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Abstract— In active vision systems, which direct their gaze to
different visual targets in their environment, targets are repre-
sented in image coordinates and commands by which the gaze
direction is changed are represented in motor coordinates. This
requires knowledge of the mapping between two coordinate
frames. In this work we present a robust mechanism that learns
such a mapping. The mechanism can be applied to any active
vision system performing arbitrary gaze shifts and runs online
without interfering with any process in the vision system which
it is integrated into. We show the feasibility of our approach by
simulation and implementation of a stereo vision system with
vergence and foveation.

I. INTRODUCTION

Humans employ binocular vision with foveae and different
oculomotor movements that allow the vision system to bring
and keep different visual stimuli on the foveae in order to
achieve a high resolution view. This allows obtaining the
greatest possible amount of information from the fixated
stimuli. Two examples of such movements are saccades and
vergence. Saccades are rapid movements of the eyes that
change the gaze direction to bring the foveae on a new target
while vergence is a disconjugate movement of the eyes that
brings and keeps the fovea of both eyes on the same visual
target along the gaze direction.

Today there is an increasing interest in research of stereo
vision systems with vergence and foveation in robotics
([1], [3], [7], [11], [12]). Several methods exist to achieve
foveation. We use custom made fish-eye lenses in order to
combine high resolution visual data extraction with a large
field of view (see fig. 1(b)). Vergence achieves binocular
fusion, which leads to a maximization of the overlap between
the visual fields of the two cameras. This may facilitate and
improve complex visual processes like target-background
segmentation, depth and motion estimation, etc.

In active vision, visual sensors have to be directed to areas
of interest. The target stimuli are often referenced in image
coordinates while the representation of the camera/head
orientation is done in motor coordinates. This requires a
mapping between two coordinate systems. Such a mapping
can be established by calibration, which is a time consuming
process. Moreover, changes to the camera system require
re-calibration. These changes can be voluntary (e.g. lens
change) or involuntary (e.g. motor damage, decalibration)
and the latter one is inevitable for systems running over long
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time periods. For those reasons, a mechanism that learns
the mapping between two coordinate systems and corrects it
shortly after errors appear is necessary.

A saccade adaptation scheme for monocular vision sys-
tems was previously presented by Rodemann et al. in [10].
We modified this approach to work with stereo vision sys-
tems with vergence and foveation. New problems were in-
troduced by these modifications. Section II details how these
problems are solved. We also propose a fixation paradigm
that consists of coordinated saccade and fine vergence move-
ments. This strategy ensures that every gaze shift ends up
with a visual target fixated on the foveae and allows the
algorithm to learn with arbitrary gaze shifting movements.

A. Related Work

In [8], Pagel et al. presented similar work where a mapping
between a six dimensional input space (xl, yl, xr, yr, t, v)
and a three dimensional motor space (∆p, ∆t, ∆v) is learned
via a growing neural gas network. In contrast to our work,
a multiple-saccade strategy (main saccade + corrective sac-
cades) without foveation is used for target fixations.

Rao et al. also presented a similar application for learning
monocular saccadic eye movements where multiscale spatial
filters are used to construct an iconic representation of the
scene [9]. They also adopted a multiple-saccade strategy,
which is dependent on a certain target selection process.
Foveation is applied in this work by log-polar image sensors.

B. Hardware Setup

An experimental stereo vision head (shown in fig. 1(a))
with 4 DoF (2 DoF for head and 1 DoF for each camera) is
used as the hardware platform. Our vision system is equipped
with Matrix Vision BlueFOX USB Cameras and NIKON
custom made fish-eye lenses. The cameras have 7.28×5.04
mm CCD image sensors; the lenses have 5.4 mm focal length
in the center, 90◦ horizontal, 62◦ vertical and 150◦ diagonal
angle of view. The lens characteristics are plotted in fig. 2(b)
and an example image taken with these lenses is shown in
fig. 1(b).

The adaptation mechanism is embedded into an active
vision system that incorporates several oculomotor move-
ments. Targets are fixated with a combination of saccades
and vergence movements. This will be explained in detail in
section II.

II. METHODS

We modified the monocular saccade adaptation scheme in-
troduced in [10] for a stereo vision system with vergence and
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Fig. 1. (a) The experimental stereo camera head (b) Image taken from the
stereo camera system equipped with custom made fish-eye lenses showing
the visual environment in which online experiments took place

foveation and dealt with problems specific to this layout. The
mapping between the image and motor coordinate systems
is done with a variant of the Kohonen style Self Organizing
Map (SOM) [4]. The nodes of the map represent motor
commands, which bring visual targets to the foveae, and
connections between these nodes denote the neighborhood
relations in image space. The training of the map is done
by using the correct association of the motor commands
with the image coordinates. Such an association is made by
comparing the images taken before and after a fixation as
proposed in the previous work. The validity of the association
is rated by a confidence measure. The number of nodes that
are being adapted is regulated internally in order to speed up
the adaptation process.

