but would
be covered by an abstract rule.
These results indicate that brain-inspired networks including

sequence detectors, auto-associative connections and activation
control learn discrete representations, DCNAs that store and
represent combinatorial information. A DCNA equalizes learned
and not previously learned strings that share string segments,
thus leading to discrete behavior of the neural network. Learning
generalizes from the learned material to new ‘‘substitution
neighbor’’ strings whose composite parts had been involved in
substitutions. Discrete and specific generalization required that
items participate in both column- and row-wise substitutions.

3.3. Simulation II: Separating rules

The fairy tale example of simulation I only gave rise to one
discrete representation in the neural network. To explore the
specificity of algorithmic neuronal processes, it is important
to store more than one combinatorial pattern in the same
network. In this case, the task of the network is to store and
separate representations of two combinatorial patterns. This
task is relatively easy for combinatorial patterns operating on
different sets of vocabularies; the task becomes most difficult
if substitution patterns have overlapping vocabularies. As nouns
and verbs can be subcategorised into fine-grained lexical sub-
classes that can overlap (e.g., nouns related to living and flying
entities), we investigated whether a neural network could build
distinct and discrete neuronal representations for the intersecting
combinatorial patterns of realistic noun–verb substitutions.
A second simulation was therefore carried out to explore

the simultaneous development of distinct combinatorial rules



Author's personal copy

168 F. Pulvermüller, A. Knoblauch / Neural Networks 22 (2009) 161–172

in the same network type. Patterns of co-occurrence and sub-
stitution on the basis of the British National Corpus, a text
database including 100-million-word tokens of English (see
http://www.natcorp.ox.ac.uk, http://corpus.byu.edu/bnc). Seman-
tic criteria were used for pre-selecting 10 nouns and 10 verbs
of high frequencies: Nouns referred either to human subjects or
to flying objects and verbs described actions and states, some of
which semantically related to humans and others to flying.
The co-occurrence/substitution matrix listing nouns followed

by verbs (Fig. 4, diagramon the left) showed twopartly overlapping
patterns of substitutions. Nouns referring to humans frequently
occurred with action and internal state verbs, whereas animal and
nonliving object names grouped with the verb set semantically
related to flying. This dichotomy was by no means a strict one,
as in a number of cases the flying object nouns co-occurred
with internal state verbs (‘‘eagle wants’’) or the human nouns
with verbs otherwise mostly used in flying contexts (‘‘woman
rises’’). However, usage in typical contexts predominated. We
asked whether the network would build and separate neuronal
representations that could be likened to syntactico-semantic sub-
rules capturing the predominating combinatorial patterns.
The learning results (Fig. 4, diagram on the right) showed

that frequently occurring word sequences established their cor-
responding elementary sequence detectors (black dots), thereby
replicating the pairing of nouns and verbs observed in the cor-
pus. In addition, the established sequence detectors were joined
into two groups (black lines in upper left and lower right corner).
When testing retrieval of second string elements, verbs, after acti-
vating the first string elements, nouns, categorial behavior of the
network could again be demonstrated (Table 2, top): Second string
segments of unlearned substitution neighbors in the territory of
the first rule (green area in the upper left) were recruited when
first elements covered by this rule occurred. This led to specific
binding of nouns referring to humans with the group of action and
internal state verbs. The same generalization processes were seen
for the second combinatorial pattern: When first string elements
belonging to the category of flying object nouns were presented,
there was a general activation of word-related input units corre-
sponding to verbs related to flying (green area in the lower right).
In addition to this categorial behavior, stored exceptions could also
be retrieved.
Similar to simulation I, these results demonstrate discrete

combinatorial processes emerging in a brain-inspired network
architecture. Furthermore, these processes distinguished semantic
categories of strings on the basis of their substitution patterns.
Established elementary sequence detectorswere selectively joined
together so that they selectively formed a neuronal assembly
with those other sequence detectors with which they had
frequently been co-active. These groups of elementary sequence
detectors therefore became bound together selectively, which
led to the formation of two DCNAs, each with numerous strong
internal links (Fig. 4, diagram on the right). Strong connections
from each of the assemblies to elementary sequence detectors
outside were relatively sparse, as were strong connections
between the two DCNAs. This demonstrates the specificity of
combinatorial mechanisms developing in a network on the basis
of string segment co-occurrence and substitution. The developing
neuronal aggregates can differentiate and selectively generalize
combinatorial patterns depending on the syntactic and semantic
context of an incoming string segment.

