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Influence of Regulation Logic on the Easiness of Evolving Sustagul
Oscillation for Gene Regulatory Networks
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Abstract— This paper investigates empirically the influence of has been performed in [9], which concludes that, among
regulation logic on the dynamics of two computational models of others, networks consisting of competitively binding \eti
genetic regulatory network motifs. The gene regulatory network tors and repressors can be controlled more robustly. Anothe

motifs considered in this work consist of three genes with both . ¢ ting findi ts that two t f loai trol
positive and negative feedback loops. Two forms of fuzzy logic, interes l_ng _'n Ing 399933 S _a . 0 types ot logic contro
namely, the Zadeh operators and the probabilistic operators, May €Xist in bacteria transcriptional networks, namely, a

as well as the summation logic have been investigated. We digital type and analog type [10]. Interestingly, these two
show that the easiness of evolving sustained oscillation, and the distinct control types are found to be complementary in gene
stability of the evolved oscillation depend both on the regulation regulation. Negative feedback loops that promote systems
logic and on the consistency of the regulation on the target gene. . )
robustness to mutations have also been shown to emerge in
computational evolution of developmental system [11].

I. INTRODUCTION

Modeling and analysis of gene regulatory networks ifo This paper investigates silico the role of regulation

o . L ; . gic in evolving oscillatory dynamics for two regulatory
receiving increasing attention in computational systerob b motifs consisting of a negative feedback loop and a positive
g%g Enr:)ﬁnb:sr:‘;?V%Z?ktrrf;tﬁssrgi!ur:u\;g?erog;iuia_Zitr\rl]volg(féedback loop. To this end, we employ an evolution strategy,

' y . P'®%ne of the widely used artificial evolutionary algorithmg&]1
gene regulatory networks. These network motifs serve

S ) :
building blocks of regulatory networks and the dynamics oio evolve the parameters of the given network motifs. Though

the whole networks can be analyzed by analyzing these m%\_/olunon of the desired dynamics for a given network motif

tifs. Detection and analysis of regulatory motifs in bictea appears straightforward at the first sight, we find that it is

svstems has now become one important research topic nontrivial to evolve sustained oscillations, i.e., limitctes.
Y : P PICfhe most interesting finding from this work is that the
systems biology [1], [2].

. » . easiness of evolving sustained oscillation depends nat onl
One line of fascinating research is to analyze the rolé . ; . .
. ) : on the regulation logic, but also on the way in which the

of positive and negative feedback loops in the robustness
- eedback loops are connected to the target gene.

and evolvability of gene regulatory networks. It has been

found that negative feedback loops are a major mechanism
for biological robustness, e.g., in heat shock respongg. of

Coli [3] and in perfect adaptation of bacteria chemotaxis Mfynam_ms for gene regulatory_ networks silico. In [13],
. on . . ; . both bistable switches and oscillators are evolved baset on
A design principle found in cell signaling networks is that

s number of predefined basic biochemical reactions. However,
coherently coupled feedback loops are of essential impa

tance to robustness [5], and that networks containing wlarl{ was sugggsted n [14.] that the r.esulfts reported in [13]
. e not easily reproducible, which implies that successful
number of positive feedback loops and a small number g . ; L " .
. : evolution of sustained oscillation is sensitive to expeiral
negative feedback loops are more likely to be robust to ; ) .
setups. In [14], a correlation based fitness function has bee

perturbations [6]. Most recently, it has been reported that - . )
a combination of positive feedback with negative feedbaciuggeSted’ though no definite conclusion can be drawn on its

) nfluence on the successful evolution of oscillators. Samil
loops endows the networks with more robust and tunable . : i
. S . ) ork has also been reported in [15], where two different fit-
sustained oscillations, and makes it easier to evolve estab ! : .
. . ness functions are suggested for evolving oscillation18i,[
oscillatory dynamics [7].

