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Abstract. Vector quantization methods are confronted with a model
selection problem, namely the number of prototypical feature represen-
tatives to model each class. In this paper we present an incremental
learning scheme in the context of figure-ground segmentation. In pres-
ence of local adaptive metrics and supervised noisy information we use
a parallel evaluation scheme combined with a local utility function to
organize a learning vector quantization (LVQ) network with an adap-
tive number of prototypes and verify the capabilities on a real world
figure-ground segmentation task.

1 Introduction

The appropriate choice of the number of model neurons is a principle problem in
vector quantization networks. In particular incremental learning offers a solution
to adjust the amount of resources needed versus classification performance to find
a tradeoff between representation quality and the avoidance of over-fitting. Vec-
tor quantization methods provide a simple algorithmic yet powerful framework
with applications, for example in image processing [1] or life-long learning [2,3].
We investigate such methods in the context of online figure-ground segmentation
where homogenous image regions are represented by single feature representa-
tives. Ideally the dimensionality of the network should represent the meaningful
entities in the data. As this problem is ill-posed (subjective), several researchers
have addressed this problem with heuristics in supervised or unsupervised set-
tings. One main criterion used for unsupervised setups is the distance of the
features to their representatives, namely the quantization error. The criterion in
Growing Neural Gas [4] (and similar for the Growing Cell structures [2]) aims at
a minimization of the quantization error and introduces new prototypes where
the quantization error is large, guaranteeing that the introduction of new proto-
types reduces this error. Supervised LVQ primarily aims at the minimization of
the classification error which offers another source of information. For example
Kirstein et al. [3] propose a heuristics to insert new prototypes at the decision
boundary using the misclassified data points together with a distance criterion
to determine the location for new prototypes.
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In this contribution we investigate Generalized Learning Vector Quantization
(GLVQ [5]) with adaptive metrics and propose a framework for incremental and
online figure-ground segmentation which faces two problems. Firstly the local
adaptive metrics complicates distance-based criteria to place new prototypes,
where we use the confidence of the classification instead. Secondly the method
has to cope with noisy supervised information, that is, the labels to adapt the
networks are not fully confident. In particular we address the second problem by
using a parallel evaluation method on the basis of a local utility function, which
does not rely on global error optimization. After a short problem statement,
we describe the overall method to allow incremental learning in the presence of
non-confident supervised information together with the criteria to introduce and
remove prototypes from the network. Finally we evaluate the method on a real
world segmentation task and compare to previous results.

2 Method

2.1 Scenario

Our proposed method addresses the problem of online figure-ground segmenta-
tion for object learning and recognition. The application scenario consists of a
human presenter showing objects to a pan-tilt stereo camera system, which is
controlled by an attention system [6]. Using the concept of peripersonal space,
the depth estimation of the region in front of the system is analyzed with a blob-
detection within a specified depth interval (50cm-80cm). The most salient object
in front of the system is continuously tracked and centered in view by setting the
gaze direction. Additionally a square region of interest (ROI) is defined based on
a distance estimate of the tracked blob and normalized to a size of I × I pixels,
where we use I = 144. Both methods assure an approximate invariance to po-
sition and size for the incoming stream of images showing the object in front of
cluttered background. A first cue for parts of the scene that belong to the object
can be derived from depth estimation which we call object hypothesis. Because
extracting 3D information from 2D images in general is an ill-posed problem,
the resulting hypothesis is characterized by a partially inconsistent overlap with
the outline/region of the object. That is, some regions of the background are
indicated as foreground and vice versa. Since the learning and recognition can
be improved as the quality of the figure-ground segmentation is enhanced, we
follow the concept of hypothesis refinement to derive the significant object parts
(according to the underlying image features) from this initial guess. In [1] we
investigated methods for object segmentation that use prototypical feature rep-
resentatives to model figure and ground. In particular, we used binarized depth
hypotheses as a supervised label for the image features to train a classifier for
figure and ground with GLVQ. In our previous setup an empirically predefined
number of prototypes were used, while the model selection problem was left
open.



