
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Image-based classification of driving scenes by
Hierarchical Principal Component Classification
(HPCC)

Robert Kastner, Frank Schneider, Thomas Michalke,
Jannik Fritsch, Christian Goerick

2009

Preprint:

This is an accepted article published in IEEE Intelligent Vehicles Symposium
(IV). The final authenticated version is available online at: https://doi.org/[DOI
not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Image-based classification of driving scenes by Hierarchical Principal

Component Classification (HPCC)

Robert Kastner⋆, Frank Schneider⋆, Thomas Michalke⋆, Jannik Fritsch⋄, Christian Goerick⋄

⋆Darmstadt University of Technology
Institute for Automatic Control
D-64283 Darmstadt, Germany

{robert.kastner,
thomas.michalke}

@rtr.tu-darmstadt.de

⋄Honda Research Institute Europe GmbH
D-63073 Offenbach, Germany

{jannik.fritsch,
christian.goerick}

@honda-ri.de

Abstract— State-of-the-art advanced driver assistance sys-
tems (ADAS) typically focus on single tasks and therefore, have
functionalities with clearly defined application areas. Although
said ADAS functions (e.g. lane departure warning) show good
performance, they lack general usability, as e.g. different
modes of operation for highways and country roads. This
paper presents a real-time capable approach, which classifies
the driving scene by using the newly developed Hierarchical
Principal Component Classification (HPCC). Based on that, an
ADAS gets information about the current scene context and
is able to activate different operation modes. Exemplarily, the
algorithm was trained on three different categories (highways,
country roads, and inner city), but can be applied to any
number and type of categories. Evaluation results on 9000
images show the reliability of the approach and mark it as a
crucial step towards more sophisticated high level applications.

Keywords: driver assistance, scene classification, scene

context

I. INTRODUCTION

The growing importance of driver assistance systems for

further decreasing the number of traffic accidents is a widely

acknowledged fact. Along with that, the complexity of tasks

these Advanced Driver Assistance Systems have to handle

grows likewise, leading to complex systems that use infor-

mation fusion of many sensory devices and processing re-

sults. Nevertheless, currently available systems focus only on

restricted application areas, like e.g. highways. Information

about the current scene context is not included. However,

said applications make a number of assumptions based on

the designated context, which results in a predefined set of

rules and parameters. Normally, these rules and parameters

restrict the usage of these systems to one application area

only. Nevertheless, different sets of rules/parameters could

allow the application to work in diverse scene contexts by

the simple modification of the basic assumptions. Therefore,

knowledge about the scene is valuable for improving higher

level applications, allowing more dedicated and also diverse

reactions in different surroundings.

In this paper, we present a fast and robust approach for

the classification of the scene. The algorithm is independent

of potentially outdated map data as well as errors and

inaccuracies of Global Positioning System data. Furthermore,

it is independent of precoded context information in the map

(a) (b)

(c) (d)

Fig. 1. Examples for the different scene categories and illumination
conditions: (a) Highway, (b) Country road, (c) Inner city, (d) Country road.

data, because it requires only an image of the scene. Based

on the novel Hierarchical Principal Component Classification

(HPCC), the algorithm reliably classifies the scene (over

97%) in various, complex scenarios (evaluated on 9000

images). As the evaluation will show, the presented approach

is an important step towards further understanding of the

driving situation, as well as the basis for applications with a

diverse range of operation.

II. RELATED WORK

The concept of visual scene classification has gained

increasing interrest in recent years. To this end, numerous

publications handle this topic in a general fashion, but only

a few are designed for the traffic domain. The general

procedure of existing algorithms is similar. Therefore, a

number of features from the image are extracted, which will

either be processed at once or gradually extracted from the

image depending on previous results. Afterwards, a classifi-

cation is done. A possible classification approach compares



extracted features with mean values derived during a training

phase. Publications of visual scene classification, mostly use

a number of selected categories, like e.g. indoor/outdoor,

landscape/city, and coast/landscape/forest/mountains. Typical

low level features for the classification are color histograms

(see [1], [2], [3]), texture orientation (see [3], [4], [5]) or a

combination of these features.

Another approach is the usage of special features on the

intermediate level, like grayscales, color spots, and SIFT de-

scriptors as done by [6], using probabilistic Latent Semantic

Analysis (pLSA) for the classification. A further intermediate

level approach was proposed by [7], which segmented the

image by its RGB, HSV and texture values, by assigning

each pixel to one of six categories like water, sand, sky, etc.

