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Abstract

We present a novel approach toward evolving artificial embryogenies, which omits the graph representation of gene
regulatory networks and directly shapes the dynamics of a system, i.e., its phase space. We show the feasibility of the
approach by evolving cellular differentiation, a basic feature of both biological and artificial development. We demonstrate
how a spatial hierarchy formulation can be integrated into the framework and investigate the evolution of a hierarchical
system. Finally, we show how the framework allows the investigation of allometry, a biological phenomenon, and its role for
evolution. We find that direct evolution of allometric change, i.e., the evolutionary adaptation of the speed of system states
on transient trajectories in phase space, is advantageous for a cellular differentiation task.
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Introduction

Biological evolution has found ways to build organisms with

astonishing complexity, where both, the number of elements and

the robustness of interactions between them, often exceed those of

engineered products. Especially multicellular organisms exhibit a

structuring and maintenance ability beyond human design, which

naturally leads to a special scientific interest in the biological

building process that creates these organisms. The growth of an

organism starts with a single fertilized egg cell which transforms

through a development of concerted cell actions (such as division,

signaling, etc.) into a mature and robustly functional assembly of

cells. Embryogeny is the pre-natal part of that developmental

process where a fertilized egg cell undergoes multiple divisions

until an organism with spatially and functionally organized tissues

and organs is created. Mimicking this process has been supposed

to be the key to engineering complex artifacts [1,2]. Building and

maintaining functional artifacts with high complexity and

robustness is a challenge engineers face throughout all fields of

application. Specific approaches, such as using modular architec-

tures and redundancy are suitable only up to a certain level of

functionality. Therefore, many developmental approaches toward

creating artificial systems have been proposed recently [3–14].

The implemented developmental mechanisms of such systems

are generally based on an abstraction of observed principles in

biology and can be divided into two main categories: phenotypic

mechanisms and genetic control mechanisms: Phenotypic mech-

anisms are those parts of the models that are used to represent the

developing shape or behavior. For example, they are the

implementation of cells and cellular behaviors, such as division,

adhesion, simulated physics; all kinds of non-signaling cellular

interactions in general. Control mechanisms are the analog of the

DNA and its signaling proteins in biology, i.e., the way a

regulatory network is realized, which evolution acts directly on by

changing weights and connections. In both domains, choosing the

right abstraction level is difficult and clearly depends on the

purpose of the resulting system. For example, simulating biological

phenotypic mechanisms such as polarity and chemotaxis can yield

a system with the ability to grow functional shapes [15] but does

not per se imply predictive power for the evolution of development

of biological organisms. Simulated developmental mechanisms are

usually chosen very specifically, carefully taking into account

other, already existing system features and the desired system

behavior. As a result, most scientific findings from proposed

models do not generalize easily.

This paper focuses on the investigation of a novel control

mechanism for artificial embryogeny models. Most of the

proposed models [3–14] employ a control mechanism of cellular

growth via artificial gene regulatory networks (GRNs) that abstract

biological gene regulatory networks using discrete or continuous

formulations, and most implementations are unique. The

uniqueness of the approaches results from the fact that no system

has so far been shown to be superior to any other approach for a

wide range of applications. Apart from implementations of

artificial gene regulatory networks, control mechanisms are

sometimes simulated by random boolean networks, multi-layer

perceptrons, or continuous time recurrent neural networks. All of

these approaches have in common that they create a nonlinear

system where certain ‘output nodes’ are used to control

development and ‘input nodes’ are carefully initialized to trigger

dynamics or receive continuous environmental signals. Obviously,

the implementation of such a system influences the way a graph

change results in a change in system dynamics; but in general

it seems that evolving networks to get desired dynamics is non-

trivial [16,17]. Small changes in network weights and structure

do in most cases change the system phase space – and resulting

development – unpredictably; sometimes to a great extent,

sometimes not at all [18]. Although this fact can in some

cases be beneficial for evolvability [19], it renders analysis of

evolutionary steps in graph based embryogenies difficult.
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Therefore, we suggest an abstract evolutionary embryogeny

system based on vector field editing, where the use of a graph

structure to build a nonlinear system is omitted in favor of evolving

a system phase space directly. Note that the phase space represents

the space of all possible states of a system. Hence, phase space is

sometimes referred to as state space. We prefer to use the term

phase space for its unambiguity [20,21]. Our approach shifts the

use of a system’s phase space from pure visualization of its

characteristics (e.g. [22]) to an encoding of its features. The

advantage of this approach is that a phase space is a common

feature of all dynamic systems, independent of their implementa-

tion. We expect scientific findings to be transferable to other

systems with less effort than in previous models. Furthermore, the

effects of evolutionary change can be visualized and easily

understood, and features of graph represented systems, such as

different kinds of attractor dynamics in the system phase space, are

still available. Direct modification of the phase space can lead to

more predictable changes in system dynamics. Thus, we can

successfully evolve development toward desired patterns of cellular

differentiation using standard evolution strategies [23]. By

contrast, graph based approaches seem to require special attention

toward evolutionary operators and environmental cues for similar

tasks [24,25].

This paper is structured as follows: We will first describe how a

gene regulatory network can be replaced by its phase space. Then,

we will introduce vector field editing, a method for directly

changing features of phase spaces, and specify its usage in vector

field embryogeny. Further on, we will show how a spatial

hierarchy can be added to the framework, and how explicit

evolution of allometric changes can be investigated. We follow the

definition of allometry from a developmental biology perspective:

Allometry is ‘‘[…] a shift in the growth rates of different parts of

the organism relative to one another’’ [26]. Results from

experiments for cellular differentiation using vector field embry-

ogeny with and without hierarchy and direct evolution of

allometry are presented, and compared to a GRN based method.

We conclude with a discussion of these results.