Extending the mapping scheme used in the previous work
with stereo images in the input space and an additional
degree of freedom (vergence) in the output space increases
the 4 dimensional mapping function to 7 dimensions. We
applied simplifications in dimensionality as explained in
section II-A in order to reduce computational complexity.

The approach for making associations between executed
motor commands and resulting changes in the images af-
ter a fixation proposed in [10] requires modifications for
our framework due to distortion of the images caused by
foveation. We extended this approach for foveated images
as explained in section II-B.

Saccades are usually directed towards specific targets
that are determined by the analysis of visual information.
However, it is possible that saccades do not accurately land
on desired targets due to systematic (e.g. the mapping is
not yet precisely learned) or external reasons (e.g. the target
has changed its position in the world during saccade). We
propose a gaze fixation mechanism that allows the algorithm
to learn with arbitrary gaze shifting movements and ensures
that adaptation under improper fixation conditions is avoided.
This is accomplished by using coordinated movements of
saccade and vergence in two steps: First a coarse fixation
on the target is achieved by a saccade (using pan, tilt and
vergence movements), then the precision of the fixation
on the target is improved by a fine vergence adjustment
controlling the vergence angle. A saccade is considered to

be completed only after proper fixation has been achieved.
Eventually the adaptation algorithm is provided with data
only from proper fixation conditions.

(a) (b)

Fig. 2. (a) Pinhole camera geometry. Projection of a light ray from an
object onto the image plane (denoted as r) and incident angle (denoted
as φ) are shown. (b) Displacement of projection on image plane (r) as a
function of incident angle (φ) for a pinhole and a fish-eye lens.

A. Mapping Representation and Dimensionality

The mapping is a function W (xl, yl, xr, yr) which as-
sociates image positions to motor commands. The stereo
camera images define a four dimensional coordinate frame
where xl and yl are the pixel positions in the left image, xr

and yr are the pixel positions in the right image. Reducing
the dimensionality of the mapping would eventually increase
computational performance and decrease adaptation time. A
reduction of the input size can be achieved by replacing
one of the horizontal components (xl or xr) by disparity
(d = xr − xl). This substitution allows us to select an
appropriate disparity range depending on the application
instead of using the whole horizontal dimension of the image.
Coupled vertical movement of cameras also allows omitting
one of the vertical components (yl or yr), although fish-
eye lenses highly distort the images and introduce vertical
disparities (i.e. yl 6= yr). Using a Matlab simulation1 we
found out that this does not have a crucial effect on our
system. However, the mapping can be extended with vertical
disparity as another dimension if lenses causing greater
distortion are used. After those simplifications, the input
space of the mapping is represented as W (x, y, d) where
x = xl, y = yl and d = xr − xl.

Rotation of the cameras also causes a rotation of the im-
ages around the optical axes and this rotation depends on the
current tilt and vergence angles [8]. This dependence is also
excluded from our representation of input space for further
reduction of dimensionality. Despite these simplifications our
algorithm is able to perform with the required accuracy (see
section III).

The output space is (∆θp,∆θt,∆θv) which denote the

1Vertical disparities are computed for the projection of a scene point at 30
cm on horizontal and vertical axes with respect to the stereo camera system
in a depth range from 30 cm to 300 cm. The maximum vertical disparity
is found as 3.472 pixels (4.6% of the total image height).



relative motor commands for pan, tilt and vergence2 respec-
tively. Therefore, current motor positions have to be known
to execute saccades. The size of the output space is limited
by the precision of the head and camera motors.

B. Image Correspondences

A method is necessary to make associations between
motor commands −→m executed for a fixation and the image
position −→r that has been brought to the foveae as the result
of the executed motor commands. We adopted the same
correspondence calculation method that has been previously
introduced in [10]. This method is based on searching for
a patch from the foveal region of the post-fixation image
(referred to as It) in the pre-fixation image (referred to
as It−1) in order to find out which part of the image has
been moved to the fovea by the given motor command −→m.
We use Normalized Cross Correlation (NCC) as a similarity
measure between the patches. A correspondence map C(x, y)
is computed by

