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Abstract

We present an audio-visual attention system for speech based

interaction with a humanoid robot where a tutor can teach vi-

sual properties/locations (e.g ”left”) and corresponding, arbi-

trary speech labels. The acoustic signal is segmented via the

attention system and speech labels are learned from a few repe-

titions of the label by the tutor. The attention system integrates

bottom-up stimulus driven saliency calculation (delay-and-sum

beamforming, adaptive noise level estimation) and top-down

modulation (spectral properties, segment length, movement and

interaction status of the robot). We evaluate the performance of

different aspects of the system based on a small dataset.

Index Terms: attention, audio-visual, interaction, speech

recognition, speech features

1. Introduction

Based on our previous work we developed a system which en-

ables our humanoid robot ASIMO to learn associations of rel-

ative position clusters (”left”, ”right”, ...) or object properties

(”small”, ...) with arbitrary speech labels (see [1, 2] for more

details). We use some predefined key phrases to trigger a learn-

ing session, e.g. ”Learn where this object is.”. Typically such

a learning session starts with the tutor entering the interaction

range of ASIMO and presenting an object. After triggering a

learning session the tutor presents an instance of the cluster to

be learned, e.g. by showing and moving an object in the left

field of view of ASIMO, while uttering the label he wants to as-

sociate to this cluster a few times (5-8). When the tutor keeps

silent for a few seconds the system terminates the learning ses-

sion. To evaluate what the system has learned the tutor presents

an object in one of the learned clusters and utters the associated

label. With nodding or shaking the head ASIMO indicates if the

visual and speech cluster do match.

The speech signal is solely captured by the microphones

mounted on the robots head. This required to extend the existing

visual attention system by a model for auditory attention. Many

approaches to improve the speech signal on robotic systems and

models of auditory attention exist, but to our knowledge none

of these was successfully integrated in a truly interactive system

[3, 4, 5]. Due to the unfavorable acoustic conditions on a mo-

bile robot basically all current robotic systems use a close-talk

microphone when interacting with a robot [6, 7, 8].

The following sections will describe the main building

blocks of the combined audio-visual attention system and the

online learning of speech labels. Finally we will present results

of sub-parts of our system on offline data and interpret them.

2. Audio-Visual Attention
Attention allows us to selectively concentrate on one aspect of

the environment while ignoring other things. Models of atten-

tion, auditory or visual, typically comprise a stimulus driven

bottom-up saliency stage and a top-down modulation to en-

hance or suppress certain types of stimuli [9, 10].

In the following we will only describe those parts of our

audio-visual attention system which are recruited to decide to

which auditory events ASIMO should listen, i.e. segment them

and transfer them to the recognition, and which to ignore (com-

pare Fig. 1). Details on the role the visual part of this system

plays in the organization of the behavior of ASIMO can be found

in [1].
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Figure 1: Overview on the attention model

In an interactive scenario with a long distance between the

speaker and the microphones on the robot a multitude of noise

signals overlay with the speech signal. Hereby especially the

noise generated by the robot plays an important role. It is

instationary and due to its proximity to the microphones in

the robot’s head easily attains signal levels above those of the

speech signal (see Fig. 2). This includes the noise generated by

its arm and leg movement but also the noise emanating from its

cooling fans mounted on its back, as head movements change

the relative position of the microphones to the fans.

2.1. Bottom-Up Saliency

In the bottom-up stage the contrast enhancement between the

environmental noise and the speech signal is mainly achieved

by reducing the background noise.

2.1.1. Modified Delay and Sum Beamformer

In a typical interaction ASIMO looks to the object presented by

the interactor. Hence one can assume that the speech signal is
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Figure 2: The same sound signal recorded during interaction

with ASIMO once with a headset (a) and once with ASIMO’s

ears (b). The interactor is uttering 3 times ”left”. The high

energy signal in (b) just before the first utterance is generated

by ASIMO raising his arm. In the headset recording (a) this

signal is barely visible. The dashed lines indicate the detected

speech segments.

always coming from the looking direction of ASIMO. Thereby

the Signal to Noise Ratio (SNR) strongly depends on the head

pan angle. When the head pan angle is small we use a delay

and sum beamformer steered to 0◦, i.e. we add the signals from

the left and right microphone. For head pan angles of more than

20◦ we only use the microphone farthest away from the fans.

