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Influence of Regulation Logic on the Easiness of Evolving Sustained
Oscillation for Gene Regulatory Networks

Yaochu Jin, Yan Meng, and Bernhard Sendhoff

Abstract— This paper investigates empirically the influence of
regulation logic on the dynamics of two computational models of
genetic regulatory network motifs. The gene regulatory network
motifs considered in this work consist of three genes with both
positive and negative feedback loops. Two forms of fuzzy logic,
namely, the Zadeh operators and the probabilistic operators,
as well as the summation logic have been investigated. We
show that the easiness of evolving sustained oscillation, and the
stability of the evolved oscillation depend both on the regulation
logic and on the consistency of the regulation on the target gene.

I. I NTRODUCTION

Modeling and analysis of gene regulatory networks is
receiving increasing attention in computational systems biol-
ogy. It has been found that a small number of sub-networks,
also known as network motifs, occur very often in complex
gene regulatory networks. These network motifs serve as
building blocks of regulatory networks and the dynamics of
the whole networks can be analyzed by analyzing these mo-
tifs. Detection and analysis of regulatory motifs in biological
systems has now become one important research topic in
systems biology [1], [2].

One line of fascinating research is to analyze the role
of positive and negative feedback loops in the robustness
and evolvability of gene regulatory networks. It has been
found that negative feedback loops are a major mechanism
for biological robustness, e.g., in heat shock response ofE.
Coli [3] and in perfect adaptation of bacteria chemotaxis [4].
A design principle found in cell signaling networks is that
coherently coupled feedback loops are of essential impor-
tance to robustness [5], and that networks containing a large
number of positive feedback loops and a small number of
negative feedback loops are more likely to be robust to
perturbations [6]. Most recently, it has been reported that
a combination of positive feedback with negative feedback
loops endows the networks with more robust and tunable
sustained oscillations, and makes it easier to evolve stable
oscillatory dynamics [7].

Meanwhile, regulatory control, particularly the regulation
logic, is also attracting more and more research efforts. An
experimental analysis of regulation control of the gene for
development of the sea urchin has been conducted in [8]. A
systematic investigation of control logic in gene regulation
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has been performed in [9], which concludes that, among
others, networks consisting of competitively binding activa-
tors and repressors can be controlled more robustly. Another
interesting finding suggests that two types of logic control
may exist in bacteria transcriptional networks, namely, a
digital type and analog type [10]. Interestingly, these two
distinct control types are found to be complementary in gene
regulation. Negative feedback loops that promote systems
robustness to mutations have also been shown to emerge in
computational evolution of developmental system [11].

This paper investigatesin silico the role of regulation
logic in evolving oscillatory dynamics for two regulatory
motifs consisting of a negative feedback loop and a positive
feedback loop. To this end, we employ an evolution strategy,
one of the widely used artificial evolutionary algorithms [12],
to evolve the parameters of the given network motifs. Though
evolution of the desired dynamics for a given network motif
appears straightforward at the first sight, we find that it is
nontrivial to evolve sustained oscillations, i.e., limit cycles.
The most interesting finding from this work is that the
easiness of evolving sustained oscillation depends not only
on the regulation logic, but also on the way in which the
feedback loops are connected to the target gene.

A few research efforts have been reported to evolve
dynamics for gene regulatory networksin silico. In [13],
both bistable switches and oscillators are evolved based ona
number of predefined basic biochemical reactions. However,
it was suggested in [14] that the results reported in [13]
are not easily reproducible, which implies that successful
evolution of sustained oscillation is sensitive to experimental
setups. In [14], a correlation based fitness function has been
suggested, though no definite conclusion can be drawn on its
influence on the successful evolution of oscillators. Similar
work has also been reported in [15], where two different fit-
ness functions are suggested for evolving oscillation. In [16],
it is shown that a higher Hill co-efficient facilitates the
evolution of sustained oscillation for the relaxation oscillator.

This paper is organized as follows. In Section II, a brief
introduction to gene expression and the mathematical models
of the studied network motifs are provided. The concept of
regulation control is discussed in Section III, where a number
of fuzzy logic expressions is also presented. Section IV
describes very briefly the evolution strategy used in this
work. Experimental results are given in Section V with
discussions, and Section VI concludes the paper.
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II. REGULATORY NETWORK MOTIFS AND REGULATION

CONTROL LOGIC

According to the central dogma of biology, the process
of gene expression is believed to be composed of two main
steps, namely, transcription of DNA to mRNA and translation
of the mRNA to encoded proteins. The expression of genes
is controlled by biophysical and biochemical interactions
among genes, proteins and metabolites. This network of
interactions is termed the gene regulatory network.
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Fig. 1. Two regulatory motifs consisting of three gene, forming a negative
feedback loop and a positive feedback loop. Gene 3 (g3) is the target gene.
(a) Consistently regulated motif (CRM), (b) Inconsistentlyregulated motif
(ICM).