Materials and Methods

From Gene Regulation to System Phase Space
Biological development is a process based on proteins; these

products of expressed genes constitute both building material and

control for creating an adult individual. We are interested in the

control aspect: some proteins, called Transcription Factors, possess

the ability to regulate the expression of genes by binding to the

respective promoter regions on the DNA and thereby influencing

their transcription processes. In this way, mutual interaction

between genes occurs by means of their products, which eventually

results in complex gene regulatory networks. GRNs are nonlinear

systems that create complex patterns of gene activation. Nonlinear

systems can typically be characterized by the following features

[20]:

1. multiple isolated equilibria

2. limit cycles

3. subharmonic, harmonic, or almost periodic oscillations

4. chaos

5. multiple modes of behavior

Note that according to Khalil [20], behavior in item 5 refers to

the set of dynamical features given in items one to four. Items 1

and 2 are abundant in the dynamics of gene regulatory networks.

For example, multiple isolated equilibria can account for cell

differentiation in biological organisms [27], and many different

inter- and intra-cellular processes are represented by limit cycles

[28], where probably the most prominent representatives are the

circadian rhythms [29,30]. Item 5 is the most prominent feature of

life; the ability to adapt to different external conditions by

switching between modes of operation can be found in virtually all

organisms. Recently, it has been observed how a biological GRN

dynamically changes its modes of operation, when environmental

conditions are altered [31]. Items 3 and 4 are observed in

computational models for biological GRNs [32]. Under certain

conditions, simulated circadian clock genes exhibit chaotic and

birhythmic behavior. However, it is argued that the smallness of

the parameter range in which this occurs makes it unlikely to occur

in biology. Also, known arrhythmic biological mutants of the

circadian clocks seem to result from a severe structural change

in the underlying network, rather than from normal mode of

operation under certain environmental conditions [33].

In this light, the dynamic behavior of GRNs seems to account

for the flexibility and robustness of biological organisms.

Therefore, the most common approach to realize an artificial

system with these features is to model the interplay between a

number of genes to create regulatory networks. The natural

representation of these networks is a directed graph. Each node of

such a graph represents a state variable of the system, and the links

indicate modes of interaction between nodes with connection

weights and more or less complex activation functions. Standard

approaches toward evolving these networks are based on evolving

both, structure and weights of the networks (e.g. [34]).

In this contribution, we propose to shift evolutionary focus from

the structure and weights of the network to the dynamics that such

a network would create, i.e., to its system phase space. Figure 1

illustrates our approach: We enable mutation operators to directly

create and shape the system phase space (direct manipulation),

instead of doing so indirectly via graph manipulation. This allows

a more causal relationship between mutation and resulting

changes in system dynamics. Direct shaping of the phase space

is inspired by a method known as vector field editing [35] and will

be described in the following.

Direct Manipulation of the Phase Space
In computer graphics, the vector field editing method is used for

creating texture alignments and extracting analytical information

about given graphical representations of vector fields [35–37]. To

be able to apply this method to regulatory systems for artificial

embryogeny, the formulation of an artificial developmental system

must be viewed in an abstract way. The following considerations

are presented using a two-dimensional version of the system for

clarity and visualization purposes. Note that the method extends to

D dimensions by applying the respective D-dimensional geomet-

rical operations.

Consider an arbitrary simulated GRN inside a cell, with two

genes of interest (Figure 2). We denote the state (i.e., activation

level) of these two genes by x1 and x2 respectively, and together as

the vector X~(x1,x2). The temporal behavior of any deterministic

simulation of a regulatory network containing these two genes can

now be described with respect to X by the differential equation

dX=dt~F(X,l,t), where F is a vector field and l is a vector of

parameters. The time dependency of F can result from different

external influences: For example, a change in environmental

conditions could be sensed by the cell and induce a different mode

of operation, or a communication signal, such as a diffusing agent

from neighboring cells, could alter the dynamics of a cell’s GRN.

Investigating these alterations of phase spaces during development

is an exciting task. However, in this paper, we will focus on isolated

Vector Field Embryogeny
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cells in constant environmental conditions, such that F~F(X,l).
Hence, F describes a time independent, two dimensional vector

for each system state X, which represents the direction and

magnitude of change in time, whenever the system reaches the

state X. An example vector field and a possible resulting system

trajectory are given in Figure 3. This kind of representation is

known as the phase space plot of a system [21].

Vector field editing relies on creating and changing a vector

field by superposition and adaptation of basic field elements

Ei(X,li). The vector field for any system state X is then given by

the superposition of these elements:

F(X,l)~
X

i

Ei(X,li): ð1Þ

To employ vector field editing for control of artificial develop-

ment, we need to define basic field elements that are suitable

to create a desired system phase space. Typical elements are

proposed in [35] and [36] and can be grouped into singular

Figure 2. Schematic representation of a GRN with two
observable system variables, e.g. one input and one output.
Observable variables have a dynamic behavior depending on the GRN
they are attached to.
doi:10.1371/journal.pone.0008177.g002

Figure 1. Two different approaches toward evolving control of development. The usual approach for evolving developmental processes
consists of manipulating a regulatory network, which then creates dynamical system properties that control the developmental process (upper
arrow). The approach presented here omits the network representation by directly manipulating the system phase space, i.e., the dynamic behavior
of the system, to evolve a control for development (lower arrow).
doi:10.1371/journal.pone.0008177.g001

Vector Field Embryogeny
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elements and regular elements. Singular elements are those which

create a singularity in the vector field (i.e., a source or a sink) while

regular elements do not contain a singularity in their description,

and thus generally change the vector field without creating

singularities. Two examples are depicted in Figure 4.