In between the signals from the two microphones are mixed

dependent on the head angle (compare Fig. 1)

2.1.2. Adaptive Noise Level Estimation

For the noise estimation we adapted the Improved Minimum

Controlled Recursive Averaging (IMCRA) algorithm [11] by us-

ing a Gammatone filterbank for the transformation into the fre-

quency domain. The Gammatone filterbank constitutes a set of

band-pass filters modeling the properties of the human cochlea.

In the IMCRA algorithm the energy of the stationary parts of

the acoustic signal are estimated and combined with the current

signal energy to calculate an instantaneous speech probability

for each filter-bank channel.

The results of these contrast enhancement steps are de-

picted in Fig. 3 and constitute the bottom-up saliency signal.
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Figure 3: Visualization of the contrast enhancement for the sig-

nal shown in 2.b. In (a) the signal is shown after application of

the adaptive beamformer and transformation into the frequency

domain via the Gammatone filterbank. The result of the con-

trast enhancement, a frequency dependent speech probability,

is shown in (b). Dark colors indicate high probability.

2.2. Top-Down Modulation

In addition to speech also the instationary sounds produced by

the movements of ASIMO are still salient after the bottom-up

saliency calculation (compare Fig. 2 a and b and Fig. 3 b). To

suppress these additional top-down information is necessary to

modulate the bottom-up saliency.

2.2.1. Spectral Modulation

The first form of top-down information we use is the spectral

characteristics of the noise produced by ASIMO’s movements.

Arm and leg movement noise typically covers the speech sig-

nal for frequencies above 3.5 kHz. Additionally, leg movement

noise has more energy than the speech signal for frequencies

below 400 Hz . For the time being we only want to tune the au-

ditory attention to speech signals. Therefore, we have chosen a

frequency weighting of the bottom-up saliency which attenuates

signals below 400 Hz and above 3.5 kHz. To obtain the modu-

lated saliency signal the bottom-up saliency signal is multiplied

with the frequency weighting and summed over all frequency

channels. A threshold on this signal determines signal parts to

be salient and hence a possible start of a speech segment.

2.2.2. Ego-Motion Status

We also use the movement status of the robot to modulate the

attention. The responsiveness, i.e. the speech segment detection

threshold, of the attention system is varied depending on the

arm and leg speed. The current setting allows the interaction via

speech while ASIMO is moving its arms or makes small steps.

However, when it walks or in the brief but very noisy instant

when it starts raising the arm from the rest position it will only

detect speech when shouted at.

2.2.3. Interaction Status

Another very important top-down information we recruit is the

current interaction status of ASIMO which we determine based

on the visual part of the attention system. The visual part is

mainly bottom-up driven and based on the concept of proto-

objects, regions in the visual field that are formed by a com-

mon grouping feature as e.g. depth (see [12] for more details).

One class are proto-objects in its peri-personal range, i.e. very

close to the robot and covering a large amount of its field of

view. With these proto-objects ASIMO does interact. A sec-

ond class of proto-objects cover an inter-personal range (here

1 - 2 m away). Proto-objects in this range are assumed to be

due to a human in interaction range. When no proto-object is

present in the peri-personal or inter-personal space ASIMO as-

sumes that nobody is interacting with it and hence raises the

minimal activity threshold for its auditory attention. Currently

the threshold is raised up to a level where it is not able to detect

speech segments anymore and hence in non-interaction phases

voices of people standing in the background can be suppressed.

2.2.4. Minimal Segment Length

Most intruding sound events, e.g. slamming of a door, are rather

short. Therefore, we use a minimum segment length (110 ms)

as final top-down modulation factor. Activity in the modulated

saliency is accumulated for this time span. Only when it sur-

passes the activity threshold a speech segment is started. The

minimum length used is a trade off between the latency intro-

duced hereby in the overall system and the potential to reject

more erroneous segments. Due to the long reverberation time

in our robotics laboratory (τ60 = 810ms) the minimum seg-

ment length contributes only to a smaller extend to the overall

system performance.

The segmentation of the speech signal resulting from the

combination of the bottom-up saliency and the speech oriented

top-down modulation is visualized in Fig. 2b. As can be seen

the signal parts resulting from the arm movements do not trigger

the start of the segment.