We study two gene regulatory motifs, each consisting
of three genes with a slight difference in connection, as
shown in Fig. 1. Both motifs have a positive feedback loop
and a negative feedback loop, namely, genesg1 and g3

formulate a positive feedback loop, while genesg2 and g3

build up a negative feedback loop. The only difference lies
in the fact that in the consistently regulated motif (CRM)
on the target gene (g3), refer to Fig. 1(a), meaning that
both regulatory genes (g1 and g2) are activating, and in
the inconsistently regulated motif (IRM), see Fig. 1(b),g1

activates the expression ofg3 whereasg2 repressesg3. The
mathematical model of the CRM can be described by the
following differential equations:

ẋ1 = a13H13(x3) − a11x1, (1)

ẋ2 = a23H23(x3) − a22x2, (2)

ẋ3 = a3L(H31(x1),H32(x2)) − a33x3, (3)

wherexi, i = 1, 2, 3 are the concentration of the correspond-
ing protein products of the three genes,a11, a22, and a33

are the degradation rate of the proteins, anda13, a23, anda3

are the parameters representing the strength of the protein
interactions. All these parameters are non-negative, and

H13(x3) =
βxn

3
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+ xn
3

, (4)

H31(x1) =
βxn

1

θn
3

+ xn
1

, (5)

H23(x3) =
β

1 + (x3/θ2)n
, (6)

H32(x2) =
βxn

2

θn
4

+ xn
2

, (7)

where β, θi, i = 1, 2, 3, 4, and n are parameters in the
activating and repressive Hill functions, wheren is called

the Hill coefficient. We can see thatH13,H31 andH32 are
activating, andH23 is repressive.

For the IRM, everything is the same except thatH23 is
now activating andH32 is repressive:

H23(x3) =
βxn

3

θn
2

+ xn
3

, (8)

H32(x2) =
β

1 + (x2/θ4)n
. (9)

In Equation (3),L(H31,H32) is the function denoting the
regulation logic that combines the influence of activating
regulations fromg1 andg2 of the expression ofg3. Often the
case, various regulatory inputs are supposed to be additive.
However, this may not be always true in biology, as discussed
in [9]. Generally, activating interactions fromg1 and g2

can be either independent, competitive or cooperative. In
this work, we consider two situations. 1) Both transcription
factors produced byg1 andg2 are necessary for the expres-
sion of g3, and 2) Either of the transcription factors will be
sufficient for the expression ofg3. These two situations can
be described by logic ’AND’, logic ’OR’, respectively. In the
following section, we are going to introduce in more details
the logic functions used in this work.

III. F UZZY LOGIC

Fuzzy logic systems have found a wide range of applica-
tions in science and engineering [17] since Zadeh’s pioneer-
ing work on fuzzy sets [18] and fuzzy reasoning [19]. It is
believed that fuzzy logic systems are particularly powerful
in dealing with uncertainties in modeling, reasoning, and
control, just to name a few. The unique ability of fuzzy
systems can be attributed, in part, to the following two
features. First, in contrast to the conventional set theory,
where an element either belongs to or does not belong to a
set, while in the fuzzy set theory, an element may belong to
a set with a degree between zero and one. This membership
degree is defined by a piece-wise continuous membership
function whose value is between0 and1. Second, the fuzzy
logic operators that allow for more flexible processing of
information. In the earlier age, most fuzzy systems were
built upon human heuristics, or from observations of human
experts. Since the beginning of 1990’s, data-driven fuzzy
systems have been playing an increasingly important role,
where fuzzy rules are abstracted from experimental data.
One main new feature of the data-driven fuzzy systems
is their ability to learn, which can be largely attributed
to the marriage of machine learning techniques, such as
neural networks and evolutionary algorithms with fuzzy set
theory [20], [21], [22]. However, it must be pointed out that
data-driven fuzzy systems may lose interpretability, which is
the essence of fuzzy systems [22]. To address this problem,
interpretability issues should be taken into account [23] in
generating fuzzy rules from data.