. . . it is shown that a higher Hill co-efficient facilitates the
Meanwhile, regulatory control, particularly the regubeti : : S : .
L : evolution of sustained oscillation for the relaxation tator.
logic, is also attracting more and more research efforts. An

experimental analysis of regulation control of the gene for

. ) Thi r is organiz follows. In ion Il rief
development of the sea urchin has been conducted in [8]. A S paper is orga ed as foflows Sectio M a brie
g g o " introduction to gene expression and the mathematical reodel
systematic investigation of control logic in gene reguaati

of the studied network motifs are provided. The concept of
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Il. REGULATORY NETWORK MOTIFS AND REGULATION the Hill coefficient. We can see tha&f,3, H3; and Hs, are
CoNTROL LoGIC activating, andH,3 is repressive.
According to the central dogma of biology, the process For the IRM, everything is the same except ttfl; is

oo : now activating andHs, is repressive:
of gene expression is believed to be composed of two main 9 32 P

steps, namely, transcription of DNA to mRNA and translation Has(zs) = By ()
of the mRNA to encoded proteins. The expression of genes 0y + a2’
is controlled by biophysical and biochemical interactions 1]

H e 9
32(22) 1+ (22/02)" 9)
In Equation (3),L(Hs1, Hs2) is the function denoting the
regulation logic that combines the influence of activating
regulations fromy; andg. of the expression aofs. Often the

case, various regulatory inputs are supposed to be additive
/ / However, this may not be always true in biology, as discussed
) '
@

among genes, proteins and metabolites. This network of
interactions is termed the gene regulatory network.

in [9]. Generally, activating interactions from; and go
can be either independent, competitive or cooperative. In
this work, we consider two situations. 1) Both transcriptio
factors produced by, and g, are necessary for the expres-
rig-dé- kT\INO regU(ljatory mtqtifocoggisth? of thcr;ee gene,tLO@:mnetgaﬁve sion of g3, and 2) Either of the transcription factors will be
(Z‘)e C;ﬁsi;gﬁﬂsnregig?:&“ﬁoﬁf(cgi/l)yo(%’;mc%”ngs?’gtﬁmzugtgez s sufficient for the expression af. These two situations can
(ICM). be described by logic 'AND’, logic 'OR’, respectively. Ingh
following section, we are going to introduce in more details
We study two gene regulatory motifs, each consistingne logic functions used in this work.
of three genes with a slight difference in connection, as
shown in Fig. 1. Both motifs have a positive feedback loop
and a negative feedback loop, namely, gegesand g3

(b)

Ill. Fuzzy LoaGiC

Fuzzy logic systems have found a wide range of applica-
formulate a positive feedback loop, while gengsand gs tions in science and engineering [17] since Zadeh'’s pieneer

build up a negative feedback loop. The only difference liell!d WOrk on fuzzy sets [18] and fuzzy reasoning [19]. It is

in the fact that in the consistently regulated motif (CRM)P€liEved that fuzzy logic systems are particularly powerfu
on the target genegy), refer to Fig. 1(a), meaning that in dealing with uncertainties in modeling, reasoning, and
control, just to name a few. The unique ability of fuzzy

both regulatory genesg{ and g) are activating, and in 1 ) he followi
the inconsistently regulated motif (IRM), see Fig. 1(p), SYSEMS can be attributed, in part, to the following two
features. First, in contrast to the conventional set theory

activates the expression 9§ whereasg, repressegs. The

mathematical model of the CRM can be described by th\ghere an element either belongs to or does not belong to a
following differential equations: set, while in the fuzzy set theory, an element may belong to

a set with a degree between zero and one. This membership
i = aizHz(ws) —ana, (1) degree is defined by a piece-wise continuous membership
function whose value is betweénand1. Second, the fuzzy
. logic operators that allow for more flexible processing of
3 = a3L(Hz(21), H32(22)) — asszs, () information. In the earlier age, most fuzzy systems were
wherez;,i = 1,2,3 are the concentration of the correspond-b“”t upon human heuristics, or from observations of human
ing protein products of the three genes,, ass, and ass experts. Since the beginning of' 1990’3, datg-driven fuzzy
are the degradation rate of the proteins, ang as3, andas systems have been playing an increasingly important role,
are the parameters representing the strength of the protwdjére fuzzy rules are abstracted from experimental data.