In our framework, we adopt the regular element formulation

given in [35] and use a simplified version of singular elements. The

regular element we use is called attachment element and is

depicted in the right panel of Figure 4. It creates a flow of

surrounding system states toward an attachment line at the center

of the phase space. The mathematical formulation to create such

an element, where the attachment line is oriented along an

arbitrary angle h [ ½0,2p� is given by

A(x1,x2)~
cos h

sin h

� �
{cP(x1,x2)

{ sin h

cos h

� �� �
: ð2Þ

Here, P(x1,x2)~{ sin h(x1{u1)z cos h(x2{u2) and c is a

parameter describing the speed with which the flow is attracted

to the line and U~(u1,u2) is the center position of the element.

Note that for negative c, system states will diverge from the line

instead of converging to it. To spatially limit the element’s

influence for superposition, this attachment element is multiplied

by a Gaussian kernel B(x1,x2) of width 2s and center U:

B(x1,x2)~e{((x1{u1)2z(x2{u2)2)=2s. Therefore, the complete for-

mulation of the attachment element is given by

VR(x1,x2)~B(x1,x2):A(x1,x2): ð3Þ

We create a singular element by applying

VS(x1,x2)~
(U{X)=s

(2=r{1=s):(U{X)

�
if rvs

if sƒrv2s:
ð4Þ

The variable r : ~ X{Uk k2 describes the distance of the system

state X to the center U of the singular element. The width of the

element is denoted by s. Formulation (4) is a coarse piecewise

linear approximation of V(x1,x2)~B(x1,x2):(U{X). We use it,

since it is more efficient in computer simulations.

A superposition of g field elements, each weighted by a factor ai,

yields an arbitrarily complex vector field, which can be interpreted

as system phase space:

F(x1,x2)~
Xg

i~1

aiVi(x1,x2), ð5Þ

where aiVi(x1,x2) corresponds to Ei(X,li) in Equation (1), with l
consisting of all Ui ,si,ai of all field elements, and additionally hi

and ci of the regular elements. Thus, the vector field described in

Equation (5) constitutes the right hand side of the differential

equation

dX

dt
~F(X,l), ð6Þ

which is integrated from t~0 to t~tmax to yield a trajectory of the

dynamic system.

Experimental Setup
The general setup. For our experiments, we set up a phase

space model in three dimensions, x, y and z, constrained to the

interval ½0,1� in each dimension. Thus, X~(x,y,z) in Equation (1).

This would correspond to a GRN where the state of three genes is

observable during developmental time.

We then perform the following steps:

Figure 4. Vector field embryogeny relies on basic field elements. Two basic field elements are employed: a singular element is depicted on
the left panel, and a regular element (attachment element) is depicted on the right panel. Point and arrow mark the center and center line of the
elements respectively.
doi:10.1371/journal.pone.0008177.g004

Figure 3. A two dimensional vector field can be interpreted as
system phase space. The vector field gives the magnitude and angle
of change of the system at every system state. A possible initial system
state and the system trajectory which would result from the vector field
are highlighted.
doi:10.1371/journal.pone.0008177.g003

Vector Field Embryogeny
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1. Determine initial states of these three variables for development

(in a biological context, initial values may result from

environmental signals or a maternal gradient).

2. Create a phase space in three dimensions, i.e., choose

Vi(x,y,z).

3. Use an evolution strategy to mutate the parameters l and

thereby change the vector field representation of the phase

space F(X,l).

4. For individual j, use the differential equation dXj=dt~Fj(Xj ,lj)
to create time courses of the corresponding three variables to

control its development.

5. Use the evolution strategy to select fit individuals for

reproduction and repeat steps 1 to 5 until a stop criterion is

met.

To investigate cellular differentiation, the system state X is

interpreted as the expression level of three genes in a certain cell of

an individual. The cells that belong to the same individual share

the same phase space, but have different initializations of x and y.

We define z to correspond to the cell type and initialize it at

z0~0:5 for all cells, representing a non-differentiated state. The

cell’s environmental information is encoded in x and y and can be

interpreted as maternal factors, similar to those found in the early

Drosophila embryo [38]. Cells do not divide or interact; note

however that both mechanisms would be possible to include in the

framework (see Discussion). For visualization, cells are positioned

on a 2D lattice, where the coordinate of a cell is chosen according

to its initial state of the genes x and y. Two different resolutions are

used for experiments: 262 and 464 cells. Therefore, x [ f0,1g
and y [ f0,1g, or x [ f0,0:33,0:67,1g and y [ f0,0:33,0:67,1g for

the respective experiments.

The phase space of an individual is evolved by changing the key

parameters of a fixed number of field elements. These key

parameters for singular elements are U~(u1,u2,u3), a, and s. U
represents the position of the element in 3D space, a is its strength

and s its width (see field element description above). For an

attachment element, three additional parameters are encoded: h,

w, and c. h and w are the two angles describing the direction of the

element in 3D space, and c is the relative speed of attachment (see

Equation (2)). The resulting system equations are solved for each

cell by a Runge-Kutta method of order 4. The maximum

simulation time is set to tmax~500s, with a step width of 0:25s and

8 sub-iterations per step. We expect system states to have reached

a stable state before the simulation time reaches 500 seconds.

However, if this is not the case, solutions are not penalized. In fact,

our simulation of allometry relies on system states being in a

transient state at tallo
max (see Experiments 2 and 4 for details).

Simulation is terminated when either the maximum time tmax is

exceeded or when the system state does not vary more than

~10{12 in two consecutive steps. A standard evolution strategy

[23] is employed, with population sizes of 15 and 100 for parent

and offspring population respectively, with a single strategy

parameter with step size adaptation. A more sophisticated

evolution strategy could be applied ([39] gives a comprehensive

overview), however, the standard version is very robust and its

performance is sufficient for our purpose. The initial strategy

parameter is chosen to be sinit~0:1. The fitness F is calculated by

taking the squared distance between the cell types of the n cells

belonging to an individual after development, and a given target

vector r: F~
P

i (zi{ri)
2. Therefore, the task is a minimization

task, and optimal fitness is reached if F~0. Note that for the

experiments presented in the following, the maximum value for F
is the number of simulated trajectories, i.e., 4 for the 262 and 16 for

the 464 runs since both, ri and zi [ f0,1g. Twenty evolutionary

runs are performed per experiment.