Afterwards, the pixels of the same category are transformed

to regions, segmenting the overall picture. The regions and

their spatial relation to each other are used for the classifi-

cation. Oliva and Torralba (see [8], [9]) have shown a more

promising approach for the classification of the scene based

on the usage of the frequency domain. Thus, they introduced

so called Discriminant Spectral Templates (DST), which are

generated from a large number of sample images. Therefore,

the spectrum of an image is sampled by a number of

frequency selective filters and assigned to each of the classes

(like artificial/natural, open/closed, expanded/enclosed, etc.,

see [10]) with a certain value between 0 and 1 corresponding

to their respective membership. Hence, each class has a

continuous scale describing the membership of the image

to the class. The sampled frequency results for each of the

features allows the generation of templates, which describe

all relevant frequencies with their corresponding intensity

for a certain class. However, the proposed method by Oliva

and Torralba is on the one hand continuous regarding the

obtained classification results, which makes a crisp decision

for a certain class difficult. On the other hand the approach

is not discriminative enough in case of similar categories as

present in the car domain.

Publications that handle scene classification applicable for

driver assistance systems are sparse. One of these is the work

by [11], which uses features of the HSV-color space to iden-

tify the number of image pixels having the color of bricks,

grass, etc. These features are evaluated by a set of fuzzy rules

to classify the scene. Nevertheless, most of the categories (in

the general case) differ quite strongly regarding their visual

features (e.g. landscape/city), in contrast to typical scenes

in the traffic domain. A typical scene for an ADAS will

always contain street in front of the car. The upper middle

part often shows sky. Objects can always occlude the view

on the scene and there are no unique objects for different

categories, which would simplify the task. Additionally, the

classification has to deal with changes in lighting conditions

and also great variety within a scene category, e.g. a country

road through a forest compared to a country road surrounded

by grassland (see Fig. 1 for exemplary categories).

III. SYSTEM DESCRIPTION - SCENE

CLASSIFICATION

In the following, a rough overview of our approach for

scene classification is given (see Fig. 2). Thereafter, all pro-

cessing steps and their theoretical background are described

in more detail.

The overall system can be divided in three main parts.

The first one is the preprocessing, where adaptations of the

image take place to reduce the amount of data, as well as

to reduce the influence of changes in lighting conditions

(see [8]). In the last step of the preprocessing, the image is

divided in 16 equally sized square sub parts, which will be

processed independently in the following feature extraction

part. In the second part a feature extraction is done for

obtaining the relevant information of the image. As already

mentioned, our system uses the frequency domain to get a

compact representation of the data. To this end, for each of

the 16 subparts the DFT is used to compute a spectrum.

Afterwards, each spectrum is sampled (i.e. weighted) with a

number of Gaussian filters, which is inspired by [12], that

used oriented Gabor filters for the sampling of the spectrum.

The sampled data is normalized with the computed mean

and variance values from the training phase, to provide

comparability between the different scales of the sub parts.

To further reduce the amount of data, while keeping the rel-

evant information, the principal component analysis (PCA)

is applied. Finally, in the third part the classification takes

place, which is independent of the previous steps, because

different methods could be chosen. Therefore, two versions

of the newly developed HPCC have been evaluated.

A. Preprocessing

The input of the system is a 400x300 RGB image, which

in the first step will be converted to a grayscale image.

Afterwards, the influence of different lighting conditions

is reduced. To this end, the image is rescaled using a

logarithmic curve to change the distribution of the intensity

values. This is motivated by early processes in the human

vision pathway and boosts the contrast in dark regions in

order to compensate the effects of the limited capabilities of

exposure control in digital cameras. More specifically, digital

cameras use an intensity average over the complete image to

compute the exposure, which leads to low contrast in dark

regions. Therefore, the intensity values are rescaled to cover

the complete dynamic range (see Fig. 3b). The next step

is a high pass filtering to reduce low spatial frequencies,

attenuating large differences in contrast as well as side effects

of the DFT. For that reason, the image is filtered with a filter

whose frequency response is given in Eq. (1) (see [13]).