interactions. All these parameters are non-negative, and ON€ main new feature of the data-driven fuzzy systems
is their ability to learn, which can be largely attributed

o = ao3Has(x3) — agews, 2

Hig(zs) = Py 7 (4) to the marriage of machine learning techniques, such as
07 + xf neural networks and evolutionary algorithms with fuzzy set
ol B Bz} 5 theory [20], [21], [22]. However, it must be pointed out that
si(z) = 0n + a7 ®)  data-driven fuzzy systems may lose interpretability, \utig
3 the essence of fuzzy systems [22]. To address this problem,
Has(xs) = W’ (6) interpretability issues should be taken into account [28] i
Ba? generating fuzzy rules from data.
H3o(wa) = o +2x§“ (7) This work investigates the role of fuzzy logic in modeling

gene regulation control and its relationship to evolvingiles
where 3, 6;,i = 1,2,3,4, and n are parameters in the latory dynamics. In gene regulation, the expression of @&gen
activating and repressive Hill functions, wheneis called is often regulated by a number of regulatory units (enhancer



or silencers), and more than one transcription factor can Iiee mutation of the object parameters (the parameters to be
bound to a binding site. The question is, does it need adptimized) is performed by adding aN (0, o2) distributed
activating TFs to activate the expression of the gene, or iendom number, where;’s are termed as strategy param-
it sufficient to have only one of the TF to activate? Anotheeters that are also encoded in the genotype and subject to
question is, if multiple TFs can be bound to the binding sitanutations. The ES used in this work can be described as
are they independent, competitive, or as a compound onlyfdllows:
In this work, we try to answer the first question mentioned -
above to a certain degree. As shown in Fig. 1, the regulatory x(t) = x(t-1)+2 (21)
motif we are studying contains three genes, where gene 3 0i(t) = oi(t — 1)exp(7'z)exp(t2);i = 1,...,n, (22)

is activated by both gene 1 and gene 2. Two possibilitieg,o e is any-dimensional parameter vector to be evolved,
are considered in the following: 1) Genes 1 and 2 are bo is an n-dimensional random number vector with ~

needed to activz_ite gene 3, which can be modeled using tﬂﬁo,a(t)z), > andz; are normally distributed random num-
fuzzy 'AND’ logic; 2) Either gene 1 or gene 2 are needetyo g ith , -, ~ N(0,1). Parameters, 7/ ando; are the
to activate gene 3, modeled using the fuzzy 'OR’ logic. strategy parameters, also known as step-sizes, wheie

Two types of fuzzy logic formulations are investigated iny yateq as in equation (22) angr’ are constants as follows:
the simulations. The first type is the Zadeh operators:

AND: zAy =min(z,y), (10) T = ( 2\/ﬁ>_1 ;T = (\/%>71 : (23)

OR: =z =max (x,y), 11 . . .
Vy () (11) Two selection schemes have been proposed in evolution
12) strategies, known as comma and plus strategies. Suppose

where A\’ and ’\/’ denote fuzzy 'AND’ and 'OR’, respec- there areu and X individuals in the parent and offspring

tively, min(z, y) and maxg, ) return the minimum and the Population, usually, < A. In the comma strategy; parent

maximum ofz andy, respectively. individuals are selected only from theoffspring individuals,
The second type of fuzzy logic operators is known as th&hich is usually noted asu())-ES. In the plus strategy,

probabilistic operators, which can be described as folowsParent individuals are selected from a union /ofparent
individuals and\ offspring individuals, which is noted as