2.2 Generalized Learning Vector Quantization

From the camera system the following data is available for each frame. A stack
of M = 5 feature maps F := {F x,y

i |i = 1..M} corresponding to the RGB
color and position information of the pixels forms the dataset D := {ξ|ξx,y =
(F x,y

1 ..F x,y
M )T , 1 ≤ x, y ≤ I}, where every pixel defines a feature vector. To take

advantage from the temporal character of the data the features of T = 2 frames
are combined to one dataset. Switching to a new frame effectively replaces 50%
(or less if T is increased) of the data from one to another adaptation step.
Additionally to the data the hypothesis H is available indicating which pixels
belong to foreground Hx,y = 1 or background Hx,y = 0 which is used as label
c(ξx,y) := Hx,y for the image features. Assume thatH is partially wrong (i.e. only
a small portion of the data is wrongly labeled), the goal is to derive a classifier
Ax,y
F,H(ξx,y) for the pixel features that generalizes to the relevant foreground

(object) features.
The method of GLVQ is defined by a network of N class-specific prototypical

feature representatives P :=
{
wp ∈ RM |p = 1..N

}
. For figure-ground segmen-

tation a two class setup is used where c(wp) ∈ {0, 1} encodes the user assigned
class-membership of every prototype. The goal of the learning dynamics is to
find the representatives in feature space to represent the data by minimizing
the classification error defined by the functional E[D,P] =

∑
ξx,y∈D σ (µ(d))

with σ(x) = 1
1+e−x , µ(d) = dJ−dK

dJ+dK
. Here the variables dJ = d(ξx,y, wJ) and

dK = d(ξx,y, wK) represent the distance between ξx,y and the most similar pro-
totype wJ from the correct class withHx,y = c(wJ ) and the distance to the most
similar prototype wK from an incorrect class. Since similarity-based clustering
and classification crucially depends on the underlying metrics, recently several
adaptive metrics were proposed [7]. In the most general case the similarity met-
rics is extended towards a Mahalanobis metrics d(ξ, wp) = (ξ−wp)T Λp(ξ−wp),
where the distance computation of the features to the representatives is extended
towards a prototype specific M ×M matrix Λp of relevance factors (Localized
Generalized Matrix LVQ, LGMLVQ). In general, using the kernelized distance
computation introduces non-linear decision boundaries. As described in Cram-
mer et al. [8] this allows for a reduced number of prototypes while achieving a
comparable performance to standard LVQ with multiple prototypes.

The prototypes wJ and wK as well as the corresponding relevance factors
ΛJ and ΛK are optimized by means of gradient descent according to E on
10000·T randomly chosen pairs (ξx,y,Hx,y), which is described in more detail
in [1]. Since Λp has to be positive semi-definite to yield a valid metrics, i.e.
d(ξ,wp) = (ξ − wp)T ΩpΩ

T
p (ξ − wp) = (ΩT

p (ξ − wp))2 ≥ 0, this is assured
by adapting Ωp, where Λp = ΩpΩ

T
p . Additionally, the diagonal elements are

normalize by
∑M

i=1 Λi,i = 1. In general the prototypes are kept from one to the
consecutive frame and adapted to the new data.

To segment an image on the basis of such a network, it is partitioned into
N segments (binary maps) Vp ∈ {0, 1} by assigning all feature vectors ξx,y

(i.e. pixels of a particular frame) independently to the prototype wp with the
smallest distance d(ξx,y, wp). Using a prototype-based representation, the final



segmentation A (binary map) is combined by choosing the binary maps from
the prototypes assigned to the foreground A =

∑N
p c(wp)Vp. For object learning

and recognition now A is used instead of H.

2.3 Incremental Framework

We showed [1] that this method is robust in the presence of the noisy H and the
increased model complexity using the adaptive metrics yields an improved seg-
mentation quality in absence of over-fitting effects when an appropriate network
dimensionality is chosen. Therefore the number of prototypes is an important
parameter which determines the performance of the network with respect to run-
time and generalization capability. Our main goal is here to adapt the number
of prototypes during online processing of the data to use as many prototypes as
necessary for the segmentation.