C(x, y) = ∆(
−→
It(x0, y0),

−−→
It−1(x, y)) ·f1(x, y) ·f2(x, y) (1)

where ∆ indicates the NCC operation,
−→
It(x0, y0) is the

foveal patch from It, and
−−→
It−1(x, y) is the patch from It−1

around the point (x, y). Normally NCC distinguishes the
corresponding positions quite well when it is used with non-
foveated images. However, in our case due to the spatial
distortion caused by the fish-eye camera lenses, using NCC
alone was not successful to reveal the corresponding posi-
tions especially when features that are searched for reside in
the periphery of the pre-fixation image where distortion is
high. Mean and variance of the patches however, are not
spatially very much affected by the distortion. Therefore,
we introduced factors f1(x, y) and f2(x, y) in the following
way:

f1(x, y) = |mean(It(x0, y0))−mean(It−1(x, y))|−1
(2)

f2(x, y) = |var(It(x0, y0))− var(It−1(x, y))|−1
(3)

The correspondence maps before and after the factors have
been applied are shown in fig. 3(c) and 3(d). Theoretically,
the maximum correspondence cmax = C(xmax, ymax) is
the position where the foveal region has been before the
cameras were moved. However, real world conditions may
cause ambiguities so that more than one peak occurs in
the correspondence map. A confidence measure of whether
the candidate peak corresponds to the real pre-movement
position of the foveal patch is explained in section II-C.

Correspondence calculations for both left and right im-
ages are done and maximum correspondence positions are

2The vergence angle is obtained from the triangular geometry of the the
left and right camera angles as θv = |θl|+|θr|. The control of the vergence
angle is done by the symmetrical control of the left and right camera angles
(θl = −θr)

obtained as cmax,i = C(xmax,i, ymax,i) where the subscript
i is l or r for left and right images. The correspondence
position is defined as −→r = [x∗, y∗, d∗] where (x∗ = xmax,l),
(y∗ = ymax,l) and (d∗ = xmax,r − xmax,l).

(a) (b)

(c) (d)

Fig. 3. Correspondence calculation in foveated images. Subfigure (a) shows
an image taken before fixation and (b) shows an image taken after fixation.
The foveal patch of the post-fixation image and its location in the pre-
fixation image are also marked. The plain correspondence map of above
images without factors f1 and f2 is shown in (c) where multiple peaks
(marked with arrows) indicate potential matches. The correct position of the
patch is acquired after factors f1 and f2 are applied to the correspondence
calculation, as shown in (d).

C. Confidence Measure

Under real world conditions it is very likely to have a vi-
sual environment with relatively big homogeneous structures
and elements lacking details and texture like walls, carpets,
etc. Under these conditions it is possible to have wrong or
multiple correspondences as the result of the correspondence
calculation. Fig. 4 illustrates such a kind of situation. This
causes wrong associations between the inputs and outputs
of the mapping. To avoid this problem the computation
of a confidence value is introduced as done in [10]. The
confidence value is composed of two factors. The first factor
c1 is a confidence from the correspondence value cmax. Since
a high value of cmax means high similarity, the confidence
factor c1 is computed as

c1,i =
1

1 + e−cs·(cmax,i−ct)
(4)

where the subscript i is l or r for left and right images.
This is a sigmoid with a slope of cs and a threshold of ct.
cs and ct can be calculated through a common parameter
τ by cs = 10

1−τ , ct = 1+τ
2 . The parameter τ represents the

minimum accepted correspondence value.
The second factor c2 is the normalization factor. If multiple

candidate matches are found by the correspondence calcula-
tion the confidence should be reduced. A threshold operation



is done on the correspondence matrix with a threshold value
of δ = R · cmax where R is the percentage of the maximum
correspondence value to count as a competing match. If the
candidate peaks are close to cmax it is more likely for cmax

to be the correct match, so they are not so critical. If they
are distant from cmax the probability of the candidate peaks
being potential matches increases. This weighting operation
is done by computing a normalization map:

N(x, y) = T (C(x, y)−δ)·
((x− xmax

σc

)2

+
(y − ymax

σc

)2
)

(5)
where T (f) is a threshold function which gives 0 for f < 0
and f otherwise. The characteristic range is defined by
σc = rt · simg where rt defines the percentage of the
tolerance radius and simg is the size of the image. From
the normalization map the normalization factor is calculated
as:

c2,i =
1

1 +
∑

x,y Ni(x, y)
(6)

where the subscript i is l or r for left and right images.
The final confidence value is obtained by the multiplica-

tion of the two confidence factors of the left and right images:

c = c1,l · c2,l · c1,r · c2,r (7)