Note also, that the adaptation of the framework to a specific

research problem is basically similar to setting up a graph based

method. The fundamental difference lies in the evolution of the

system: while both approaches possess the ability to represent

complex phase spaces, vector field embryogeny creates a more

causal relation between mutation strength and phase space

change. For the evolution strategy we use, which employs

normally distributed mutations, we can expect the aforementioned

causality to improve evolvability. Apart from evolvability, the

simplicity of a representation is important for analysis and

understanding. We believe that a spatial illustration in up to

three dimensions of dynamic system properties, and especially of

mutational changes in dynamics, is more intuitive than inferring

system behavior changes from graph structure changes. Note

that this does not necessarily decouple our observations from

regulatory networks or biology: we merely investigate evolution of

dynamical behavior on a systemic level, where both, regulatory

mechanisms and evolutionary processes, are modeled abstractly,

and thereby provide a different point of view on their respective

biological counterparts.

For comparison, we employ a GRN model for the same

evolutionary tasks. The model we choose as an example for GRN

based approaches is described in detail in [34]. Briefly, in this

model, cellular activity is controlled by a genome stored inside a

virtual DNA (vDNA), of which an identical copy is available for

translation to all cells in an individual. This genome consists of

regulatory subunits (RUs) and structural subunits (SUs), which are

initially lined up in a random order. A functional unit of this

vDNA, called a gene, is composed of a group of SUs and its

preceding RUs. The SUs encode rules for the production of

transcription factors, while the RUs determine whether a gene is

active or not. The transcription factors encoded in a gene will be

produced only if the gene is active. Both RUs and SUs are

represented by a set of double precision values which are evolved

using the evolution strategy. During simulation of dynamics, the

vDNA is translated to produce transcription factor concentrations.

The rate of production is influenced by the RUs, which evaluate

the concentration of other transcription factors to determine an

activation value for a gene with which the production rates of gene

products are scaled. Thus, genetic interaction yields a regulatory

network.

As indicated in the introduction, it is difficult to define a

reference GRN model. Therefore, our choice of model is primarily

based on the experience of the authors using it, and not on an

assumed superiority to other GRN based approaches. However,

the model has several key characteristics that can be found in most

evolutionary development models, and therefore renders it a good

candidate for comparison. These characteristics are: ability to

mutate structure and interaction strength of the genes, gene

duplication and transposition for complexification and modular-

ization, possibility of feedback loops and signal decay, and

dynamical operon structure (i.e., several structural units can be

controlled by the same regulatory units). The model has been

shown to be suitable for several different evolutionary develop-

ment tasks ([15,34,40]).

For the GRN model, we choose the following experimental

setup, and also perform 20 runs per experiment (see [34] for

details): A genome size of 20 initial regulatory units and 20 initial

structural units is employed. These are empirical values which we

have used in various simulations and consider suitable for the

given task. Note that through duplication, the number of units can

be adapted by the evolutionary process. Two constant pre-diffused

Vector Field Embryogeny
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gradients with linear distributions along the two axes are defined,

which represent the x- and y-coordinate of the experiment. Cells

are positioned on the x-y-plane in the same manner as in the phase

space experiments. Cells do not communicate, i.e., signals do not

diffuse in space. The concentration of the first genetically created

transcription factor, i.e., the activity of one gene, in each cell is

used for fitness evaluation, following the fitness function given

above. This setup creates a task for the GRN based system, which

is comparable to that of the vector field embryogeny. From

experience with the GRN based system we know that good

solutions are often lost through mutations. Also, the standard

selection pressure is usually too high and yields early convergence

Figure 6. Results from the differentiation experiment with 16 cells. The ‘H’-target pattern and the results from the different setups are
presented. The results of the reference setup, the allometry setup and two hierarchy setups (pre-defined and evolving weak symmetry) are depicted,
as well as the result of the respective GRN based approach.
doi:10.1371/journal.pone.0008177.g006

Figure 5. Two hierarchical levels of development. Upper panel: four cells are initialized with cell type z0~0:5 and (x,y) [ 0,1f g. In the 2D
representations, z-positions are mapped onto the x{y plane according to the cells’ initial states (i.e., the lower left square gives the z-value for a cell
with (x0,y0)~(0,0), the lower right square gives the z-value for a cell with (x0,y0)~(0,1) and so on). State trajectories in the phase space are given.
After the system states of the first stage have reached their final position in phase space, their z-values mark the initial cell type of the four respective
cells in the second, fine grained level (lower panel). These are initialized with (x,y) [ 0,1f g again for each coarse level cell. Note the symmetric
coordinates in the second level (see also Figure 7).
doi:10.1371/journal.pone.0008177.g005

Vector Field Embryogeny

PLoS ONE | www.plosone.org 6 December 2009 | Volume 4 | Issue 12 | e8177



to local optima. Therefore, it is necessary to slightly deviate from

the standard evolution strategy employed in the vector field

embryogeny framework, to achieve comparable results: Firstly,

three elitists [23] are employed in the evolution, i.e., the three best

individuals of a generation are carried over to the next generation

without mutation. Secondly, parents population size is increased to

40 to reduce selection pressure. Finally, the 464 cells task is run

for 200 instead of 100 generations.