This work investigates the role of fuzzy logic in modeling
gene regulation control and its relationship to evolving oscil-
latory dynamics. In gene regulation, the expression of a gene
is often regulated by a number of regulatory units (enhancers



or silencers), and more than one transcription factor can be
bound to a binding site. The question is, does it need all
activating TFs to activate the expression of the gene, or is
it sufficient to have only one of the TF to activate? Another
question is, if multiple TFs can be bound to the binding site,
are they independent, competitive, or as a compound only?

In this work, we try to answer the first question mentioned
above to a certain degree. As shown in Fig. 1, the regulatory
motif we are studying contains three genes, where gene 3
is activated by both gene 1 and gene 2. Two possibilities
are considered in the following: 1) Genes 1 and 2 are both
needed to activate gene 3, which can be modeled using the
fuzzy ’AND’ logic; 2) Either gene 1 or gene 2 are needed
to activate gene 3, modeled using the fuzzy ’OR’ logic.

Two types of fuzzy logic formulations are investigated in
the simulations. The first type is the Zadeh operators:

AND: x
∧

y = min (x, y), (10)

OR: x
∨

y = max (x, y), (11)

(12)

where ’
∧

’ and ’
∨

’ denote fuzzy ’AND’ and ’OR’, respec-
tively, min(x, y) and max(x, y) return the minimum and the
maximum ofx andy, respectively.

The second type of fuzzy logic operators is known as the
probabilistic operators, which can be described as follows:

AND: x
∧

y = xy, (13)

OR: x
∨

y = x + y − xy. (14)

(15)

In addition to the above fuzzy logic operations, we also
investigate the summation logic, which is used in most gene
regulatory network models. In summary, the following five
logic operators have been investigated for the regulation
logic:

Zadeh ’AND’: L(x, y) = min (x, y), (16)

probabilistic ’AND’: L(x, y) = xy, (17)

Zadeh ’OR’: L(x, y) = max (x, y), (18)

probabilistic ’OR’: L(x, y) = x + y − xy, (19)

summation: L(x, y) =
1

2
(x + y). (20)

It is interesting to note that summation can be considered
as a linear combination of the probabilistic ’AND and the
probabilistic ’OR’. It should also be noticed that in fuzzy
logic operations, the value ofx and y is always limited
between zero and one. In this work, we require that the value
is non-negative, but it is allowed to be larger than one.

IV. EVOLUTION STRATEGY

Evolution strategies are one of the widely used artificial
evolutionary algorithms that are very effective for optimizing
real-valued problems. Since the structure of the regulatory
motifs is fixed, and only the parameters are evolved in this
work, we adopt a canonical evolution strategy for evolving
the desired dynamics. In a canonical evolution strategy (ES),

the mutation of the object parameters (the parameters to be
optimized) is performed by adding anN(0, σ2

i
) distributed

random number, whereσi’s are termed as strategy param-
eters that are also encoded in the genotype and subject to
mutations. The ES used in this work can be described as
follows:

x(t) = x(t − 1) + z̃ (21)

σi(t) = σi(t − 1)exp(τ ′z)exp(τzi); i = 1, ..., n, (22)

wherex is ann-dimensional parameter vector to be evolved,
z̃ is an n-dimensional random number vector with̃z ∼
N(0, σ(t)2), z andzi are normally distributed random num-
bers withz, zi ∼ N(0, 1). Parametersτ , τ ′ and σi are the
strategy parameters, also known as step-sizes, whereσi is
mutated as in equation (22) andτ , τ ′ are constants as follows:

τ =

(

√

2
√

n

)

−1

; τ ′ =
(√

2n
)

−1

. (23)

Two selection schemes have been proposed in evolution
strategies, known as comma and plus strategies. Suppose
there areµ and λ individuals in the parent and offspring
population, usuallyµ ≤ λ. In the comma strategy,µ parent
individuals are selected only from theλ offspring individuals,
which is usually noted as (µ,λ)-ES. In the plus strategy,µ
parent individuals are selected from a union ofµ parent
individuals andλ offspring individuals, which is noted as
(µ + λ)-ES. In our study, the (µ, λ)-ES is adopted.

In the evolution, all parameters in the regulatory model,
i.e., three decay rates and three synthesis rates, one coeffi-
cient (β), four thresholds, and one Hill coefficient are the
object parameters encoded in the genome.

V. SIMULATION RESULTS

A (30, 200)-ES has been adopted in our experiments.
All object parameters to be evolved are randomly initialized
between 0 and 4. According to the physical meaning of the
parameters, a lower bound is set to 0 for all parameters, but
no upper bound is given. The initial step-size is set to 1. In
all simulations, 500 generations are run for each case.

