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Abstract
Children acquire language to a large extend in the interaction
with their caregivers. Inspired by this observation we develop
computational models and artifacts for the acquisition of lan-
guage in an interactive scenario. The artifact bootstraps its rep-
resentations with little a priori knowledge and can be taught by
a human tutor. In this framework we investigate different as-
pects of the speech acquisition process. This encompasses the
learning of speech features, word and sub-word units as well
as the production of acquired speech units. As speech features
we explore a set of hierarchical spectro-temporal features which
are learned in an unsupervised fashion based on the observed
speech data. Phone-like speech units emerge from an unsuper-
vised clustering process. These phone-units can then be used
to bootstrap word learning in an interactive scenario where a
tutor shows a visual property and at the same time utters a cor-
responding speech label. Thereby an auditory attention system
and predefined key phrases trigger the learning behavior. Fi-
nally the learned units can also be reproduced.
Index Terms: speech acquisition, speech features, word learn-
ing, speech synthesis, attention system

1. Introduction
Common models of spoken language processing decode the ut-
terance based on predefined features, vocabularies, grammars,
and knowledge bases. This does not reflect the way children
learn language in the interaction with their environment. In their
struggle to structure their environment children have to rely on
the cues provided by their caregivers and those intrinsic in the
statistics of the environment.

To yield a system capable of bootstrapping its representa-
tions with little initial knowledge and featuring open ended de-
velopment we take in our work inspirations from recent findings
in developmental psychology an neurobiology. A key feature
of our approach is the integration of unsupervised, data-driven
learning methods and interactive learning from a tutor.

In the following we will exemplify our methodology with
results we obtained on different sub-tasks which are required
in a system capable of acquiring language similar to the way
children do. First we will briefly describe a set of speech fea-
tures we developed and which are learned based on the input
statistics without a supervision signal. Next we will highlight
how we learn sub-word speech units to bootstrap a word learn-
ing process. After this we introduce an audio-visual attention
mechanism which enables our system to focus during learning

on relevant aspects of the environment and neglect others. This
is followed by an overview on our interactive system which al-
lows a tutor to teach a humanoid robot visual and auditory clus-
ters. Both visual and auditory clusters start with little a priori
knowledge and are learned in interaction. As a robotics plat-
form we use Honda’s humanoid robot ASIMO. Finally we will
indicate how the system can acquire verbal abilities by learning
how to imitate the previously learned speech labels.

2. Speech Features

In most approaches the speech features are predefined and
mainly based on Mel Frequency Cepstral Coefficients (MFCCs)
[1] or RelAtive SpecTral Perceptual Linear Predictive (RASTA-
PLP ) features [2]. We currently investigate how features can
be learned data-driven. Based on inspirations from neurobiol-
ogy, i.e. the receptive fields in the mammalian primary auditory
cortex, and visual object recognition models we developed an
acoustic feature extraction framework. The framework is or-
ganized in two hierarchical layers and on each layer spectro-
temporal receptive fields are learned in an unsupervised way.
When using this framework we see significant improvements
for the recognition in noise [3] and could also show that an
adaptation of the features to different environments is benefi-
cial [4]. For mammals such task specific plasticity of receptive
fields in the auditory cortex seems to play an important role [5].
Given that the learning steps involved in our feature extraction
framework are unsupervised such an online adaptation seems
also to be possible.

3. Sub-Word Units

The previously described features can serve as a basis to learn
speech units on a sub-word level. These speech units can then
be combined to larger units as syllables and words.

For learning the sub-word units we follow an approach sim-
ilar to [6]: In the first step single state Hidden Markov Mod-
els (HMMs) are learned from a few minutes of untranscribed
speech in an unsupervised clustering process based on the k-
means algorithm. A transition matrix of these single state
HMMs can be used to estimate the most frequent transitions.
The combination of these most frequent transitions yields initial
3 state phone models which are then further refined via Baum
Welch training [7].