4. General discussion

In networks incorporating neurophysiological and neuroana-
tomical features of the brain, the pattern of substitutions of seg-
ments of grammatical sentences led to the formation of neuronal

aggregates that sequentially link specific classes of string segments
to each other. Critically, these combinatorial neuronal ensembles
also provide a binding link between constituents of unlearned sub-
stitution neighbor strings – precisely the novel string types to
which a grammatical rule generalizes. The neuronal aggregates de-
veloping in the brain-inspired network are best described as dis-
crete functional units that tend to act as a group, due to their strong
internal connections, and are either activated by a specific input
or not. They mediate the sequential relationship between abstract
classes of string segments that are defined by their pattern of sub-
stitutions with other string segments. They are higher-order rep-
resentations over and above the representations of the constituent
elements they operate on. From a linguistic perspective, they
therefore appear as possible neuronal equivalents of rules of gram-
mar. Just like grammar rules, the discrete combinatorial neuronal
assemblies are the basis of rule generalization from a limited set
of input strings to a range of sentences, scaling exponentially
with the number of lexical elements they are composed of. The
discrete combinatorial neuronal assemblies, DCNAs, emerged, as
a consequence of associative, Hebb-type learning of combinato-
rial information immanent to symbol strings and the networks’
structural and functional features that mimic properties of brain
connectivity and physiology. We will briefly discuss below 1/ the
relationship between DNCAs and rules of syntax, 2/ network fea-
tures critical for the emergence of higher-order discrete repre-
sentations, 3/ the relationship between the present approach and
previous symbolic and non-symbolic neural network models of
syntax, 4/ relationships to statistical approaches to sentence struc-
ture and 5/ perspectives of the present approach.

4.1. DCNAs as a mechanistic basis of rules of grammar

A putative neuronal basis of rules of syntax and grammar is
provided by aggregates of elementary sequence detectors, which
are linked together due to the learning of strings and the sub-
stitutions of string segments between them (Simulation I). These
neuronal aggregates can be specific enough to distinguish com-
binatorial patterns characteristic of fine-grained lexico-semantic
sub-categories and rules operating on them (Simulation II).
The present simulations categorize lexical elements, nouns and

verbs, into lexical categories and link these categories together.
Although we took nouns and verbs as an example, links be-
tween other lexical categories (determiner–noun, adjective–noun,
verb–preposition etc.) can be learned in the same way. The DNCAs
can therefore be likened to syntactic rules of the form c → ab,
where a, b represent lexical categories and c the expansion of ei-
ther a or b. This is an elementary problem in syntax and one may
ask whether the emergent higher-order discrete representations
are restricted to such linkage of lexical categories. In our view, the
results demonstrate that combinatorial patterns of constituents
can lead to the emergence of discrete higher-order representations
binding, or merging, constituent categories. In this view, the gen-
eral mechanism is applicable to constituent categories (a, b) of dif-
ferent kinds, single lexical elements (noun and verb, determiner
and noun), but also larger constituents (phrases, sentences). Al-
though this proposal needs to be worked out in more detail, the
general mechanism of DNCA formation seems to explain the emer-
gence of rules of syntax at higher levels in the very same way as it
explains the emergence of syntactic category representations that
bind lexical categories. Clearly, structural and functional proper-
ties of the brain-inspired networks along with associative learning
are essential for these DCNAs to develop.
We simulate here the learning processes brought about by

