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Alleviating Catastrophic Forgetting via Multi-Objective Learning

Yaochu Jin, Senior Member, IEEE, and Bernhard Sendhoff, Senior Member, IEEE

Abstract— Handling catastrophic forgetting is an interesting
and challenging topic in modeling the memory mechanisms
of the human brain using machine learning models. From
a more general point of view, catastrophic forgetting reflects
the stability-plasticity dilemma, which is one of the several
dilemmas to be addressed in learning systems: to retain the
stored memory while learning new information. Different to
the existing approaches, we introduce a Pareto-optimality based
multi-objective learning framework for alleviating catastrophic
learning. Compared to the single-objective learning methods,
multi-objective evolutionary learning with the help of pseudo-
rehearsal is shown to be more promising in dealing with the
stability-plasticity dilemma.

I. INTRODUCTION

Learning in the human brain is inherently a multi-objective
process [9], [27]. One well-known issue is the stability-
plasticity dilemma [3], which means that the learning system
should be able to learn new information efficiently without
completely forgetting what has been learned previously.
The stability versus plasticity dilemma is often known as
catastrophic forgetting in neural network based machine
learning [28].

Existing techniques for alleviating catastrophic forgetting
can largely be divided into three categories [16]. The methods
developed in the first category are mainly based on the
idea that catastrophic interferences in learning are caused by
distributed representation of the previously learning patterns
(referred to based patterns hereafter) and the new patterns
to be learned. Thus, to avoid catastrophic forgetting, semi-
distributed [14] or sparse representations instead of fully
distributed representations are used.

In the second category, all or part of the base patterns
are interleaved with the new patterns during learning of the
new patterns, which is known as direct rehearsal. A more
technically sound and biologically plausible variant of the di-
rect rehearsal method is the pseudo-rehearsal technique [32].
By pseudo-rehearsal, it is meant that the base patterns are
not directly re-learned together with the new patterns. By
contrast, random inputs are generated and fanned into the
trained neural network to get the corresponding outputs.
These patterns (termed pseudo-patterns), are then mixed with
the new patterns and are re-learned by the network. This
is biologically more plausible due to its similarity to the
memory consolidation mechanism in human brain [17]. A
problem that arises in pseudo-rehearsal is the runaway effect,
which means that it is possible that one or a few of the
base patterns monopolize the rehearsal process and the rest
base patterns are forgotten [29]. Several techniques have been
suggested to solve the runaway effect to a certain degree [29].
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A further step to go from the semi-distributed represen-
tations is to adopt a dual-network structure [15], [7] or
a complementary learning systems [9], which belong to
the third category. In these methods, one sub-structure is
responsible for learning new patterns, and the other for
consolidating the previously learned patterns. These dual-
network learning models are similar to the two separate areas
in the brain, namely, the hippocampus and the neocortex. In
some of the methods in the third category, pseudo-patterns
are also generated from one sub-structure to simulate the
interactions between the hippocampus and the neocortex in
the brain during memory consolidation.

One recent paper [34] employs a single-objective evolu-
tionary algorithm to evolve minimal catastrophic forgetting
neural systems by counting the number of remembered base
patterns when learning new patterns.

In all existing methods, catastrophic forgetting, which
reflects the trade-off between learning new patterns and
remembering base patterns, is addressed using learning meth-
ods by minimizing one single cost function. Since learning
the pseudo-patterns and learning the new patterns are very
likely competitive, it is natural to deal with the conflicting
objectives using the Pareto-based multi-objective learning,
which has received increasing attention in machine learning
over the past few years [25]. The Pareto-based approach
to machine learning has been shown to be advantageous
over the traditional learning algorithms in the following
aspects. First, the performance of learning algorithms can
be improved, probably due to the new error surface in-
troduced by multi-objective optimization [1]. Second, it is
possible to simultaneously generate multiple learning models
that account for different learning goals, e.g., accuracy and
complexity [20], [22], multiple error measures [12], inter-
pretability and accuracy [24]. Third, the multiple learning
models produced using multi-objective optimization are well
suited for constructing learning ensembles [2], [10], [22].
And finally, more information can be gained by analyzing
the Pareto front obtained in multi-objective machine learn-
ing. For example, the number of optimal clusters can be
obtained by analyzing the Pareto front in multi-objective
clustering [18]. It is also shown in [26] that by taking a closer
look at the Pareto front trading off between accuracy on the
training data and the complexity of the neural networks, we
are able to identify the neural networks on the Pareto front
that are most likely to generalize well on unseen data.

A related work is the learning with minimal degradation
(LMD) suggested in [5]. In the LMD, sequential learning of
n patterns is treated as the minimization of the error over
the n − 1 previously learned patterns subject to the perfect
encoding of the n-th pattern. The LMD has been extended
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in [6], where a priori interference prevention is introduced
in learning the n− 1 patterns in addition to the a posteriori
interference minimization. However, as indicated in [5], the
success of the LMD is very limited.