The aim of the work is to produce a sustained oscillatory
dynamics for the concentration ofg3. The target function for
x3 in evolving oscillation is defined by a sinus function as
follows:

xd

3
(t) = sin(2π t/T) + 1.0, (24)

where t is time instant, andT is the desired period of the
oscillation. In the simulations, a desired period ofT =
1, 2, ..., 12 is chosen in 12 groups of simulations for each
motif, and for each desired period, 10 independent runs are
performed. Note that during the evolution,x1 and x2 are
initialized to 1.0, whilex3 is initialized to 0.

A. Easiness of Evolving Sustained Oscillation

Fig. 2 shows the percentage of successful evolution of
sustained oscillation in 10 independent runs for each desired
period, when different logic functions are employed for both
CRM and IRM. For CRM, when the probabilistic ’AND’



operator is used, the system is able to evolve sustained
oscillation for 16 times from a total of 120 independent
runs. When the probabilistic ’OR’, or summation is used,
sustained oscillation is able to evolve only three times in
120 runs. When Zadeh ’AND’ or Zadeh ’OR’ is used for
combining different regulatory elements, none of the runs has
been successful in evolving sustained oscillation. Different to
the IRM, the highest percentage (29 times in 120 runs) of
successful evolution of limited cycles is achieved for CRM
when summation is adopted as the regulation logic. When
probabilistic ’OR’ is used, the system is able to evolve limit
cycles in 15 cases out of 120 runs. Similar to CRM, no
successful runs have been achieved in evolving limit cycles.
The faille to evolve limit cycles when the Zadeh operators
are used may be be attributed to the discontinuity in the
regulation logic. On the other hand, it can also be the case
that the mathematical condition for generating limit cycles is
violated due to the introduction of the Zadeh fuzzy operators.
More empirical and theoretic investigations are required to
clarify this issue.

Although the successful rates are quite low in general, it
is interesting to notice that a large Hill coefficient is not
required, which is different to the findings in [16], where
relaxation oscillator using the sum logic was studied.

B. Period and Amplitude of the Limit Cycles

1) Accuracy in Learning the Desired Period:We first
compare the period of the evolved limit cycles with that of
the desired. The relationship between the desired and evolved
periods are plotted in Fig. 3 (a) for CRM, and in Fig. 3 (b)
for IRM. In general, the period of the evolved limit cycles is
close to that of the desired in all cases in which a limit cycle
has successfully evolved. To be exact, the mean absolute
approximation errors are0.24, 0.6, and0.45 for CRM, and
0.2 and0.37 for IRM, respectively. Note that the simulation
interval is0.1, i.e., the temporal resolution of the simulation
is 0.1.

2) Frequency-Amplitude Relation:It has been observed
that it is of great importance in biology that a regulatory
system can produce different oscillation frequencies witha
similar oscillation amplitude, where the positive feedback
loop helps keep the amplitude relatively unchanged [7]. Since
the regulatory motifs we studied in this work also contain a
negative feedback loop plus a positive one, we are interested
in investigating how amplitude changes as the frequency
(or period) of the oscillation changes. For this purpose, the
relationship between the evolved period and the amplitude
of the limit cycles are presented in Fig. 4(a) for the IRM,
and Fig. 4(b), respectively. It seems that for the CRM, the
amplitude is rather stable when summation is used for the
regulation logic.

C. Sensitivity of the Evolved Limit Cycles

We now present a few typical examples of the evolved
limit cycles, as shown in Figs. 5-8 for IRM with sum, prob-
abilistic ’AND’ as the regulation logic, and CRM with sum
and probabilistic ’OR’ as the regulation logic, respectively. In
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Fig. 2. Success percentage in evolving sustained oscillation. (a) CRM, (b)
IRM.

the four figures, the left panel shows the trajectories starting
from 50 random initial points in the state space, and the
right panel the profile of thex3 (concentration ofg3) over
time. From these dynamics, we have observed that the limit
cycles generated for the CRM using probabilistic operator
as the regulation logic is quite sensitive to the initial system
state. Some of the initial states lead to an equilibrium, and
the amplitude of the limit cycles are most often dependent
on the initial states, refer to Fig. 5. However, the limit cycles
evolved for the IRM using summation is insensitive to the
initial system states, see e.g., Fig. 6. In contrast, all limit
cycles generated by the evolved CRM are robust to the
initialization of the system state.
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Fig. 3. Evolved periods compared to the desired ones. (a) CRM,and (b)
IRM.

D. Illustrative Examples of Regulatory Dynamics

In this subsection, we illustrate a few evolved regulatory
dynamics including sustained oscillations, damped oscilla-
tion and bi-stability, which may be of biological implication.