H(k, l) =

{

1 for k = 0 ∩ l = 0

1 −
(

1 − 0.9e−
k
2+l

2

156.25

)

otherwise

(1)

The filtering leads to a uniformly distributed intensity over

the complete image (see Fig. 3c). Afterwards, the image is

resized to 256x256 pixel, which leads to a compression of
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Fig. 2. System structure for scene classification (gray system modules are
only used in the training phase)

the horizontal axis and an elongation of the vertical axis in

the frequency domain. Since the resize is carried out during

the training as well as execution phase the classification

(a) (b)

(c) (d)

Fig. 3. Different steps of the preprocessing stage: (a) Grayscale Image,
(b) Image after adaptation of intensity, (c) Image after suppression of low
frequencies, (d) Rescaled image with subparts

result is not effected. The final step is a division of the

image in 16 equally sized square sub parts of the size

64x64 pixel (see Fig. 3d). In the following, each of the

sub parts is independently transformed to the frequency

domain. The division in sub parts is done to draw conclusions

from characteristic amplitude values at certain image regions,

which would not be possible if the overall image would be

directly transformed to the frequency domain. Hence, each of

the sub parts can be described as a complex spatial frequency

function separated in magnitude and phase (see Eq. (2)).

Fi(k, l) = |Fi(k, l)|eφ(k,l) (2)

In the following only the magnitude of the spectrum will

be used and the phase information will be neglected.

B. Feature Extraction

The second part of the algorithm handles the extraction

of relevant information from each of the 16 spectra. Each

spectrum is handled independently, while the procedure for

all the spectra is the same. When aiming at a real-time

implementation a spectrum with 64x64 values is a too high

dimensional description of the image and unsuitable for a

direct classification. Additionally, the knowledge of single

magnitude values at a certain frequency and phase is not of

interest, because changes of object positions in the image will

also cause small changes at the energy level of the spectrum.

Therefore, the energy distribution of certain areas of the

spectrum will be evaluated, instead of single magnitude

values. Another point is the general applicability of the

approach, if single magnitude values at a certain position

and phase would be used, a possible overfit to the training

data might occur, which interferes with the goal of reaching

a good generalisation of the classification. Therefore, the



spectrum is sampled by a number of Gaussian filters, which

are scaled, rotated and shifted to get different resolutions for

different frequencies and can be interpreted as a weighted

mean of the sampled areas. Each of the 16 spectra is filtered

with an array of 100 Gauss filters (see Fig. 4b), which have

been adapted to the spectrum providing a high resolution at

low frequencies and a low resolution at high frequencies.

A single filter kernel (see Fig. 4a) can be described by the

Gauss function (see [14] for details) shown in Eq. (3).

gθ,f0
(x, y) = Ae−(a(x−x0)

2+2b(x−x0)(y−y0)+c(y−y0)
2) (3)

For the rotation of the filter kernel by the angle θ the

following parameters a, b and c have to be adapted (see

Eq. (4), Eq. (5) and Eq. (6)).

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

(4)

b = −
sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

(5)

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

(6)

Finally, the width and height of a filter kernel can be adapted

by σx and σy and where chosen in a way that the -3dB border

frequencies of the filters touch each other. The shifting of the

filter kernel’s center is carried out by the adaptation of x0

and y0, defined by the spatial frequency f0, as well as the

angle θ (see Eq. (7) and Eq. (8)).

x0 = f0
N

2
cos θ (7)

y0 = f0
M

2
sin θ (8)

For each of the sub parts i the result of the sampling is a

vector ỹi (i = 1 . . . 16) with 100x1 dimensions. The overall

result are 16 vectors having 100 values each, making in total

a number of 1600 attributes per image.

Before a further reduction of the data can be done, each

sub part i should be normalized to generate a similar range

of values for each vector element h of ỹi(h). For the

normalization, the mean and standard deviation vectors have

to be estimated for each of the sub parts from the training

data. The database for the training holds N images, which

results in 16 matrices Ỹi for each of the sub parts (i) with an

overall dimension of 100×N . A row j of matrix Ỹi for sub

part i contains the data of ỹi sampled from image j. Hence,

the mean estimator (see [15] for details on this concept) for

each vector element h from the sampling vector ỹi can be

described by Eq. (9).

ȳi(h) = E(µi(h)) =
1

N

N
∑

n=1

yn
i (h) (9)

And the standard deviation (see [15]) with Eq. (10) were n

denotes the image.

si(h) =
√

E(σ2
i (h)) =

√

√

√

√

1

N − 1

N
∑

n=1

yn
i (h) − ȳi(h) (10)

The normalization of a sub part i and element h of the feature

vector ỹi(h) is carried out with Eq. (11).

yi(h) =
ỹi(h) − ȳi(h)

si(h)
(11)

For the normalization of the overall training data (all ele-

ments (h) of subpart i) and therefore, Ỹi see Eq. (12).