Noise type fan noise arm noise leg noise

RASTA-PLP 32.4 35.2 40.2
HIST 56.3 71.8 70.0
RASTA-PLP +HIST 29.0 31.6 39.1

Table 1: Word error rates on TIDigits. Training was done with

fan noise added and tests were performed in this condition or

when noise from the robot’s arm or leg movements was added.

3. Acoustic Feature Extraction
The acoustic feature extraction is continuously running and the

segmentation obtained by the auditory saliency only gates these

features. As features we use a combination of RASTA-PLP fea-

tures [13] and the HIST features developed by ourselves (see

[14] for details).

HIST features comprise two hierarchical levels: The first

extracts local features and the second integrates them to more

complex features, spanning the whole frequency range. The ex-

traction of local features on the first level is performed via a 2D

filtering with a set of 8 receptive fields. They have been learned

using Independent Component Analysis on 3500 randomly se-

lected local 16 × 16 patches on spectrograms preprocessed via

a formant enhancement step using pre-emphasis and filtering

along the frequency axis. On the second level we learn 50 fil-

ters with Non-Negative Sparse Coding on the responses of the

filters of the first level. These filters span the whole frequency

range and 40ms in time. Delta (resp. double-delta) features

were computed. Finally, the dimensionality was reduced from

150 to 39 using Principal Component Analysis.

To simulate the conditions of our interactive scenario sig-

nals where convolved with a room impulse response measured

in our laboratory and noise recorded from ASIMO while not

moving was added for the learning of the features. As dataset

we used TiDigits. The results in Table 1 match with those pre-

sented in [14]: in their current development state HIST features

perform less well than RASTA-PLP features, but improve the

recognition performance when combined with the latter. This

improvement is observed in the matched case (noise recorded

on a resting robot) as well as when the noise added to the test

set was recorded when the robot moves his arms or legs.

4. Online Learning
The purpose of the previously detailed auditory attention system

is to enable online learning of visual clusters and corresponding

speech labels. Visual clusters can e.g. be regions in the relative

position space of the robot as ”left” or ”right” (see [12, 2] for

details).

The utterance of a predefined key-phrase triggers the learn-

ing. Within a session an object with the property to be labeled is

presented, and matching speech labels are uttered several times.

After a session has timed out, speech and the visual subsystem

in focus determine the novelty of the current session to exist-

ing clusters. This information is used to determine if a new

cluster/speech label has to be learned or if rather an existing

representation should be updated.

For learning and recognizing the speech labels we apply

Hidden Markov Models and the features described in Sec. 3.

Each speech cluster is modeled as an 8 state HMM with Bakis-

topology. According to the learning decision, either a new

speech model is learned or the best matching speech cluster

is updated. New speech clusters are initialized with the best

matching label model, and subsequently estimated using seg-

mental k-means training with the collected session samples. If

the target class in the teaching signal is already modeled, the

according speech cluster is updated with maximum a-posteriori

training.

During decoding we use a combined search space that

includes HMM-subgraphs of already acquired label models,

the above-mentioned predefined learning-criteria, and a generic

background model learned prior in interaction as described in

[15]. The latter equips our system with the ability to reject un-

known (Out Of Vocabulary (OOV)) utterances. Decoding re-

sults are accordingly split into commands used to trigger the

learning sessions and recognized labels.

5. Results

First we investigate the dependence of recognition performance

on the number of training samples presented in the learning

session. We recorded a small database where our interac-

tor was standing in our robotics laboratory (reverberation time

τ60 = 810ms) in front of the turned on but not moving robot

uttering 21 different words (e.g. ”left”, ”right”, ”top”, . . . ) each

20 times. Hence the recoding conditions were very close, but

due to the passive robot not identical, to the ones faced in the

interaction. As can be seen in Fig. 4 a from 6 training samples

on the performance is by far sufficient to allow for a smooth in-

teraction. The combination of RASTA-PLP and HIST shows a
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Figure 4: Word error rates when the training size was varied (a)

and when the segment boundaries were changed (b).

stronger dependency on the number of training samples. Each

Word Error Rate (WER) value represents the mean of a 10-fold

cross-validation. The bars indicate the minimum and maximum

value in each validation step. Reasons for the good recognition

scores we see are certainly the quite small vocabulary (≈ 20
words) and the fact that we train and test under the same condi-

tions. It is well known that such matched training has a much

larger effect than most preprocessing methods.