4. Attention Model
The speech acquisition process we described so far was based
on completely unsupervised learning strategies. We did first ex-
periments to extend these approaches to the learning of syllables
and phonotactic rules [7]. Alternatively we also investigate the
learning of speech and visual clusters in an interactive scenario
where a tutor teaches a robot [8, 9].

In an interactive scenario the robot perceives a multitude
of stimuli, auditory and visual, at the same time. We therefore
investigate attention mechanisms to enable the robot to selec-
tively concentrate on one aspect of the environment while ig-
noring other things [10]. Models of attention, auditory or vi-
sual, typically comprise a stimulus driven bottom-up saliency
stage and a top-down modulation to enhance or suppress cer-
tain types of stimuli [11, 12]. We integrated these aspects into a
system which combines a visual and auditory attention system.

4.1. Visual Attention

Our visual attention system is mainly bottom-up driven and
based on the concept of proto-objects. Proto-objects are regions
in the visual field that are formed by a common grouping fea-
ture, can be tracked over multiple images, and are stabilized
both in space and time (see [13] for more details). The visual
scene description consists of a (possibly empty) set of possibly
interesting entities that are close to the robot, move, are large
planes, have a certain color, or any possible combination of
these. From the set of proto-objects one is selected for inter-
action, i.e. ASIMO can point, walk, and gaze towards them.

Mainly objects in the peri-personal range, i.e. very close
to the robot and covering a large amount of its field of view,
are represented as proto-objects. With these proto-object in its
peri-personal range the robot does interact. The concept of peri-
personal range reflects observations from the way small chil-
dren perceive the world [14]. Additionally, the proto-object
concept also covers visual stimuli in an inter-personal distance
(here 1 - 2 m away). Their instantiation is solely based upon
proximity, i.e. depth. They are not interacted with by the robot,
but are used as top-down information for the auditory attention.

4.2. Auditory Attention

As a consequence of the long distance between the speaker and
the microphones on the robot a large variety of signals over-
lay with the speech signal. For most robots the noise generated
by the robot itself plays an important role. In our case this in-
cludes the noise generated by its arm and leg movement but also
the noise emanating from its cooling fans mounted on its back,
as head movements change the relative position of the micro-
phones to the fans.

In a bottom-up stage the contrast enhancement between the
environmental noise and the speech signal is mainly achieved
by reducing the background noise based on beamforming tech-
niques and adaptive noise level estimation.

Especially for instationary sounds additional top-down
mechanisms are necessary. We investigated modulation based
on the spectral characteristics of the speech and noise signals
and an analysis of the motion status of the robot to suppress
movement noise.

Another very important top-down information we recruit
is the current interaction status of ASIMO which we determine
based on the visual part of the attention system. When ASIMO

neither sees an object in its peri-personal space or a human in its
inter-personal space it assumes that nobody is interacting with it

and hence it raises the minimal activity threshold for its auditory
attention. This is a first step to suppress speech from people
currently not interacting. In future we will replace this by better
models of the interaction status of the tutor, e.g. based on gaze
estimation.

5. Audio Visual Association Learning in
Interaction

The design of our interactive learning system targets on
bootstrapping multimodal representations with minimal initial
knowledge and enabling a continuous development by learning
in interaction. For instance our system can learn a cluster in
the relative visual position space, an arbitrary speech label, and
the association between both. We use some pretrained phrases
which can trigger a learning session, e.g. ”Learn where this ob-
ject is.”. A typical learning session consists of the following
steps:

1. The tutor enters the interaction range of ASIMO so that
it either sees the tutor or an object he is presenting.

2. The tutor utters one of the predefined learning phrases to
teach categories as relative position, size, or a label to a
movement of ASIMO.

3. The tutor presents an instance of the cluster to be learned,
e.g. by showing and moving an object in the left field
of view of ASIMO, while uttering the label he wants to
associate to this cluster a few times (5-8).

4. When the tutor keeps silent for a few seconds the sys-
tem ends the learning session and shows only reactive
behavior.