strings with multiple mutual substitutions between them and,
critically, the emergence of putative neuronal correlates of binary
rules as they form a basis of binding underlying syntactic tree
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structures of many grammar theories (Steedman, 2000). As a
range of symbolic approaches to the neural implementation of
grammar are rooted in the rule concept (e.g., Chomsky (1965),
Pinker (1994), Steedman (2000), Tesnière (1959) and van der Velde
and de Kamps (2006)), the discrete neuronal binding mechanism
may be useful for grounding syntax theories in neuronal circuits
and synaptic learning. Critically, neurophysiological research has
provided evidence that grammatical processing is reflected in early
brain activation that appears to index the activation of discrete
combinatorial representations in the brain (Friederici, Hahne, &
Mecklinger, 1996; Friederici, Pfeifer, & Hahne, 1993; Hasting,
Kotz, & Friederici, 2007; Neville, Nicol, Barss, Forster, & Garrett,
1991; Pulvermüller & Assadollahi, 2007; Shtyrov, Pulvermüller,
Näätänen, & Ilmoniemi, 2003). The present researchmay therefore
contribute to the integration of grammar theorywith neuroscience
research in support of the rule concept. More research is necessary
to investigate the emergence and interaction of putative neuronal
rule equivalents in larger networks operating on large vocabularies
and corpora, along with the neurophysiological signs of rule
processing.
In one approach to the neuronal basis of grammar (Knoblauch

& Pulvermüller, 2005; Pulvermüller, 1993, 2002, 2003a), DCNAs
(previously also called neuronal sequence sets) that operate
on lexical categories are considered sufficient for representing
and processing of simple sentences. For complex sentences,
additional a priori mechanisms are postulated, including a
neuronal pushdown store (Pulvermüller, 1993) and a mechanism
for multiple activation of the same representation (Hayon, Abeles,
& Lehmann, 2005; Pulvermüller, 2003a). This framework implies
that syntactic rules covered byDNCAs directly operate on groups of
lexical elements and that additional aspects of rule representations
are linked to specific properties of human brain anatomy and
function.

4.2. Network features critical for rule development

Why did the present network architecture yield discrete
neuronal mechanisms functionally similar to discrete rules,
whereas earlier search efforts for neural rule equivalents failed?
The following features, which, as we have argued above, are
all neurobiologically motivated, distinguish this present network
model from the most common artificial neural networks used to
address language questions:

1. rich reciprocal auto-associative connectivity,
2. built-in elementary sequence detectors specific to temporally
ordered inputs,

3. unsupervised Hebbian learning,
4. sparse coding,
5. inhibitory circuits.

The beneficial effect of features 3–5 has been highlighted in
earlier work (e.g., Markram et al. (2004), O’Reilly (2001), Palm
and Sommer (1995), Wennekers et al. (2006) and Willshaw and
Dayan (1990)).Wewish to capitalize here on the importance of the
first two features: Biological mechanisms for processing temporal
order are prewired into the nervous systems of a range of animals,
at different levels (Barlow et al., 1964; Hubel, 1995; Reichardt &
Varju, 1959). There is therefore good reason to assume that the
same type of mechanism is exploited in grammar processing. Rich
auto-associative connectivity is evident especially for local cortical
connections (Braitenberg & Schüz, 1998). Implementation of auto-
associative connections in the grammar area of the network, which
provides the mechanistic links between sequence detectors, is a
precondition for yielded abstract discrete rule representations that
form the basis of generalization.
The network structure mainly used in established neural

models, for example the simple recurrent network, a three-layer

perceptronwith an additionalmemory layer (Elman, 1990), exhibit
at least two features, which may hinder emergence of discrete
representations: They avoid direct excitatory auto-associative
connections within layers and ‘‘compress’’ the layer where the
critical computations are performed. The ‘‘compressed’’ critical
‘‘hidden’’ layer includes fewer neural units than input or output
layers, so that the coding immanent to it cannot be sparse. As
we have argued, the cortex is essentially an auto-associative
network structure with high connection probability between
neighbors (Braitenberg & Schüz, 1998). Also, the primary cortices
where input and output fibers originate includemuch less neurons
than other cortical areas, arguing in favor of an expanded, rather
than a compressed, hidden layer. We therefore suggest that the
elementary neuroanatomical features incorporated in the present
networks, especially the auto-associative connections and the
relatively large number of prestructured neuronal units in the
‘‘grammar’’ area, are critical for what may be considered as neural
rule formation.