This paper presents our preliminary results on alleviat-
ing catastrophic forgetting using evolutionary multi-objective
learning. In the next section, a brief introduction to Pareto-
based multi-objective evolutionary optimization is provided.
Section III describes how avoiding catastrophic forgetting
can be formulated as an evolutionary multi-objective prob-
lem. Section IV describes the evolutionary multi-objective
algorithm for optimizing the parameters and structure of
feed-forward neural networks. It is shown that the multi-
objective learning framework is more elegant in addressing
the runaway effect in pseudo-rehearsal and more efficient in
tackling catastrophic forgetting. A summary of the paper is
provided in Section VI.

II. PARETO-BASED EVOLUTIONARY MULTI-OBJECTIVE

OPTIMIZATION

Without loss of generality, we discuss minimization prob-
lems. A multi-objective problem can be formulated as:

min F (X) = (f1(X), f2(X), ..., fm(X)), (1)

s.t. gj(X) ≤ 0, j = 1, ..., K. (2)

In the equations, fi(X) are the objectives, gj(X) are the
constraints, and X is the n-dimensional decision variable.
Usually, there is no single ideal solution X0 that minimizes
all objectives simultaneously. Instead, a finite or infinite
number of Pareto-optimal solutions can be obtained for the
multi-objective optimization problems. A solution X is said
to be Pareto-optimal if and only if there is no X ′ in the whole
search space such that for all i = 1, 2..., m, fi(X

′) ≤ fi(X).
In other words, there does not exist X ′ that dominates X .

Traditional multi-objective optimization algorithms com-
bines multiple objectives into a scalar objective function as
follows:

F =

m
∑

i=1

wifi, (3)

where wi ≥ is the weight for the i-th objective.
In the recent years, a number of multi-objective evolu-

tionary algorithms (MOEAs) have been proposed by incor-
porating the concept of Pareto-optimality [11]. The main
advantage of MOEAs is that they are able to achieve a set
of Pareto-optimal solutions in one single run. One major
development in MOEA research is the introduction of the
elitism strategy, which can be realized by maintaining a
second population (or archive) [31], or by combining parent
and offspring populations before selection [11]. The inclusion
of local search in multi-objective evolutionary algorithm has
also proved to be able to improve the performance effectively,
which can largely be attributed to the fact that local search
implicitly takes advantage of the regularity in the distribution
of the Pareto-optimal solutions [21]. It is advocated in [23]
that a more explicit way of exploiting the regularity in the
distribution of Pareto-optimal solutions is to build a model
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that captures the regularity, and then use this model to guide
the search. This idea has proved to be successful [37], where
a model composed of a deterministic part capturing the reg-
ularity and a probabilistic part describing the local dynamics
has been suggested to guide the evolutionary search. In this
work, we adopt a variant of the NSGA-II [11] for solving
the multi-objective machine learning problems.

III. MULTI-OBJECTIVE FORMULATION OF

PSEUDO-REHEARSAL

As discussed in the Introduction, rehearsal and pseudo-
rehearsal are two effective approaches to avoid catastrophic
forgetting, refer to Fig. 1 and Fig. 2, respectively, for an
illustration of rehearsal and pseudo-rehearsal.

One problem that arises in pseudo-rehearsal is the run-
away effect. We argue that the runaway effect can mainly
be attributed to two reasons. First, it is assumed that the
pseudo-patterns should be able to embody the main features
of the base patterns. However, when the inputs of the
pseudo-patterns are generated randomly, this assumption is
valid only if the learning model (e.g., a neural network)
is able to generalize perfectly, which is very unlikely for
high-dimensional problems. Second, conventional learning
is mostly single-objective. Thus, learning the new patterns
and learning the pseudo-patterns simultaneously may be
two conflicting targets. In other words, the learning of new
patterns might have negative influence on the learning of the
pseudo-patterns, and vice versa, as demonstrated in [29].

To address these problems, we have taken two measures.
The first measure we take is to check the similarity of the
random input patterns to the base patterns. We will show
in Section IV that pseudo-rehearsal works only if the input
of the pseudo-patterns are sufficiently similar to the base
patterns. In some of the experiments, we even assume that the
input of the base patterns is known, though the output must
be generated by the trained model. In addition, the multi-
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objective learning approach is adopted where the error on
the new patterns and the error on the pseudo-patterns are
used as two objectives. The pseudo-patterns are generated
from the neural network with the minimal error on the base-
patterns. Since the multi-objective approach is adopted, the
neural network with the minimal error on the base patterns
will survive through the generations, see Fig. 3. In this way,
the runaway effect can be avoided.

IV. EVOLUTIONARY SINGLE-OBJECTIVE AND

MULTI-OBJECTIVE NEURAL NETWORK LEARNING

In this work, single-objective (SO) learning and the multi-
objective (MO) learning are achieved with the help of an
evolutionary algorithm. Both the parameters (weights) and
the structure (connections) of the neural network are encoded
in the chromosome and are evolved during the learning. In
the SO learning, the mean square error (MSE) on the patterns
is used as the fitness function, while in the MO learning, the
MSE on base and new patterns are used as two separate
objectives.