AND:  zAy =uy, (13) (1 + M)-ES. In our study, they, \)-ES is adopted.
OR: zVy =x+y—uay. (14) In the evolution, all parameters in the regulatory model,
(15) 1-e., three decay rates and three synthesis rates, one-coeffi
cient (8), four thresholds, and one Hill coefficient are the

In addition to the above fuzzy logic operations, we alsgbject parameters encoded in the genome.
investigate the summation logic, which is used in most gene

regulatory network models. In summary, the following five V. SIMULATION RESULTS
logic operators have been investigated for the regulation A (30, 200)-ES has been adopted in our experiments.
logic: All object parameters to be evolved are randomly initiadize
, . R between 0 and 4. According to the physical meaning of the
Zadeh 'AND"  L(z,y) =min (z,y), (16)  parameters, a lower bound is set to O for all parameters, but
probabilistic 'AND":  L(z,y) =y, (17)  no upper bound is given. The initial step-size is set to 1. In
Zadeh 'OR:  L(z,y) = max(z,y), (18) all simulations, 500 generations are run for each case.
probabilistic 'OR”  L(z,y) =z +y—ay, (19) The _aim of the work is to_produce a sustained o_scillatory
_ 1 dynamics for the concentration g§. The target function for
summation: L(z,y) = s(z+y). (20) 25 in evolving oscillation is defined by a sinus function as

2
o . . . f8IIows:
It is interesting to note that summation can be considere

as a linear combination of the probabilistic 'AND and the
probabilistic 'OR’. It should also be noticed that in fuzzywheret is time instant, and’ is the desired period of the
logic operations, the value of and y is always limited oscillation. In the simulations, a desired period Bf =
between zero and one. In this work, we require that the value2, ..., 12 is chosen in 12 groups of simulations for each
is non-negative, but it is allowed to be larger than one.  motif, and for each desired period, 10 independent runs are
performed. Note that during the evolution; and xz, are

initialized to 1.0, whilezs is initialized to 0.
Evolution strategies are one of the widely used artificial

evolutionary algorithms that are very effective for optiing A~ Easiness of Evolving Sustained Oscillation

real-valued problems. Since the structure of the regulator Fig. 2 shows the percentage of successful evolution of
motifs is fixed, and only the parameters are evolved in thisustained oscillation in 10 independent runs for each esir
work, we adopt a canonical evolution strategy for evolvingeriod, when different logic functions are employed fortbot
the desired dynamics. In a canonical evolution strategy,(ESCRM and IRM. For CRM, when the probabilistic 'AND’

z3(t) = sin(27t/T) + 1.0, (24)

IV. EVOLUTION STRATEGY



operator is used, the system is able to evolve sustained
oscillation for 16 times from a total of 120 independen

runs. When the probabilistic 'OR’, or summation is used of | 7 Probaniate AND

sustained oscillation is able to evolve only three times i - probabilistic OR

120 runs. When Zadeh 'AND’ or Zadeh 'OR’ is used for S

combining different regulatory elements, none of the russ h

been successful in evolving sustained oscillation. Déffeeto §‘° o |

the IRM, the highest percentage (29 times in 120 runs) ¢ g

successful evolution of limited cycles is achieved for CRV &%

when summation is adopted as the regulation logic. Whe §ZO L . .
probabilistic 'OR’ is used, the system is able to evolve timi ’

cycles in 15 cases out of 120 runs. Similar to CRM, n 10/ Ca o 0 » o @
successful runs have been achieved in evolving limit cycle ; N o

The faille to evolve limit cycles when the Zadeh operator: S P —
are used may be be attributed to the discontinuity in th I R a— e,

6 7
Desired period (T)

regulation logic. On the other hand, it can also be the ca:
that the mathematical condition for generating limit cgcie
violated due to the introduction of the Zadeh fuzzy operator @
More empirical and theoretic investigations are required t
clarify this issue.