Fig. 1: The general algorithm to adapt the size of the network follows three main parts.
Standard adaptation of a network using the LGMLVQ update rules (yellow circles),
consisting of step 1 to 3 in Sec. 2.3. The green circles (plus) indicate an additional
step to add a new prototype. This step yields two networks which are evaluated in
parallel on the consecutive frame. Finally the red circle (minus) indicate an additional
contraction step, where one of the prototypes (if appropriate) is removed.

Incremental Online Processing The proposed method consists of three parts,
a standard adaptation step, one method to add new prototypes and a local
criterion to remove prototypes from the network. To stabilize the incremental
learning of the network in presence of the noisy supervised information, we use
the temporal aspect of the data for a sequential processing together with a par-
allel evaluation scheme. That is, to avoid the adaptation to the hypothesis on a
particular frame, adding and removing prototypes are applied in a consecutive
manner where on a single frame only one prototype is added or removed. Ad-
ditionally due to the risk of disturbing the network with such operations while
online segmenting the image, we use a parallel evaluation scheme Fig. 1. The
prototypes are added to a second network, which is an exact copy of the first
one. After the evaluation a decision is applied whether the original network or
the modified network is kept for the following frame.



Controlling the Network Size Incremental learning in prototype-based networks
needs a mechanism to control the growing process to determine an appropriate
number of prototypes. A widely used possibility is a global quality assessment.
This information can be used to select the best performing set of prototypes
after the network grew until a predefined maximum number of prototypes was
reached [9], or to stop if the change in a quality measure does not significantly
vary by adding further prototypes. An online scenario as well as noisy supervised
information, which corrupt global quality assessments, prohibits such methods.
In our approach the network size is controlled by a local utility function without
a criterion of global classification performance or measure for model complexity.
In comparison to the work of Hamker [2] we avoid to use (non-normalized)
distance-based error criteria for the insertion and removal of prototypes from
the network which is attributed to the local metrics of the prototypes. We place
new prototypes according to a confidence criterion on the decision boundary and
rate this placement afterwards by the utility criterion.

Network Expansion Since a confident global measurement of the representation
quality is not available to determine when it is necessary to introduce new pro-
totypes the network is expanded in specified time intervals. To decide where a
new prototype can be added possible criteria are random insertion, a placement
on false classified data or on the decision boundary. In prototype-based networks
the decision boundary can be characterized by a similar distance of a feature to
two prototypes from different classes. In particular the objective of GLVQ is to
minimize an error functional which represents not only the classification error
but also introduces an error term for unconfidently classified data points which
bases on the difference (the margin) in the nominator of the function µ(d). Us-
ing the margin for learning for example was proposed in the context of active
learning by Schleif et al. [10]. Here new data points for learning are acquired
on the basis of the margin criterion. But this information was not used in the
context of incremental learning before. Since the margin is implicitly optimized
by the GLVQ error function, we decide to add new prototypes in these regions
of low confidence, respectively directly on the decision boundary. Therefore for
each expansion step a new prototype is positioned at the training vector with the
minimum normalized margin m(ξi) = ‖di

J−di
K‖

di
J+di

K
. The label of the new prototype

is initialized according to the supervised information, while the relevance matrix
is taken from the best matching correct prototype according to this label. Since
the network size is not adapted on a single frame and the data is changing from
one to another frame, adding prototypes does not affect the optimization of the
margin but provides a better initialization of the network for the adaptation on
the next frame.