4.3. Relationship to non-symbolic distributed network models

Having said this, it must be emphasized that research on dis-
tributed neural networks using versions of error-backpropagation
learning have been extremely successful in addressing various
variants of the serial order problem, including the processing of
words in sentences. After Elman’s seminal work, it is now well es-
tablished that three-layered neural networks with an additional
memory layer attached to the middle ‘‘hidden’’ layer, can learn
sequences with syntactic structure and can generalize patterns
to new symbol strings. A mechanism for this is the similarity
of activation patterns in the hidden layer between symbols that
appear regularly in similar contexts, as could be shown by
Hierarchical Cluster Analysis and Linear Discriminant Analysis,
LDA (Christiansen & Chater, 1999; Elman, 1990). Hanson and
Negishi further showed, using Elman networks and LDA, that the
states of a finite state grammar used to generate symbol strings are
mapped onto similar activation patterns of the hidden layer (Han-
son & Negishi, 2002). Critically, similar state-related activation
patterns in the hidden layer were even achieved with different
vocabularies, an important finding which the authors interpret as
an index of neural rule formation. However, when new symbol
strings generated by already learned finite state grammars were
presented to the network, state-specific hidden layer activity was
in-between previously encountered activity clusters, thus leaving
it open whether the same rule or just a similaractivity pattern
was activated. These and similar studies have documented impres-
sively

(i) that neural networks can learn behavioral patterns at-
tributable to rules,

(ii) that they can generalize regularities to novel stings, and
(iii) that the networks reflect identical syntactic structure by

similar functional states.

However, these results demonstrate the similarity of contin-
uous neuronal activation patterns to structurally similar strings
rather than rule equivalents at the mechanistic level of neuronal
circuits. The similarities of hidden unit activity observed are still
compatible with the statement that network performance is due
to pattern overlay and similarity mapping of activation patterns,
rather than to the formation of a qualitatively different, discrete
neuronal entity processing variable symbols by the same mech-
anism (Elman et al., 1996). In other words, these results still
allowed cognitive scientists to maintain, with reference to both
networks and brains, that ‘‘No rules operate in the processing of
language’’ (McClelland & Patterson, 2002).
The present work demonstrates a discrete mechanism – in

terms of neuronal connections and network-anatomical changes
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– applicable to at least some variants of rule formation and
generalization in a specific kind of auto- and hetero-associative
network employing Hebbian unsupervised learning, built-in pre-
wired sequence detectors and auto-associative connectivity. This
critical advance now makes it impossible to maintain a general
statement about rulelessness of neural networks. The implication
is that combinatorial rules of a discrete and abstract nature
may form in the brain when symbol strings and substitutions
between them are being encountered and produced. Thus, rules
can, in a relevant sense, be learned. However, tabular rasa claims
cannot bemaintained either, as the networks were pre-structured.
Neuronal rule acquisition in networks requires the exploitation of
information built into the structure and function of the CNS.

4.4. Relationship to symbolic network models

Previous symbolic neural models showed that discrete neu-
ronal representations can implement grammar mechanisms. The
discrete neural blackboard architecture by van der Velde & de
Kamps identifies linguistic entities with discrete neural represen-
tations and addresses challenging problems of the cognitive neu-
roscience of language, including the binding,multiple instantiation
and structural representation problems (van der Velde&deKamps,
2006). Similarly, the Neuronal Grammar framework used prewired
discrete combinatorial neuronal sets and inhibitory feedback regu-
lation mechanisms to simulate syntactic processing (Knoblauch &
Pulvermüller, 2005; Pulvermüller, 2002, 2003a). These symbolic-
neuronal approaches provide prewired circuitry that solves com-
putational problems and generates predictions on neurodynamics
during language processing and understanding. However, the prin-
cipal question addressed by the present research, how the struc-
tural or discrete combinatorial representations may emerge, has
not been answered by these models. Our present work demon-
strates amechanism for the formation of DCNAs andmay therefore
contribute to the foundation of symbolic networkmodels of syntax
and grammar.
An important contribution to the symbolic-neuronal mod-