The allometry setup. Evolutionary changes in biological

development are either spatial or temporal [26]. The temporal

aspect has not been given explicit attention in the artificial

development community, apart from defining intermediate or final

stages of developmental processes, after a defined number of

time steps [5]. It has even been argued that the temporal aspect

can be neglected in developmental systems by replacing the

developmental mapping with a CPPN (Compositional Pattern

Producing Network) [41], a feed forward artificial neural net-

work like structure with special activation functions. In biology,

the significance of developmental time for evolution has long

been recognized and widely studied. Time in self-organization

processes, particularly in spatial pattern formation, is known

to play an important role, see for example [42,43]. We will

briefly describe the biological point of view on a system feature

Figure 7. Non-symmetrical and symmetrical setup of the
experiments. Explicitly changing the coordinates of the initial state
of a fine grained level allows exploitation of symmetry. The upper panel
shows the resulting final cell-type distribution from the experiment
presented in Figure 5, if the weak symmetry constraint is not employed.
The lower panel shows the same result using a weak symmetry
constraint.
doi:10.1371/journal.pone.0008177.g007

Figure 8. Results from the differentiation experiment, summarized in 6 plots. Experimental setups with different numbers (two, four, and
six) and types (singular and regular) of basic field elements are compared. The experiments were conducted using three different target patterns:
‘one point’ (1), ‘half’ (2), and ‘xor’ (3).
doi:10.1371/journal.pone.0008177.g008

Vector Field Embryogeny
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called allometry, and elaborate its implications for vector field

embryogeny.

Examples of time-dependent processes that are considered to be

advantageous for the progress of evolution in biology are:

allometry and heterochrony (see e.g. [44–47]). We are interested

in the effect of allometry and will therefore focus on its description.

Allometry occurs when different parts of an organism grow

at different rates in distinct species [26]. An example can be

borrowed from Wolpert [48]: the central toe of a horse grows at a

rate 1.4 times that of lateral toes. This allowed for evolutionary

adaptation by formation of the typical shape of the horse hoof,

originating from ancestral multi-toe feet. In this example, the size

of a toe can be seen abstractly as a variable in the phase space of

hoof development. In this light, toe development can be seen as a

transient process. At a certain point in developmental time, the

outcome of this process (i.e., the relative size of the toes) is a result

of the evolved rates of change of the toe-size variable, achieved by

a scaling of the relative speed of system dynamics of the toes.

Therefore, allometry can be seen as a means to evolutionarily

change the transient behavior of several microscopic parts of a

system to influence its final macroscopic shape. An interesting

question for artificial embryogeny frameworks would be: What are

the consequences of allowing for direct evolution of the rate of

cellular processes?

Figure 9. The concluding experiment of the differentiation
task. Two regular elements and two singular elements are combined,
and applied to the four target patterns: ‘one point’ (1), ‘half’ (2), ‘xor’ (3),
and ‘random’ (4). For comparison, the performance of a GRN based
approach for the ‘xor’ target pattern is shown on the rightmost panel
(3*) with similar evolutionary setup (see text for details).
doi:10.1371/journal.pone.0008177.g009

Figure 10. Final cell-type distributions of successful individuals. Upper panel: The ‘xor’ pattern result and the corresponding evolved phase
space trajectories for a run using two regular and two singular elements. Lower panel: The ‘H’ target pattern result of the best run using the reference
setup, with the corresponding phase space trajectories.
doi:10.1371/journal.pone.0008177.g010
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The framework described above allows us to investigate this

question. We can include allometry by evolving a speed factor for

every cell-state X, which scales the speed of the system state on its

trajectory through the 3D phase space. Thus, in different

individuals, X could reach different states in finite time, even if

the phase space would be exactly the same. In practice, we encode

n additional allometry variables, ni,i [ f1, . . . ,ng, which are speed

factors of the n cells in an individual. These variables lie in the

interval ½0,1�, and are used to scale tmax for the integration of

Equation (6), i.e., tallo
max,i~ni

:tmax for the i-th cell, representing

cellular phase space speed.

The spatial hierarchy setup. During biological embry-

ogeny, organisms go through a phase of hierarchical structuring

[26]. A spatial hierarchy develops over time, such that early signals

in the embryo create a coarse structuring, while later signals are

used to create more and more details of the final morphology.

Doursat [49] has used such a hierarchy to create spatial

differentiation during an artificial growth process. We show that

it is possible to integrate a similar mechanism in vector field

embryogeny.

Consider our example above, with a three dimensional phase

space n~3, X~(x,y,z), where z gives the cell type and x and y the

variables which carry initial conditions. Let us assume that we

simulate four cells of an individual such that four trajectories,

X0,X1,X2 and X3 will be simulated in the phase space, with

initial conditions (x0,y0,z0)0~(0,0,0:5), (x0,y0,z0)1~(0,1,0:5),
(x0,y0,z0)2~(1,0,0:5) and (x0,y0,z0)3~(1,1,0:5), i.e., the four

corners of the x-y-plane at z~0:5. The common phase space

represents the common genetic control of the cells of an individual.

The implementation of spatial hierarchy in this three dimensional

vector field embryogeny can be based on a subsequent subdivision

of initial system positions on the x-y-plane, where each system

state X has the ability to divide into four ‘daughter’-system states

to constitute the next hierarchical stage. Thus, if the initial stage

consists of four initial system states, the second stage will contain

16 and the n-th stage 4n system trajectories. Each hierarchical

stage has its own phase space, with own evolving field elements.

When a system state is subdivided, its daughters are initialized

such that the ‘cell type’ variable, i.e., their z positions in phase

space, are equal to the final ‘cell type’ of the mother cell, while x
and y are chosen to be the corners of the x-y-plane again in the

phase space of the respective hierarchical stage (see Figure 5).

Since one hierarchical stage has only one phase space, all cells

belonging to one stage share the same phase space. In approaches

using multiple stages of hierarchy, this allows a reduction in

parameters: if a field element can be described by v variables, and

g elements are used in each of the s stages, the total number of

variables to describe one individual solution is s:v:g, while the

number of cells that can be described with this setup amounts

to 4s.