Network Contraction To rate the importance of every single prototype in the
network a local utility criterion can be used. In the context of vector quantization
Fritzke [11] proposes to rate single neurons according to the quantization error of
a prototype by the following utility function U(wp) := E[D,P \wp]−E[D,P] =



∑
ξ∈D ‖ ξ−ws ‖2 − ‖ ξ−wp ‖2 where ws is the winning prototype from the set

P \{wp}. As the quantization error (which is also exploited by Hamker [2] for a
local utility function) is based on a global consistent metrics this method is not
appropriate for localized adaptive metrics. Therefore this inspires a utility u(wp)
function on the basis of the classification error. For a single training example ξ
this function is:

u(wp, ws, ξ) =

{
1 c(wp) = c(ξ), c(ws) 6= c(ξ)
0 else

Finally the utility of the prototype on the whole dataset is normalized by the
number of activations n(wp) = |{ξ|d(wp, ξ) = min

q∈P
d(wq, ξ)}| of this proto-

type: U(wp) = 1
n(wp)

∑
ξ∈D u(wp, ws, ξ). If the value U(wp) falls below a given

threshold tu = 0.01 in our experiments, the prototype is regarded as a removal
candidate. After an expansion step, the new prototype is kept, if this one and all
other current prototypes are useful (i.e. U(wp > tu∀p ∈ P)), which assures to
avoid unnecessary instabilities of the network. Independent of the utility function
to evaluate the success of an expansion step, we use this function for separate
contraction steps of the whole network to determine possibly spare prototypes
or misplaced prototypes. Spare prototypes can be replaced by another prototype
without impairing the performance. Misplaced prototypes can be characterized
by an assignment to the wrongly labeled subset of data by the initial hypothesis
H. Usually this causes in the application/segmentation step that more image
portions of the background are assigned to the foreground. These badly placed
prototypes can be identified to cause a large classification error even on correctly
labeled data and therefore reduce the overall segmentation quality. Together with
the recorded activation n(wp) we use the utility criterion to remove such pro-
totypes. That is, additional to the utility criterion a prototype is removed if
n(wp)
|D| < tn, where tn = 0.005.

Algorithm

1. Input and preprocessing:
– feature maps and hypothesis from object ROI: Fx,y := {F x,y

i |i = 1..M},
Hx,y ∈ {0, 1}

– Preprocessing of feature maps F and hypothesis H, see Sec. 3
– Init codebook and metric (on first frame only) P = {wp|p = 1, .., N}

where N = 2, ∀wp ∈ P : wp = 1
|L|

∑
L ξ, L := {ξ|c(ξ) = c(wp)}

– Replace the data of the oldest frame by the data of current feature maps
F in the short term history D

2. Adaptation (for T update steps)
– Find best matching prototypes wJ for the correct label, wK for the in-

correct label according to a randomly selected ξi ∈ D.
e.g. wJ = {wp ∈ P|d(wp, ξ

i) = min
q,c(wq)=Hi

d(wq, ξ
i)}



– Update prototypes wJ,K by means of wJ,K ← wJ,K + α ·∆wJ,K with
learning rate α = 0.05 and similar the relevance factors ΛJ,K with α =
0.005

3. Evaluation: for all pixels i ∈ D
– ∀wp ∈ P, V i

p :=

{
1 if d(ξi,wp) < d(ξi,wr), ∀r 6= p, {r, p} ∈ P,

0 else

– Determine the binary foreground segmentation A =
∑N

p c(wp) · Vp

– Compute margin for every feature m(ξi) = di
J−di

K

di
J+di

K

– Compute utility U(wp) and prototype activation n(wp), Sec. 2.3
4. (Optional) Network Expansion

– wnew = ξi where i = arg minξi∈D m(ξi), c(wnew) = Hi, Λnew = ΛJ

– P = {P, wnew}, N = N + 1
5. (Optional) Network Contraction

– select wp with the smallest utility p = arg minp∈P U(wp)
– remove wp if U(wp) < tu or n(wp) < tn, P = P \ {wp}, N = N − 1