Yi =
Ỹi − IN×1 · ȳT

i

IN×1 · sT
i

(12)

Where IN×P is the unit matrix of dimension N ×P , ȳi the

mean vector and si the variance vector of sub part i.

As already mentioned, a further reduction of the extracted

features is carried out based on the results of a PCA (during

the training phase). In the following, the PCA (see [16])

will be computed for each matrix Yi (containing data of

N training images of subpart i), which can be seen as a

coordinate transformation, where the first new coordinate

axis aligns along the maximum variance of the data, the

second axis along the second largest variance and so on. To

this end, the result of the PCA is the transformation matrix

Γi, where each column contains the coefficients for a single

principal component and the columns are in descending order

of their importance. To reduce the size of each yi(h) only the

first v principal components will be used for the projection.

Therefore, a shortened transformation matrix Γ̂i, containing

only the first v principal components, is constructed.

The final step of the feature extraction is the projection of

the matrices Yi to their new coordinate system by Eq. (13).

Ŷi = Yi · Γ̂i (13)

Similarly, the transformation is carried out for a single

feature vector yi by Eq. (14), which is the input for the

following classification step.

ŷi = yi · Γ̂i. (14)

C. Training and Classification

Due to limitations in space only the HPCC will be

explained in detail, while the underlying methods are not

described here, but can be found in the literature. Details on

classification approaches as the Linear Discriminant Analy-

sis (LDA) with Windowed Discriminant Spectral Template

(WDST) can be found in [10] and for details on neural

networks please refer to [17].

In most cases a classification algorithm tries to distinguish

between all possible categories in one step, by simply

extracting the principal components from all categories. A

different approach was developed for the Hierarchical Princi-

pal Component Classification (HPCC) of the here described

system. More specifically, a decision tree is build, always



(a) (b)
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Fig. 4. (a) Two dimensional Gauss function, (b) Spectrum and filter array
with -3dB level lines , (c) Image after transformation to frequency domain

separating between two groups and each group contains a

number of categories (at least one). At the first view, this is

not a novelty if the classification is based on the same data

or the same principal components. But this changes if during

each classification step only the principal components from

the current two groups are used. At first, the average values

ŷc of the feature vectors in principal component space for

each category are computed. On the basis of these average

values the categories will be divided in two groups A, B ⊆ C

(with A, B satisfying A∩B = ∅ and A∪B = C) optimising

the criterion of Eq. (15).

min
A,B⊆C





∑

i,j∈A,i6=j

|ŷi − ŷj |2 +
∑

i,j∈B,i6=j

|ŷi − ŷj |2



 (15)

Whereas |x−y|2 describes the Euclidean Distance between

vector x and y (see [16]) . At the same time, the Euclidean

Distance between the average values of group A and B

should become maximal (for a mathematical description, see

Eq. (16)).

max
A,B⊆C

∣

∣

∣

∣

∣

∣

1

|A|

∑

i∈A

ŷi −
1

|B|

∑

j∈B

ŷj

∣

∣

∣

∣

∣

∣

2

(16)

The separation in groups A and B is the initial step at the first

node of the decision tree. If for example group A contains

more than one category the procedure above is repeated.

The normalization is now done with the mean and standard

deviation of the categories which are part of group A and

combined in matrix YA. Again, the principal components

are computed and the matrices projected to the principal

component sub space of group A with ŶcA = Γ̂A · Yc.

Also the average values ŷcA of the categories are calculated

and the previous criteria (Eq. (15), Eq. (16)) optimised to sub

divide the group A into AA and AB. This method is applied

for group B as well as for all sub groups containing more

than one category. The total number of categories is initially

defined by the training data. The advantage of the method

is the specific calculation of the principal components at

each node of the decision tree. Only at the first node the

overall training data is used to form two groups, which

are maximally heterogeneous to each other, but at the same

time maximally homogeneous for the members of the group

(concerning the average values ŷc of the categories). The

classification at each node can either be carried out with

LDA and WDST (see [10]) or a neural net (see [17]).

Hence, at each node a specific classification task is trained.

The overall system with the classification step is depicted in

Figure 2. In a nutshell, a training and subsequent classifi-

cation is carried out in the following way. As first step, a

preprocessing on the complete training data is performed,

afterwards each image with its sub parts is transformed

independently and their spectra sampled. In the second step,

the decision tree is learned. Thereby the matrices for the

transformation to principal component space as well as mean

and standard deviation vectors for each node are stored.