Although the successful rates are quite low in general,

is interesting to notice that a large Hill coefficient is not o [+ probabisic e N X
. : . . T . -0~ Zadeh "AND’ " i
requwe_d, whlc_h is dlﬁ(_arent to the fmqhngs in [16_], where et OR o I
relaxation oscillator using the sum logic was studied. sol iZadeh'OR' o e %
summation B \ / v

B. Period and Amplitude of the Limit Cycles

1) Accuracy in Learning the Desired PeriodiVe first
compare the period of the evolved limit cycles with that o
the desired. The relationship between the desired andexolv
periods are plotted in Fig. 3 (a) for CRM, and in Fig. 3 (b)
for IRM. In general, the period of the evolved limit cycles is
close to that of the desired in all cases in which a limit cycls
has successfully evolved. To be exact, the mean absol
approximation errors ar@.24, 0.6, and0.45 for CRM, and

Success percentage (%)
w IS
S S
T
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-

N
S}
<
<

J
J
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101 0 v v

0.2 and0.37 for IRM, respectively. Note that the simulation R Des.‘fedper.ﬁdm o b ow ow
interval is0.1, i.e., the temporal resolution of the simulation
is 0.1.

2) Frequency-Amplitude Relationt has been observed (b)

that it is of great importance in biology that a regulatory

system can produce different oscillation frequencies \ith Fig. 2. Success percentage in evolving sustained osocillata) CRM, (b)
similar oscillation amplitude, where the positive feedbac

loop helps keep the amplitude relatively unchanged [7]c&in

the regulatory motifs we studied in this work also contain a

negative feedback loop plus a positive one, we are intateste

in investigating how amplitude changes as the frequendfe four figures, the left panel shows the trajectoriesistrt
(or period) of the oscillation changes. For this purpose, thffom 50 random initial points in the state space, and the
relationship between the evolved period and the amplitudé@ht panel the profile of the; (concentration ofy;) over

of the limit Cyc|es are presented in F|g 4(a) for the |R|\/|,time. From these dynamics, we have observed that the limit
and Fig. 4(b), respectively. It seems that for the CRM, theycles generated for the CRM using probabilistic operator
amplitude is rather stable when summation is used for ti&$ the regulation logic is quite sensitive to the initialteys

regulation logic. state. Some of the initial states lead to an equilibrium, and
o o the amplitude of the limit cycles are most often dependent
C. Sensitivity of the Evolved Limit Cycles on the initial states, refer to Fig. 5. However, the limit igg

We now present a few typical examples of the evolvedvolved for the IRM using summation is insensitive to the
limit cycles, as shown in Figs. 5-8 for IRM with sum, prob-initial system states, see e.g., Fig. 6. In contrast, alitlim
abilistic '"AND’ as the regulation logic, and CRM with sum cycles generated by the evolved CRM are robust to the
and probabilistic 'OR’ as the regulation logic, respediiven  initialization of the system state.
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Fig. 3.
IRM.

Evolved periods compared to the desired ones. (a) Ciid,(b)

D. lllustrative Examples of Regulatory Dynamics

In this subsection, we illustrate a few evolved regulatory
dynamics including sustained oscillations, damped ascill
tion and bi-stability, which may be of biological implicati.

1) Limit cycle together with a stable equilibriun&s men-
tioned in Section V-C, one interesting difference betwéden t
dynamics of CRM and IRM that exhibit sustained oscillation
is that the oscillation dynamics of the CRM is sensitive to
the initial states. For CRM with the probabilistic '"AND’, 15
of the 16 evolved sustained oscillation is subject to thesihi
states of the system. For CRM with probabilistic 'OR’ logic,
two of the three evolved limit cycle are subject to the ititia
states. In other word, sustained oscillation appears anly f

Fig. 4.
IRM.