The confidence factors explained here are used to check
two independent situations that solely cause adaptation with
incorrect data. By multiplying the confidence factors, it is
ensured that either of the situations can cause a considerable
decrease in the confidence alone.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Correspondence calculations for two different cases. The upper
row shows the first case and the lower row shows the second case. Figures
(a), (b) and (c) with their below counterparts correspond to the post-fixation
image, pre-fixation image and correspondence map respectively for the two
cases. In the first case, the foveal patch that is taken from the post-fixation
image (a) has rich visual detail. Therefore, it could be found easily in the
pre-fixation image (b) with a correspondence calculation, as can be seen by
the correspondence map (c). However, in the second case, the foveal patch
that has been taken from the post-fixation image (d) has little structure,
making it difficult to find it in the pre-fixation image (e). The search for
the patch has caused ambiguities in the correspondence map (f). Confidence
values that are calculated as explained in section II-C are 0.93 for the first
case and 0.39 for the second case.

D. Robustness of Adaptation

An adaptation step is done by updating the node of a
correspondence position −→r following a rule explained in
section II-E. As introduced in [10] the learning process
can be sped up by updating a population of nodes in
the neighborhood of the correspondence position instead of
just one node. The adaptation strength and the number of
the neighboring nodes can be determined by a Gaussian
neighborhood function G(x, y, d) with a peak at position
(x∗, y∗, d∗) and standard deviation of σx, σy and σd in
each dimension. The standard deviation parameters define
the population width and are computed dynamically from
the error in the input space (retinal error) so that a wide
range of adaptation can be reached for large errors and more
local updates are made for small errors in input space. This
error (referred to as retinal error) is computed as:

E =

√(x∗ − xd

Emax,x

)2

+
(y∗ − yd

Emax,y

)2

+
(d∗ − dd

Emax,d

)2

(8)

where xd, yd and dd are the retinal positions that were
associated with the given motor command −→m in the mapping
before the adaptation takes place. The normalization factors
Emax,x, Emax,y and Emax,d are the components of the
maximum possible retinal error. In this work 50% of the size
of the corresponding dimension is selected for these values.
The population widths for the input space are calculated from
the mean error in the input space E:

σ = σmax ·
1

1 + e−s·(E−t)
(9)

where σmax is the maximum population width. Following
(9) adaptation widths σx, σy and σd are computed separately
with respective maximum population widths σx,max, σy,max

and σd,max that are determined in relation to the size of
the input space. We have selected 20% of the size of the
corresponding dimension for these values. s and t are the
slope and the threshold values for the sigmoid function
respectively. E denotes the sum of errors in the input space
averaged over a time window (e.g. averaged over the last ten
errors calculated).

E. Adaptation Algorithm

The adaptation is done according to the basic delta rule:

W t+1(x, y, d) = W t(x, y, d) + α ·∆W (x, y, d) (10)

where α is the adaptation step size (a fixed parameter). The
change in the mapping is:

∆W (x, y, d) = −c ·G(x, y, d) · (W t(x, y, d)−−→m) (11)

where c is the calculated confidence value and G(x, y, d) is
the Gaussian neighborhood function defining the adaptation
region.



III. RESULTS

Results are presented as learning curves depicting errors
in input and output spaces over adaptation iterations (i.e.
saccades). All errors are averaged over the last 10 iterations.
Calculation and scaling of the retinal error is explained in
section II-D. The update vector in (11) is used to derive the
errors in the output space as |∆W (x∗, y∗, d∗)|. Correspond-
ing elements of the vector show the pan, tilt and vergence
errors. The errors are plotted against the number of fixations.
One fixation takes approximately 2 sec with our setup. All
parameters and their selected values in our experiments are
listed in table I. Parameters marked with S mostly depend
on the system (hardware and software). Parameters marked
with A depend on the application and require fine tuning.
The unmarked parameters already produce good results with
most of the applications and can be used without tuning. In
all experiments the mapping has been initialized randomly.

TABLE I
LIST OF PARAMETERS

Parameter Symbol Value
Parameters for Learning
Input Size sin 100x75x21 (S)
Output Size sout 50x50x50 (S)
Adaptation Rate α 0.6
Max. Adaptation Sigma σmax 0.2 (A)
Adaptation Slope s 5
Adaptation Threshold t 0.2
Windowing Parameter w 10
Parameters for Correspondence Calculation
Patch Size spat 20x20 (S)
Min. Correlation τ 0.2 (A)
Min. Ratio to Compete δ 0.95
Tolerance Radius rt 0.1

A. Learning with Simulated Data

In order to verify the adaptation algorithm, we first con-
structed a model of our stereo vision system (including
kinematics and fish-eye lens distortions) using the Epipolar
Geometry Toolbox (EGT) designed for Matlab (see [6] for
more information). Randomly selected fixation commands
in the motor space and their corresponding positions in
image space are retrieved from the model and applied to
our adaptation algorithm. A satisfactory performance was
reached in a short time (fig. 5).