3 Results

Data Finally we evaluate the capabilities of this approach on challenging real
world image data and investigate the effort of the derived object segmentations
in the context of online object learning and recognition. Here we are using the
data from [6] consisting of 50 natural, view centered objects with 300 training
and 100 testing images. After the acquisition of the feature maps F and the hy-
pothesisH a pre-processing F x,y

i ← TF (F x,y
i ) of the feature maps F x,y

i (a gamma
correction and white balancing on the maps representing the RGB image data)
is performed first. From the available depth and skin information the hypothesis
H is computed where all skin-colored areas S,Sx,y ∈ {0, 1} are removed from the
hypothesis H ← TH(H), where (TH(H) := H ← H− (H∩S)). This is necessary
because the hand is strongly connected to every object/hypothesis and can be
regarded as systematic noise violating our assumptions. To compare the results
with previous work, the image regions defined by the foreground classification
(i.e. the presented objects) are fed into a hierarchical feature processing stage [6].
For object learning and recognition a separate nearest neighbor classifier is ap-
plied to the derived high dimensional shape features. The separation of training
and test data is used for the object classifier, while the incremental segmentation
is adapted on a subset of the pixel data for every single frame.

Network Dimensionality First the behavior of the algorithm is analyzed on an
example of the training-dataset in Fig. 2. The change in object identity yields an
adaptation of the number of prototypes in particular for the foreground, which
shows significant differences for some of the objects dependent on their subjec-
tive visual complexity. To avoid an influence from the sequence of the presented
objects, the order of the 50 objects was randomly rearranged for the eight repe-
titions of the experiment. In contrast to previous work a reduced complexity of
the representation finally allows for a more efficient processing of single frames.



Fig. 2: Number of prototypes for an application to the training-dataset (50 objects with
300 views, each bar is the average of 8 repetitions and 300 views each). On average over
all objects 4.35 prototypes are used for foreground and 3.07 are used for background.
Additional the object specific std. dev. of the average number of prototypes for multiple
repetitions is drawn, which shows that this number for a particular object is consistent
over multiple repetitions of the experiment. On top, examples for eight objects with
the highest and lowest number of prototypes are shown.

Classification Performance Compared to a predefined number of prototypes
in previous results (see Table 1) three aspects are important: i) the general
performance of the object classifier on the basis of the segmentation (an indirect
quality assessment, verified in [1]), ii) the used resources to derive the results and
iii) the variance in the results. Therefore we compare the incremental method
to the results derived by predefined number of prototypes (chosen according
to the average number of the incremental method). On the basis of the same
resources, a comparable performance can be achieved. Remarkably the variance
of the results is significantly decreased which indicates a higher robustness to the
noisy supervised data by discarding misplaced prototypes. Together with a faster
adaptation to the changing image data the incremental method also reduce the
dependency on the initialization of the prototypes. Since the initialization for the
fixed prototype setup was purely random this can explain the beneficial effect.
Compared to an offline parameter search the incremental segmentation might
not be able to reach the potentially maximum performance (for 20 prototypes,
15 background - 5 foreground on this dataset), but offers an application to data
with unknown “optimal” number of prototypes.

4 Conclusion

In this paper we present an incremental learning scheme for GLVQ in the context
of figure-ground segmentation. In presence of local adaptive metrics and super-
vised noisy information we use a parallel evaluation scheme combined with a
local utility function to organize a learning vector quantization with an adaptive
number of prototypes. On our real world benchmark dataset we show, that the
incremental network is capable to achieve a comparable (to the results from [1])
performance in hypothesis refinement while maintaining a significantly smaller



variance of the results, thus is more robust. Due to the parallel evaluation scheme
the expansion of the network is free of additional computational load and does
not impair the current performance of the network.

N (#bg/#fg) 2(1/1) 7(3/4) 20(15/5) [1] adaptive hypothesis[1]

mean 0.7442 0.8715 0.8828 0.8742 0.755
std. dev. 0.0132 0.0110 0.0252 0.0036 n.a.

Table 1: Results of the incremental segmentation scheme compared to previous results
(average of 8 repetitions, except the last column). Dependent on the derived num-
ber of prototypes (on average 3 for background and 4 for foreground) the proposed
method achieves a comparable performance to a predefined prototype setup, whereby
the variance of the results is significantly reduced.
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