This setup also allows an explicit integration of weak symmetry

constraints, i.e., for symmetry with variation. The right panel of

Figure 6 shows an example of a lateral symmetric target pattern.

The left half of the target can be reproduced by the same

mechanism which creates the right half, if the underlying

coordinate system is mirrored. Let the initialization of the coarse

Figure 11. An evolutionary perspective on phenotypes. The best phenotypes throughout an evolutionary run of the allometry experiment are
depicted for every fifth generation from generation five to 100. It is visible how evolution optimizes phenotypes toward the desired target shape.
doi:10.1371/journal.pone.0008177.g011
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stage system be x0 [ f0,1g and y0 [ f0,1g, and z0~0:5, i.e., one

cell in each corner of the x-y-plane, each with the same type, as

depicted in Figure 5. The first stage of development yields two

pairs of cells, each consisting of system states that reach the same

type z during development (Figure 5, upper panel on the right).

Accordingly, the four trajectories of the next stage for each cell

pair will start at the same height z. To illustrate the symmetry in

the resulting cell states (Figure 5, lower panel on the right), let us

consider Figure 7: since the x and y coordinates are initialized

equally, the fine grained solutions would be identical for those cells

that have reached equal z during the first stage (Figure 7 upper

panel). If the initial x coordinates are mirrored however, the

solution will be symmetrical (Figure 7 lower right panel and

Figure 5, lower panel). Note that perfect symmetry is only

facilitated by this formulation, but not enforced: if system states in

the first hierarchical stage converge to z values that differ between

left and right, the initial states for the second hierarchical stage are

distinct and can therefore yield different trajectories with different

end points, which eventually results in non-symmetric patterns.

Hence, in this setup we adopt the term weak symmetry constraints.

Results

Experiment 1: Cellular Differentiation
The first experiments show the feasibility of vector field

embryogeny to evolve cellular differentiation. The possibility to

generate an arbitrary cellular distribution in a 262 cell grid is

investigated. To this end, three target patterns are defined: ‘one

point’, ‘half’, and ‘xor’ (see Figure 8). Note that for the trivial

solution of zi~0:5, i.e., no movement in phase space, a fitness value

of F~1 would be the result for all targets. We denote fitness values

below F~0:0025 as optimal. The experiments investigate the

influence of field element type and field element number on the

evolvability of the system: we first perform evolutionary runs that

employ singular elements or regular elements exclusively. The

number of elements in these experiments is varied between 2 and 6.

Figure 8 gives the results of the experiment after 100

evolutionary generations. For the target patterns ‘one point’ and

‘half’, using 4 regular elements shows good performance, while for

the target pattern ‘xor’, using 6 singular elements yields the best

results. Interestingly, using singular elements only leads to early

convergence of the ‘one point’ and ‘half’ runs, while using

regular elements yields suboptimal performance for the ‘xor’ run.

Generally, using 6 regular elements yields evolutionary runs

without convergence after 100 generations, which can be seen in

the variance of the fitnesses. It seems that the exclusive strategies

with one type of field element only, are suitable for certain

characteristic differentiation targets only.

Therefore, we create a setup with 4 field elements in total,

where we combine two regular and two singular elements. Results

are shown in Figure 9: A high fitness for all target patterns is

achieved. The ‘one point’ and ‘half’ experiments are successful,

while the ‘xor’ experiment has 3 outliers apart from all other runs

reaching optimal solutions. In the rightmost column, results from

the GRN-based approach toward the ‘xor’ target pattern are

shown. Additionally, results from a random target pattern run,

Figure 12. An evolutionary perspective on phase spaces. The phase space trajectories of the individuals given in Figure 11 are depicted. Both,
the cellular differentiation toward attractors, as well as the changes of attractor positions can be traced throughout evolution.
doi:10.1371/journal.pone.0008177.g012
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using the same setup are presented. Each evolutionary run has a

target consisting of four values independently drawn from a

uniform distribution in the interval ½0,1�. To visualize phase space

trajectories, the upper panel of Figure 10 depicts trajectories of a

successful individual of the ‘xor’ run and its final differentiation

pattern.

These experiments show the feasibility of the vector field

embryogeny approach to cellular differentiation tasks while on

average, the GRN approach converges to lower quality solutions

for the ‘xor’ target. The setup is now changed to a more complex

task in a 464 grid where the ‘H’ target pattern is used (see Figure 6,

upper right panel). Note again, that for the trivial solution of

zi~0:5, i.e., no movement in phase space, a fitness value of F~4
would be the result for all targets. We denote fitness values below

F~0:01 as optimal. In these experiments, the number of field

elements is increased to 4 regular and 4 singular elements per

experiment. Results are depicted in the leftmost column of the left

panel of Figure 6. While no run reaches global optimum, the best

individual’s phenotype resembles the target and is shown in the

lower panel of Figure 10, together with its trajectories in the phase

space. In the following, we will refer to this experimental setup as

the reference setup.

The rightmost panel of Figure 6 gives the performance of the

GRN approach toward solving the same problem. Clearly, the

GRN method is not able to generate the given target, despite the

fact that twice the number of evolutionary generations are

available. The mean fitness has a magnitude comparable to that

of the two worst reference setup runs.

Experiment 2: Evolving Differentiation with and without
Allometry

To investigate whether allometry can have a positive effect on

the evolution of phase spaces, we employ the allometry setup

described above. Note that due to the initialization of the cells at

z~0:5, a target consisting of ones and zeros cannot be reached

trivially by optimizing the allometry variables only, e.g. through

setting ni to 0 for some cells, and to 1 for the remaining ones.