To evaluate what the system has learned the tutor presents an
object in one of the learned clusters and utters the associated
label. If the active cluster and the recognized cluster do match
ASIMO nods with its head. Otherwise ASIMO shakes its head
and continues trying to find matches. If in a given time the
match is found ASIMO finally nods and disables the expecta-
tion. The speech based interaction in this system is solely based
on the microphones mounted on the robot and controlled via the
attention system described in Sec. 4 [10]

Initially the system has only very little knowledge. The vi-
sual clusters and the speech labels are fully learned in interac-
tion. During a learning session samples in the different percep-
tual modalities are accumulated. Within a session an object with
the property to be labeled is presented, and matching speech la-
bels are uttered several times. After a session has timed out,
speech and the visual subsystem in focus determine the novelty
of the current session to existing clusters. For each pair of two
associated clusters a weighted summation of their activations is
performed, forming a multimodal novelty signal. These signals
are returned to their originating classifiers which individually
decide whether the session data should be represented by a new
cluster or whether the best matching cluster should be adapted.
Finally, newly created clusters are associated with each other.

5.1. Online Word Learning

If no speech models have been learned yet a new model is ini-
tialized with the best matching phone sequence learned as de-
scribed in Sec. 3. In later learning steps the current utterance is
compared to the best matching speech label and the best match-
ing phone sequence. If the novelty of the new label is strong a
new cluster is learned, either based on the best matching cluster
or the best matching phone sequence. If the novelty is weak the



best matching cluster is updated. This allows the adaptation of
already existing clusters.

5.2. Online Visual Cluster Learning

For learning of visual properties different features of the cur-
rently focused proto-object are used, such as a vector of its 3d
position or the absolute value of its 3d size. Each cluster is
represented by a multi-dimensional Gaussian, consisting of a
cluster-center and a covariance. The activation of each cluster
given some feature-vector is based on the distance between the
cluster-center and the feature vector, integrated over time. The
larger the distance, the lower the cluster activation [13]. In the
same fashion as for the speech label learning it is also deter-
mined based on a novelty measure if a new cluster has to be
created or rather an existing cluster should be updated.

5.3. Online Associtation Learning

Initially, the system neither contains any clusters nor associa-
tions. The learning of new associations assumes synchronously
presented clusters in two different modalities to belong together.
Therefore, the local learning decisions of the speech and the vi-
sual classifier in focus can be used to define the mapping be-
tween the two modalities. If both classifiers vote for the cre-
ation of a new cluster these two clusters are associated with each
other. In the case where only one learning decision demands the
creation of a new cluster this new cluster is associated with the
already existing one in the other modality.

6. Speech Imitation
The communication of the robot with the tutor we described
so far was solely based on the movements of the robot’s body.
To equip the robot also with verbal capabilities we investigate
how sounds and words can be imitated based on the previously
learned acoustical representations. As our system per se is not
constrained in the vocal tract shapes it can model a direct imi-
tation would result in a replica of the tutors voice. To avoid this
we artificially impose such constraints to give it a child’s voice.
This entails the necessity to learn a mapping between the tutors
voice and the system’s voice. For the imitation this mapping
is learned in interaction with the tutor. During synthesis mo-
tor primitives, manifest as vectors of formant positions in the
child’s voice space, are morphed to form a continuous speech
segment. Such formant configurations can be also extracted in
interaction from the tutor’s voice [15, 16].

As a consequence the system can imitate utterances of the
tutor with its own voice. At the current state this is limited to the
imitation of vowel sequences. Interjacent consonants are filled
with the best matching vowels [17].

7. Conclusion
Models of speech acquisition have to take into account different
levels of abstraction and integrate information from modalities
other than only sound. The acquisition of language relies on a
shared realm of experience and knowledge between the child
and its caregivers. Hence, in the development of models for
speech acquisition we have to cover a wide range of topics to
create this shared experiences and knowledge space between a
robotic artifact and its tutor. The common theme behind the
various aspects of our work we presented in this paper is the
effort to integrate knowledge from developmental psychology
and neurobiology into a model for speech acquisition embedded
into a tutor-robot scenario.
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