1) Limit cycle together with a stable equilibrium:As men-
tioned in Section V-C, one interesting difference between the
dynamics of CRM and IRM that exhibit sustained oscillation
is that the oscillation dynamics of the CRM is sensitive to
the initial states. For CRM with the probabilistic ’AND’, 15
of the 16 evolved sustained oscillation is subject to the initial
states of the system. For CRM with probabilistic ’OR’ logic,
two of the three evolved limit cycle are subject to the initial
states. In other word, sustained oscillation appears only for
part of the initial states (xi ∈ [0, 4], i = 1, 2, 3). Fig. 9 shows
an example with probabilistic ’AND’ and a desired period
T = 5, while Fig. 10) an example with a probabilistic ’OR’
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Fig. 4. Amplitude and period of the evolved limit cycles. (a) CRM, (b)
IRM.
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Fig. 5. CRM with probabilistic ’AND’ as the regulation logic, T = 9. (a)
Trajectories of 50 random inital states in the state space. (b) Time course
of target gene (x3). The thick dashed line denotes the desired signal.
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Fig. 6. CRM with sum as the regulation logic,T = 8. (a) Trajectories of
50 random initial states in the state space. (b) Time course oftarget gene
(x3). The thick dashed line denotes the desired signal.
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Fig. 7. IRM with probabilistic ’OR’ as the regulation logic,T = 9. (a)
Trajectories of 50 random initial states in the state space.(b) Time course
of target gene (x3). The thick dashed line denotes the desired signal.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

x
2

x 3

(a)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

t

x 3

(b)

Fig. 8. IRM with sum as the regulation logic,T = 8. (a) Trajectories of
50 random initial states in the state space. (b) Time course oftarget gene
(x3). The thick dashed line denotes the desired signal.

and a desired periodT = 4.
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Fig. 9. CRM with probabilistic ’AND’. (a) Time course, and (b)state-space
trajectory of 50 random initial states.

2) Bi-stability: Although the desired dynamics is a sus-
tained oscillation, bi-stable dynamics often emerges in the
evolved systems, particularly when the probabilistic ’OR’
logic is used. Two kinds of bi-stable dynamics have been
generated, either one oscillatory attractor and an equilibrium
as shown in Fig. 11(a), or two equilibria, see Fig. 12(b).

3) An unstable attractor plus an equilibrium:For both
CRM and IRM, interesting dynamics such as an unstable
attractor (UA) plus an equilibrium has been observed. This
means that the system first approaches an attractor and then
converges to a stable equilibrium, see Fig. 12 for the CRM
and Fig. 13 for the IRM, where the unstable attractor is
denoted with UA.

E. Discussions

The biological meanings of the dynamics evolved for the
regulatory motifs in this work remains to be revealed. On
the one hand, we show that rich dynamics, such as limit
cycles, attractors, equilibria, as well as bistability, has been
evolved successfully for very simple regulatory motifs, which
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Fig. 10. CRM with probabilistic ’OR’. (a) Time course, and (b)state-space
trajectory of 50 random initial states.
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Fig. 11. Bi-stable dynamics from two evolved CRMs with probabilistic
’OR’ logic. (a) T = 6, and (b)T = 12.
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Fig. 12. Dynamics of an evolved CRM with summation when the desired
periodT = 12. (a) Time course, (b) state-space trajectory.

indicates that the systems ability to generate rich phenotypic
features. On the other hand, the biological implication of
such richness in dynamics, particularly its role in biological
evolution, is still unclear.

VI. CONCLUSIONS

This paper reports our initial results on the influence
of regulation logic on the easiness of evolving oscillatory
dynamics for gene regulatory motifs. Three interesting phe-
nomena have been observed. First, the easiness of evolving
sustained oscillation depends not only on the regulation logic,
but also on the consistency of the regulation on the target
gene. Second, both for CRM and IRM, the desired period
can be evolved with a relatively good accuracy. Third, the
stability of the evolved oscillations may depend on the initial
state of the system, and the sustained oscillation of the CRM
seems to be less sensitive to initial states.

A few interesting issues remain to be investigated. For
example, if regulation logic is not predefined, will one that
leads to more robust oscillation emerge? Similarly, if the
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Fig. 13. Dynamics of an evolved IRM with Zadeh ’AND’ when the desired
periodT = 6. (a) Time course, (b) state-space trajectory.

connectivity of the regulatory motifs is not given, is the evo-
lution able to find a structure that can produce more robust
oscillation? An answer to these questions will hopefully help
us understand the occurrence of the network motifs found in
biology.
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