Column 2 in the left panel of Figure 6 shows a significant

increase in the performance of the system, with a mean fitness

0.55 and smaller variance than in the reference setup. For a

thorough analysis, we now concentrate on the most successful

run with allometry. We depict phenotypes for generations 5

to 100 in steps of 5 (Figure 11). The corresponding system

trajectories are given in Figure 12. The distribution of the

according allometry variables ni of the best individuals

throughout evolution is given in Figure 13. The system seems

to have one attractor for all points throughout the first

generations. Around generation 35, a new, lower (i.e., zv0:5)

attractor is found. Prior to that, all distinct cell type- (i.e., z-)

values were resulting from allometric scaling on the way to the

upper attractor, i.e., by cells being in a transient state. After

generation 35, the system settles for this configuration while

optimizing the z-position of the new attractor. A third attractor

is found around generation 50, which yields the basis vector field

setup for the final solution. Until generation 100 is reached, the

positions of these three attractors are optimized to yield a perfect

solution. In the final individual, all cells have found suitable

Figure 13. An evolutionary perspective on allometry. The allometry variables ni belonging to the individuals given in Figure 11 show a
heterogeneity throughout evolution.
doi:10.1371/journal.pone.0008177.g013
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trajectories. Additionally, we investigate the role of allometry in

the developmental process of the evolving individuals: we

artificially switch off allometry by setting all ni to 1 and repeat

development for the best individuals of each generation

throughout the evolutionary run (Figure 14). Interestingly, time

plays no role for the development of an individual belonging to

later generations. Indeed, after generation 60, the phenotypes of

the original evolutionary run and the non-allometry run are the

same (compare Figures 11 and 14). We investigated this feature

in all 20 runs of the experiment and found that this holds only for

the best run; all other runs produce individuals that depend on

allometry. Therefore, the question remains whether the

evolutionary success of the best run is directly linked to this

feature.

Experiment 3: Evolving Differentiation with a Two Stage
Spatial Hierarchy

To investigate the influence of spatial hierarchy, we first switch

off allometry. In addition, we allow for weak symmetrical

boundary conditions (see Materials and Methods section) by

choosing the coordinate system according to the lower panel on

the right of Figure 7. The second hierarchy experiment uses a

formulation that allows free evolution of symmetry, by encoding

eight additional variables to be evolved. For each first stage cell,

two of these variables (g1,g2) are used to determine whether the

coordinate system for the respective second stage is flipped

horizontally and vertically (g1v0:5 and g2v0:5, respectively).

The number of field elements is set to 8 in total, i.e., 4 for the first

and 4 for the second stage. A combination of two regular elements

and two singular elements in each stage is used.

Both approaches perform significantly better than the reference

setup, reaching a mean fitness of about 0.6 and 0.4 respectively

(see Figure 6, panels 3 and 4). In Figures 15 and 16, we depict the

evolution of the best individual’s phenotypes coarse and fine

grained stages in the symmetrical boundary conditions run, from

generation 5 to 100 in steps of 5. It is visible how evolution finds

symmetric solutions in the coarse stage and then uses this pre-

structuring in the second stage to build a perfect solution to the

target matching problem. Note that asymmetric solutions are

possible even though the symmetry constraint is used (generation

25) and how a symmetric solution can still be reached in the

second stage even if the first stage is not symmetric (generation 60).

Experiment 4: Evolving Differentiation with Hierarchy
and Allometry

The following experiments use a combination of hierarchy and

allometry. We investigate three different experimental setups:

using allometry on the first hierarchical stage only, using allometry

on the second hierarchical stage only, and using allometry on both

hierarchical stages. For these experiments, the weak symmetrical

boundary conditions apply.

The results for the three different setups are depicted in

Figure 17. We can see that hierarchy combined with allometry on

both stages reaches the optimal solution with only few outliers.

Figure 14. An evolutionary perspective on modified phenotypes. The phenotypes throughout evolution are depicted, where genotype is
taken from the individuals given in Figure 11 and allometry is switched off. The final individual is allometry-independent after evolution.
doi:10.1371/journal.pone.0008177.g014
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Using allometry on the second stage only does not improve

performance significantly. Interestingly, using allometry explicitly

on the first stage gives exceptionally good results. Optimal

solutions are found in 17 out of 20 runs.

Discussion

We will first discuss the results of the experiments and conclude

with a general discussion on the framework. The cellular

differentiation experiments show the necessity of qualitatively

different kinds of basic field elements (i.e., singular and regular

elements) to achieve sufficient flexibility to solve the differentiation

problems satisfactorily. The reference setup reaches a limit when it

comes to the ‘H’ target pattern. Apart from investigating other

basic field elements, many mechanisms could be used to augment

the basic framework. We investigated allometry for the ‘H’ target

pattern, and found that it improves evolutionary performance

significantly. The question remains however, whether the

allometry setup creates a ‘shortcut’ for the solution of the problem,

i.e., that the better performance stems mostly from directly

optimizing the 16 ni-values and thereby rendering the evolution of

the phase space trivial. One trivial (and sub-optimal) solution could

be such, that the phase space consists of a single point attractor at

z = 1, which attracts all cell states. If now ni of the 6 cells in the

interspace of the ‘H’ shape evolve to be 0, the interspace would

remain at initialization level z~0:5. However, this would yield a

fitness F~1:5, a value which is higher than the fitness reached in

all but one evolutionary runs. Another seemingly simple solution

would be a phase space that attracts all cells to a phase space

trajectory which reaches z~1 at one time and z~0 at another

time, and then tuning ni of all cells such that they stop at these two

points. However, considering the basic elements we used, and the

initial positioning of cell states, creating such a phase space would

be extremely difficult, since the trajectories would have to cross

their plane of initialization at z~0:5.

The analysis of the trajectories throughout evolution shows

nicely how the phase space evolves to accomplish the task. It is

interesting to find a solution independent of allometry, although

the evolutionary run has this feature enabled. Since allometry

plays a role in the individuals in early generations, it has an effect

on the course of evolution, yielding an evolutionary path to the

optimal solution, which without allometry was not found in any of

the reference evolutionary runs we have performed. Future work

will analyze this influence in more detail.