eling of grammar is Optimality Theory (Fodor & McLaughlin,
1990; Prince & Smolensky, 1997; Smolensky, 1999). Tensor net-
works (Hinton, 1990) represent the binding between vectors, each
coding for an abstract entity by their vector product or ten-
sor (Smolensky, 1990). Related approaches, vector symbolic ar-
chitectures (Gayler, 2003, 2006), spatter codes (Kanerva, 1993)
and holographic reduced representations (Plate, 2003), used mod-
ified tensor networks to develop symbolic models of binding be-
tween linguistic representations, including lexical items and roles,
that connect to the level of distributed neuronal patterns. As the
tensor product representation implies both excessive resource re-
quirements and redundant representations, and multiple vector
products can be assumed to represent the multiple links between
symbols in a string, vector convolution, compression and other
techniques were applied to obtain reduced representations. How-
ever, similar to other symbolic approaches to grammar, Optimality
Theory and other tensor approaches to grammar do not provide a
detailed mechanistic account of the learning processes underlying
grammatical roles and rules. Rather, constraints related to princi-
ples of Universal Grammar were represented in a symbolic fashion
by neural networks (Smolensky, 1999). Our present approach dif-
fers from variants of tensor networks although some parallels may
be detected: Lexical items are represented by extremely sparse
vectors of lengthm, n, and the link between them can be described
inmatrix form, by anm by nmatrix of effective sequence detectors.
In view of tensor networks, the formation of discrete neuronal rule
representations in our simulations can be interpreted as one way
to automatically reduce matrices of numerous sequence detector
activations into the selection of one from a few DCNAs.

Hecht–Nielssen’s confabulation theory presents another pos-
sibility to link symbolic representations of words and phrases
to neuronal entities, neurons, modules and their interconnec-
tions (Hecht-Nielsen, 2005, 2007). He proposes architectures of
heavily interconnected symbols represented locally in the cortex
and thalamus. Different modules are active in parallel, whereas
competition predominates within each local module. This archi-
tecture generates strings of symbols and words on the basis of
previously learned ‘‘knowledge links’’. Similar to distributed non-
symbolic processing approaches (see discussion above), the claim
is that no rules exist in these architectures. Hecht–Nielsen empha-
sizes the importance of probabilistic relationships between non-
adjacent words in a string and shows that his model makes use of
them. We have previously emphasized that the well-known non-
local relationships between syntactic objects are captured by se-
quence detectors and DCNAs (e.g., Pulvermüller (2002, 2003a)).
Our simulations now show that DCNAs develop strong internal
connections, which allows activity to reverberate and be main-
tained for longer periods of time (cf. Fuster (2003), Zipser, Kehoe,
Littlewort, and Fuster (1993)), thus bridging the time-gap between
constituents separate in time, but bound by syntactic links (Pulver-
müller, 2003a). If DCNAs have formed on the basis of frequently
recombined adjacent elements (for example, birds fly), these neu-
ronal elements can, due to their prolonged reverberatory activity,
also link linguistic elements when they are distant from each other
in a sentence (birdswith grey feathers grown over years fly).