Next we want to evaluate the influence of the attention

mechanism, i.e. the segmentation of the speech signal, on sys-

tem performance. In the first test we simulated imperfect seg-

mentation with additional background noise present before and

after the actual speech signal. For doing so we randomly varied

the detected segment start and stop boundaries in the training

and test set by adding noise from a folded Normal distribution,

i.e. Y ∼ |N(0, σ2)|, with varying variances. To avoid cutting

off parts of the speech signal segments were only prolonged rel-

ative to the originally detected boundaries.

Fig. 4 b shows that the word error rates increase substan-

tially with increasing variance. The HIST features by them-

selves are much more susceptible to errors in the segmentation

(9.2% at σ = 0 versus 52.2% at σ = 0.4). The tests are based

on 10 training samples and again a 10-fold cross-validation. We

also varied the segments only in the test or only in the training

phase. In these tests we saw that alterations only in the testing

phase have the strongest impact. From this we conclude that the



arm noise leg noise

Segmentation noisy clean noisy clean

Rasta

Mean 2.6 1.4 64.5 12.0
Min-Max 1.0−5.7 0.5−2.4 49.0−74.3 9.0−16.2

Rasta-Hist

Mean 3.0 1.2 61.3 9.0
Min-Max 1.9−4.3 0.5−1.9 53.8−73.8 6.2−14.3

Table 2: Word error rates with motion noise added to the speech

signal (mean, min, and max of a 10-fold cross-validation on the

training set). The segmentation was either done on the noisy or

the clean signal.

learning algorithm can cope quite well with additional noise at

the beginning and end of the segment which can be due to the

averaging over 10 segments in the learning phase.

In the final test we investigated the impact of robot motion

noise on the performance, an important aspect in our interac-

tive scenario. We recorded another small dataset with our tu-

tor uttering the labels (10 repetitions each) while the robot was

turned off. To these recordings we added the noise generated

by the robot while moving its arms or legs (while ”stamping”

on the spot). The recording of another database was necessary

as recording the robots motions unavoidably also includes the

fan noise. Hence adding the motion noise to the first dataset

would result in twice the fan noise in the signal. We performed

two tests. One where the segmentation was based on the energy

and the spectral characteristics and thereby not taking the infor-

mation from the robot’s motion status into account. In the sec-

ond test we used the segmentation as obtained from the speech

signal prior to mixing with the noise but used the noisy signal

for the recognition. This situation simulates a correct segmenta-

tion of the robot’s motions. With these two tests we can discern

the influence of the spectral distortions due to the noise from

those resulting from the erroneous segmentation. For the cross-

validation we only altered the training set as the test set was

very small. As can be seen from Table 2 the spectral distor-

tions play a much smaller role than erroneous segmentations.

Furthermore, this test again validated that the combination of

RASTA-PLP features with HIST features, despite their rather

weaker performance in the previous tests, are better able to cope

with additional noise, not present in the training phase (compare

Table 1). However, due to the overall good performance when

only noise from the arms is present this effect is not significant.

The above results clearly demonstrate the importance of the

auditory attention system and the need for correct segmentation

of the audio stream.

6. Conclusion

We presented an audio-visual attention system applied to the

online learning of visual clusters and corresponding speech la-

bels. In contrast to other systems and our previous work [1] the

speech interaction is solely based on the microphones mounted

on ASIMO. To our best knowledge this is the first truly inter-

active robotic system without headset. Our attention system in-

tegrates different bottom-up and top-down cues. None of these

cues by themselves would be powerful enough but via integrat-

ing them we obtain a robust segmentation of the speech signal

allowing for online learning and recognition of the labels. We

evaluated different aspects of the system in regards to recogni-

tion performance. The results showed that erroneous segmenta-

tion strongly compromises system performance. Additionally,

we saw that the combination of RASTA-PLP and HIST features

is more susceptible to errors in the segmentation but on the other

hand, when good segementation is provided, it is able to reduce

recognition errors in noise. Hence, the attention system and the

HIST features complement each other very well.
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