Formulating the system hierarchically yields an insight into how

a strategy might look like, with which to tackle more complex

problems using vector field embryogeny. The weak symmetry

constraints and evolving symmetry experiments have significantly

improved performance for the given task, although the evolving

symmetry runs yield a relatively large variance in quality. A

remaining research question is the definition of the weak

symmetry, especially when more than two stages are employed:

should the symmetry constraint be inherited from the coarse stage

to the next stage? Should it be redefined for each stage and each

quadruple of cells? If so, how can we overcome the exponential

increase in parameters to encode symmetry information?

Figure 15. The evolution of the coarse stage phenotype in a 2-stage hierarchy experiment. Every fifth generation from generation five to
100 is depicted. See Figure 16 for the fine grained stage, note that both stages evolve simultaneously.
doi:10.1371/journal.pone.0008177.g015
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Combining the hierarchical framework with allometry yields

exceptionally good results. For allometry on the first stage, 85% of

the runs converge to an optimal solution, for allometry on the

second stage, only 55% converge to the optimum, and for

allometry on both stages, 80% converge. Especially the case of

using allometry on the first stage only is interesting, since the

performance is not significantly different from employing allom-

etry on both stages: it seems that if evolution has a more direct

control of the first stage values, the second stage does not need that

level of explicit control. If we use the same setup and evolve the

four cell types of the first stage explicitly by direct coding (i.e.,

encoding z1 to z4 directly in the chromosome), all runs converge to

the optimal solution (not shown). This finding motivates a setup

where several hierarchical stages are employed, and the explicity

of evolutionary control rises towards more coarse stages, such that

e.g. in the four cell stage, a direct coding could be used, in the 16

cell stage a vector field with allometry, and in a subsequent, 64 cell

stage a vector field only.

An interesting future research work for vector field editing in

general would be to identify more useful basic elements, and

assemble an element-library, possibly with grouping into different

element classes for different kinds of problems. Also it would be

interesting to research a complete field representation, i.e., a set of

field elements that represent an arbitrary field, such that an

assessable representation error exists if parts of the representation

are neglected, in a way comparable to Fourier or Taylor series.

Throughout this contribution, we motivated vector field editing

as an abstraction of biological GRNs. It is straightforward to map

a network via its phase space onto a vector field. However, the

opposite direction is difficult to accomplish: A given vector field in

general can not easily be converted to a graph. This is mainly due

to the fact that desired dynamics cannot be generated easily, e.g.,

by a superposition of graph-features. Therefore, the basic field

elements of vector field editing are not to be seen as equivalent to

Figure 16. The evolution of the fine grained stage phenotype in a 2-stage hierarchy experiment. Every fifth generation from generation
five to 100 is depicted. See Figure 15 for the coarse stage, note that both stages evolve simultaneously.
doi:10.1371/journal.pone.0008177.g016

Figure 17. Results of experiments combining allometry and
hierarchy. Allometry is employed on the first stage only (resulting
mean fitness: 0.250), on the second stage only (resulting mean fitness:
0.882), and on both stages (resulting mean fitness: 0.178), respectively.
The plot shows how many of the 20 evolutionary runs reached
indicated fitnesses. Note that the first bin is scaled to a small size (0.0–
0.01) to account for the high quality of the solutions.
doi:10.1371/journal.pone.0008177.g017
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network motifs [50]. Note that the search for functional sub-units

of graphs that govern graph dynamics is still a debated topic [51].

Dynamics of GRNs account for many of the desirable features

of organisms, such as robustness and flexibility during embryo-

genesis, which both make species evolvable. Many intricate

regulatory interactions have been selected for in biology to create

this evolvability. However, the exact underlying processes and

driving forces are unknown. The concept of motifs has been

successful to reveal structural coherence in the composition of

biological regulatory networks. Still, the coupling between the

embedding of a motif in a graph structure and the resulting

changes of the dynamics remains unclear. The phase space

approach suggested in this work concentrates on the more abstract

level of the evolution of the dynamics of a regulatory system. It

neglects its conceivable structural realization. This kind of

explanatory level of dynamics combined with the analysis of

graphs could enable us to understand the mapping between graph

structure and phase space. We believe that this could hold the key

to further our understanding of the evolution and function of

biological regulatory networks.

To conclude, we have presented a novel approach toward

evolving dynamic systems for the control of artificial embryogeny

processes, which allows us to circumvent the problems generally

associated with the evolution of graph based embryogenies. We

have demonstrated the advantage of including advanced systemic

features, such as hierarchy and allometry into the framework. Our

experiments using the framework show that both hierarchy and

allometry can be beneficial for increasing evolvability of a

developmental system. A future work will be to more thoroughly

compare vector field embryogeny against graph driven develop-

mental systems, in terms of both, evolvability and computational

effort. The novelty of the approach necessitates the investigation of

a number of straight forward extensions to the system, e.g. the

allometry variables ni could be implemented using indirect coding,

by representing them via spline or polynomial approximation. In

this work, we have only considered static vector fields. When we

think of a time dependent vector field during development, many

parallels with biological systems can emerge; cellular communica-

tion for instance could be interpreted as a change in phase space

for a certain cell, depending on its current state and the state of the

surrounding cells. Also, the issue of complexification in evolution

can be investigated in several ways; an obvious way to complexify

a given phase space would consist of a gradual increase of its

number of basic field elements. Alternatively the dimensionality of

the phase space could increase stepwise throughout evolution, and

thereby allow new dynamics to appear. In this way, we believe that

vector field embryogeny not only represents an alternative for

evolving a dynamic system, but also provides a new perspective on

the evolution of developmental processes in general.
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