Amplitude and period of the

(b)

evolved limit cycles. (a) @R(b)

@

(b)

part of the initial statesa( € [0,4],7 = 1,2, 3). Fig. 9 shows Fig. 5. CRM with probabilistic ’AND’ as the regulation logi@” = 9. (a)
an example with probabilistic 'AND’ and a desired periodTrajectories of 50 random inital states in the state spageTife course

. . . ey , of target gene#3). The thick dashed line denotes the desired signal.
T = 5, while Fig. 10) an example with a probabilistic 'OR ©



() (b)

Fig. 6. CRM with sum as the regulation logi€, = 8. (a) Trajectories of
50 random initial states in the state space. (b) Time courgargét gene
(z3). The thick dashed line denotes the desired signal.

(@ (b)

Fig. 7. IRM with probabilistic 'OR’ as the regulation logi@; = 9. (a)
Trajectories of 50 random initial states in the state spémeTime course
of target gene«3). The thick dashed line denotes the desired signal.

(C) (b)

Fig. 8. IRM with sum as the regulation logi&, = 8. (a) Trajectories of
50 random initial states in the state space. (b) Time courgargét gene
(z3). The thick dashed line denotes the desired signal.

and a desired period = 4.

(b)

Fig. 9. CRM with probabilistic ’AND’. (a) Time course, and (bfate-space
trajectory of 50 random initial states.

2) Bi-stability: Although the desired dynamics is a sus-
tained oscillation, bi-stable dynamics often emerges i th
evolved systems, particularly when the probabilistic 'OR’
logic is used. Two kinds of bi-stable dynamics have been
generated, either one oscillatory attractor and an eaiuifib
as shown in Fig. 11(a), or two equilibria, see Fig. 12(b).

3) An unstable attractor plus an equilibriumFor both
CRM and IRM, interesting dynamics such as an unstable
attractor (UA) plus an equilibrium has been observed. This
means that the system first approaches an attractor and then
converges to a stable equilibrium, see Fig. 12 for the CRM
and Fig. 13 for the IRM, where the unstable attractor is
denoted with UA.

E. Discussions

The biological meanings of the dynamics evolved for the
regulatory motifs in this work remains to be revealed. On
the one hand, we show that rich dynamics, such as limit
cycles, attractors, equilibria, as well as bistabilitys Heeen
evolved successfully for very simple regulatory motifs jeth
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(b)

Fig. 10. CRM with probabilistic 'OR’. (a) Time course, and @iate-space
trajectory of 50 random initial states.

(b)

Fig. 12. Dynamics of an evolved CRM with summation when the @dsir
periodT = 12. (a) Time course, (b) state-space trajectory.

indicates that the systems ability to generate rich phgnoty
features. On the other hand, the biological implication of
® such richness in dynamics, particularly its role in biotzgi
evolution, is still unclear.

VI. CONCLUSIONS

This paper reports our initial results on the influence
of regulation logic on the easiness of evolving oscillatory
dynamics for gene regulatory motifs. Three interesting-phe
nomena have been observed. First, the easiness of evolving
sustained oscillation depends not only on the regulatigitjo
but also on the consistency of the regulation on the target
gene. Second, both for CRM and IRM, the desired period
can be evolved with a relatively good accuracy. Third, the
stability of the evolved oscillations may depend on thdahit
state of the system, and the sustained oscillation of the CRM
seems to be less sensitive to initial states.

Fig. 11. Bi-stable dynamics from two evolved CRMs with proiiatic A few interesting issues remain to be investigated. For
'OR" logic. () T = 6, and (b)T' = 12. example, if regulation logic is not predefined, will one that
leads to more robust oscillation emerge? Similarly, if the

35




(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(b)

[21]

Fig. 13. Dynamics of an evolved IRM with Zadeh 'AND’ when thesited ~ [22]
periodT = 6. (a) Time course, (b) state-space trajectory.
[23]

connectivity of the regulatory motifs is not given, is theev
lution able to find a structure that can produce more robust
oscillation? An answer to these questions will hopefulliphe
us understand the occurrence of the network motifs found in
biology.
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