We investigated the robustness of the system with several
experiments (e.g. inverting images with a prism, swapping
left and right images, simulating motor defects). Our algo-
rithm was able to adapt to such changes in every case. In
this paper, we present one of these experiments, which has
been motivated by the ontogenetic development of the eye
distance in humans. The distance between the cameras in the
model is increased by 10 mm every 1000 iterations. In order
to show the impact and the adaptation, the change is applied
not gradually as in human ontogeny, but instantaneously. Our
system was able to adapt to the change quickly (fig. 6).

(a) (b)

(c) (d)

Fig. 5. Learning curves for simulated data using EGT. After 2000 iterations
the following error values were reached: pan error = 1.3◦, tilt error = 1.07◦,
vergence error = 0.5◦, retinal error = 3.68% (≈ 4.6 pixels).

Fig. 6. Experiment with simulated data for adaptation to development
of eye baseline. The impact of the change in the baseline after every 1000
iterations can be observed as peaks in the vergence error plot. Re-adaptation
is achieved in ≈500 fixations after every change.

B. Online System Implementation

The adaptation mechanism is implemented in an active
vision system as explained in section I-B. In the experiments
targets for fixation have been selected randomly in motor
space instead of saliency computation in image space. A
snapshot from the visual environment used for online exper-
iments is shown in fig. 1(b). The mapping has been learned
from random initialization in a short time (fig. 7).

Adaptation experiments were also done with the online
system implementation. In the first scenario, a prism effect
that flips the image upside-down was applied after 1000
iterations. As a second scenario an artificial pan angle defect
is applied to the system by adding a 10◦ of offset to the pan
motor angle that is received from the motor encoder after
1000 iterations. Again our mechanism was able to adapt to
the changes quickly (fig. 8 and fig. 9).

IV. SUMMARY AND OUTLOOK

In this work, we presented a capable and dependable
approach for vision systems that eliminates the necessity
of a (re)calibration process by learning and adapting a
mapping between image and motor coordinates. We ex-
tended the learning strategy for monocular vision systems
that is explained in [10] to be used with a stereo-vision
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Fig. 7. Learning curves of online experiment. After 1700 iterations the
following error values were reached: pan error = 1.7◦, tilt error = 1.00◦,
vergence error = 0.34◦, retinal error = 2.6% (≈ 3.25 pixels).

(a) (b)

Fig. 8. Online experiment for adaptation to prism effect along vertical axis.
700 iterations after the prism effect is applied the following error values were
reached: retinal error = 3.9% (≈ 4.8 pixels), tilt error = 1.20◦ (pan and
vergence commands are not dramatically affected). The disturbance from
the prism effect can be seen in tilt and retinal errors after 1000 iterations.

system with vergence and foveation. In this framework, we
introduced enhancements to correspondence calculation for
dealing with distortion caused by foveated lenses. We also
proposed a fixation strategy in which gaze shifts are done
as a combination of saccade and fine vergence movements.
This approach enables us to avoid adaptation under improper
fixation conditions.

We have shown that our mechanism learns the mapping
in a short time. A reasonably high accuracy (≈3.25 pixels
of retinal error) can be achieved in only 2000 iterations.
This is quicker than both of the results that are presented by
Pagel et al. (≈10000 iterations) in [8] and Rao et al. (≈5000
iterations) in [9]. The previous work learns the mapping in
≈100 iterations [10]. Our algorithm takes longer than that
due to the higher complexity of the mapping.

Our approach is capable of providing online adaptation to
vision systems without interrupting any processes by being
independent of the target selection process. Therefore, it
can be integrated with any active vision system performing
arbitrary gaze-shifts using the gaze fixation strategy that
we propose. In the future we plan to embed our system
into an architecture of a large scale incremental behavior

(a) (b)

Fig. 9. Online experiment for adaptation to pan defect. 700 iterations after
the pan defect is applied, the errors have been reduced to an acceptable level:
retinal error = 3.06% (≈ 3.8 pixels), pan error = 1.50◦ (tilt and vergence
commands are not affected). The disturbance from the pan defect can be
seen in pan and retinal errors after 1000 iterations.

control system, called ALIS. A previous instance of this
system running on the humanoid robot ASIMO is described
in [2]. Further issues can be considered for discussion and
improvement. For example, our correspondence calculation
often exhibits satisfactory results with foveated images. How-
ever, scale invariant object matching techniques (such as [5])
may improve correspondence results thus, a quicker learning
process may be obtained.
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