4.5. Syntactic-semantic categories, flexibility, and relationship to
previous work in statistical language learning

It iswell known that statistical properties ofword strings can be
exploited to extract grammatical and syntactic information (Brent,
1993). Corpora tagged by Hidden Markov Models can be parsed
automatically, thereby revealing information about grammatical
features, e.g., sub-categorization features, of the lexical materi-
als (Briscoe & Carroll, 1997). These procedures can classify nouns
and verbs into fine-grained lexical classes, which are also charac-
terized by specific semantic features (Lin, 1998). Similar results
in lexico-semantic classification can be obtained from untagged
text using neuronal network architectures, for example Elman net-
works (Elman, 1990) or Kohonen maps (Honkela et al., 1995), and
mathematical techniques, for example independent component
analysis (Honkela, Hyvärinen, & Väyrynen, 2005). It is therefore
plausible that these methods exploit information immanent in the
combination and recombination of string elements. In our simu-
lations, we also observed the formation of sub-categories of lexi-
cal classes characterized by both syntactic and semantic features
(e.g. nouns referring to living entities – N [+living], verbs referring
to an action by a living being – V [+action], see Table 2). Syntactic-
semantic categories emerged on the basis of unsupervised learning
from a small text and a 10-million-word corpus. These emerged in
a network structure inspired by the human language cortex, where
lexical representations and processing devices for sequential in-
formation are side by side in a network with both rich auto- and
hetero-associative connections. The fine-grained syntactic and se-
mantic classes therefore seem to reflect combinatorial properties
of the strings rather than properties of the algorithms or networks.
The lexical sub-categorization according to semantic criteria

depends on the threshold at which DCNAs are operating. In
Simulation II (Table 2), an activation threshold of 500 leads to
separation of 2 rules (for living and flying objects), whereas at
a threshold of 150, all nouns would provide the critical priming
input for all verbs. This illustrates a potentially important point,
the flexibility of category representations immanent to the present
model. Whereas linguistic grammar theories usually define static
categories, the auto-associative grammar area can flexibly merge
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or separate word sub-categories depending on threshold. This
feature could become relevant for explaining why rule selection
sometimes depends on context, text form and conversation type.
Over and above lexical categorization, the present networks

also provide a mechanism for syntactic binding between con-
stituent classes, possibly including complementary higher-order
syntactic categories. A two-step process of first tagging a corpus
with lexical category labels and then building syntactic represen-
tations by binding together these categories could, therefore, be re-
lated to different networkmechanisms. In the processing of strings,
the lexical elements each first make contact with their DCNAs and,
subsequently, the DCNAs fire and provide the syntactic binding be-
tween them (Pulvermüller, 2003a). Neurophysiological data indi-
cate that both kinds of processes are extremely rapid, taking less
than 200 ms (Pulvermüller & Shtyrov, 2003).

4.6. Rich local auto-associative connectivity: A critical feature in the
evolution of language?

The necessity of strong auto-associative connectivity for
building neuronal rules may be relevant in the context of theories
of language evolution: A ‘‘grammar organ’’ in our brains may
require a relatively high degree of auto-associative connectivity
and connection probability of neurons within relevant cortical
areas, especially left-perisylvian cortex. One way to implement
this would be relatively large dendritic trees, or certain branches
thereof, with particularly large numbers of synapses (Jacobs et al.,
1993; Jacobs, Schall, & Scheibel, 1993). A different way to provide
strong connections within left-perisylvian cortex is by way of
long distance fibre bundles between left-frontal and left-temporal
cortex (Catani et al., 2005; Saur et al., 2008; Rilling et al., 2008).
The phylogenetic development towards optimising connectivity
in left-perisylvian language cortex may therefore have been a key
step in human language evolution also critical for setting up DCNA
for syntactic processing.

4.7. Theoretical implications of this work

These results resolve a long-standing debate between neu-
rocognitive modelers and linguists about the brain implemen-
tation of rules. By demonstrating the emergence of discrete
neuronal aggregates in a brain-inspired network, we refute the
claim that neural networks are, by necessity, rule-free, or imple-
ment ‘‘rules’’ of a type fundamentally different from the rules spec-
ified by linguistic algorithms (Elman et al., 1996; McClelland &
Patterson, 2002). By defining and linking together complementary
substitution classes of string segments, pre-structured associative
networks form exactly the type of reduced algorithmic represen-
tation implied by linguistic rules. Neuronal correlates of at least
one form of rules and rule generalization to new strings can result
from associative learning, but this requires that information about
specific structural and functional properties of the central nervous
system be built into the network beforehand.
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