The last step is the classification of an image, therefore, the

features of the image are extracted and stored in the sampling

vector ỹi. At each node, the sampling vector is normalized

with the corresponding mean and standard deviation vectors

and afterwards projected to the principal component space.

The result is classified by one of the named methods and

assigned to one of the sub groups. This procedure is repeated

until a leaf of the tree is reached, which results in the

classification of the image to the category of the leaf. In

another variant of the HPCC a decision tree for each of the

sub parts from an image is generated. Thereby, 16 decision

trees are build for each of the sub parts and finally a majority

voting is carried out for the 16 results. In the following

sections, the approach of a single classification tree for the

overall image is called HPCC 1 and the approach with 16

single classifications is called HPCC 2.

IV. RESULTS

In this section, we evaluate the performance of our system

by training and test with a total of 10800 images, taken from

several image streams. The images were manually assigned

to one of the categories highway, country road and inner

city (see Fig. 1). The images show various scenes, some

containing cars, trucks, and pedestrians, others do not con-

tain traffic relevant objects. The scenes also show different

lighting conditions, some are dark and others are bright.

The training was conducted with 600 images per category.

Afterwards, the evaluation was done by five independent runs

with 1800 images each (also 600 images per category). The

approach is implemented with Matlab and was evaluated on a

1,83 GHz Intel Centrino Duo, having 1 GB Ram and running

Windows XP. Only one of the CPU cores was used for the

computation. The results of the HPCC on the different test

sets showed similar performance on the classification rate

(variation of 2%). Table I shows the average results over

the five evaluation runs. To draw a comparison, a system



Method correct classification total
Highway Country road City

HPCC 1 with LDA/WDST 98,37 94,03 96,17 96,19
HPCC 1 with Neural Net 98,60 97,77 97,30 97,89
HPCC 2 with LDA/WDST 98,73 84,70 92,80 92,11
HPCC 2 with Neural Net 98,63 96,60 94,93 96,72

TABLE I

AVERAGE RESULTS OF THE CLASSIFICATION ON ALL TEST SETS.

Method Mean computation time (s)

HPCC 1 with LDA/WDST 3,775
HPCC 1 with Neural Net 2,446
HPCC 2 with LDA/WDST 3,728
HPCC 2 with Neural Net 4,071

TABLE II

AVERAGE COMPUTATION TIME PER IMAGE.

only comprising of LDA with WDST was set-up. Hence, the

LDA/WDST system generates a template for each categorie

without subparts. Therefore, it is comparable to the work of

Oliva and Torralba [8] and showed a total result of nearly

68% on a single evaluation run. Compared to our results, the

HPCC 1 with a neural net reliably classifies the scene with

over 97% accuracy and also requires the fewest computation

time. To this end, the HPCC is able to provide the current

scene context as an input for higher level applications. The

computation time of the different versions, for the Matlab

implementation, is given in Table II. As the experience shows

a factor of 100 can be gained with a native C implementation,

so the approach should be capable of 25Hz frame rate.

The images being incorrectly classified (see Fig. 5 for two

examples), show on the one hand, largely covered areas,

due to cars and trucks in front. On the other hand, they

show ambiguous scenes, which would also be difficult for

a human to classify correctly, without temporal integration.

This is shown in the two examples, were Figure 5a shows

the driveway to a highway, which is not a typical scene

for highway but belongs already to the category. The other

Figure 5b shows a stop at a traffic light on a country road,

which underlines the smooth transition between the different

categories. Nevertheless, so far no temporal integration of the

results is carried out, which can increase the classification

rate even further and suppress outliers.

V. SUMMARY

This paper describes a generic and fast method for scene

classification. Information on the scene context is an im-

(a) (b)
Fig. 5. Two example images resulting in a wrong classification: (a)
Driveway to a highway as country road, (b) Country road as inner city

portant step towards the understanding of complex scenarios

for future high level applications. The proposed scene clas-

sification approach allows the building of ADAS supporting

diverse modes of operation. This facilitates building robust

safety-relevant algorithms as trajectory planning and active

collision avoidance.

In our future work, we plan to incorporate the proposed

approach in our biologically motivated driver assistance

system (described in [18]) to get it running online and in

real-time on our prototype vehicle. Additionally we plan

to embed the scene classification into our attention-based

system approach for scene analysis (see [19]).
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