A. Representation of the Neural Networks

A connection matrix and a weight matrix are employed to
describe the structure and the weights of the neural networks.
The connection matrix specifies the structure of the network,
whereas the weight matrix determines the strength of each
connection. Assume that a neural network consists of M
neurons in total, including the input and output neurons,
then the size of the connection matrix is M × (M + 1),
where an element in the last column indicates whether a
neuron is connected to a bias value. In the matrix, if element
cij , i = 1, ..., M, j = 1, ..., M equals 1, it means that there is
a connection between the i-th and j-th neuron and the signal
flows from neuron j to neuron i. If j = M + 1, it indicates
that there is a bias in the i-th neuron. Fig. 4 illustrates a
connection matrix and the corresponding network structure.
It can be seen from the figure that the network has two
input neurons, two hidden neurons, and one output neuron.
In addition, both hidden neurons have a bias.

The strength (weight) of the connections is defined in the
weight matrix. Accordingly, if cij in the connection matrix
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Fig. 4. A connection matrix and the corresponding network structure.

equals zero, the corresponding element in the weight matrix
(wij ) must be zero too.

B. Genetic Operators

A genetic algorithm is used for optimizing the structure
and weights of the neural networks. Binary coding is adopted
representing the neural network structure and real-valued
coding for encoding the weights. Five genetic operations
have been introduced in the evolution of the neural networks,
four of which mutate the connection matrix (neural network
structure) and one of which mutates the weights. The four
mutation operators are the insertion of a hidden neuron,
deletion of a hidden neuron, insertion of a connection,
and deletion of a connection. The probability of deleting a
connection between an input node Ii and a hidden node (Hj)
is

pcij
=

1

1 + wij

, (4)

and the probability of deleting a hidden node (Hj) is roughly
inversely proportional to the root of squared sum of the
weights fanning into the nodes:

pHj
=

1

1 +
√

∑n

i=1 w2
ij

, (5)

where n is the number of inputs. A Gaussian-type mutation
is applied to mutate the weight matrix:

wij(t + 1) = wij(t) + N(0, σ2), (6)

where σ is the standard deviation of the Gaussian noise.

C. Life-time learning

After mutation, an improved version of the Rprop algo-
rithm, Rprop+ [19] is employed to train the weights. This can
be seen as a kind of life-time learning within a generation.
Notice that in sequential learning, only the base patterns are
learned in the first phase. In the second phase, both the pseud-
patterns and the new patterns are learned. We will show that
the way to combine the pseudo-patterns and the new patterns
can have great influence on the results of the evolution. In the
following, we describe briefly the Rprop+ learning algorithm
used in this work.

Let wij denote the weight connecting neuron j and neuron
i, then the change of the weight (∆wij ) in each iteration is
as follows:

∆w
(t)
ij = −sign

(

∂E(t)

∂wij

)

· ∆
(t)
ij , (7)



where sign(·) is the sign function, ∆
(t)
ij ≥ 0 is the step-size,

which is initialized to ∆0 for all weights. The step-size for
each weight is adjusted as follows:

∆
(t)
ij =















ξ+ · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
> 0

ξ− · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0

∆
(t−1)
ij , otherwise

, (8)

where 0 < ξ− < 1 < ξ+. To prevent the step-sizes
from becoming too large or too small, they are bounded by
∆min ≤ ∆ij ≤ ∆max.

One exception must be considered. After the weights are
updated, it is necessary to check if the partial derivative
changes sign, which indicates that the previous step might
be too large and thus a minimum has been missed. In this
case, the previous weight change should be retracted:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0. (9)

Recall that if the weight change is retracted in the t-th
iteration, the ∂E(t)/∂wij should be set to 0.

In reference [19], it is argued that the condition for
weight retraction in equation (9) is not always reasonable.
The weight change should be retracted only if the partial
derivative changes sign and if the approximation error in-
creases. Thus, the weight retraction condition in equation
(9) is modified as follows:

∆w(t) = −∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0,

and E(t) > E(t−1). (10)

It has been shown on several benchmark problems in [19]
that the modified Rprop (termed as Rprop+ in [19]) exhibits
consistent better performance than the Rprop algorithm.

D. Selection

In SO learning, a tournament selection with a tournament
size of 4 is employed. The tournament selection is carried
out as follows. Four individuals are randomly chosen from
the offspring and then the best one among the 4 individuals
is chosen as the parent for the next generation. By best, we
mean in this work the solution with the minimal MSE on
the training samples. This process is repeated for P times,
where P is the population size.

A major difference between SO learning and MO learning
algorithms is the selection strategy. In the MO learning,
the parent and offspring individuals are combined and all
individuals are assigned a rank (ri) and a crowding dis-
tance (di) according to the non-dominated sorting and the
crowded distance sorting suggested in NSGA-II [11]. After
sorting, the crowded tournament selection is applied. In the
crowded tournament selection, two individuals are picked out
randomly, the one that wins the tournament is passed to the
next generation. A solution wins the tournament either if it
has a better rank, or if it has the same rank but a better
crowding distance. In this context, a lower rank is better and
a larger crowding distance is better. The readers are referred
to [11] for further details.

V. SIMULATION STUDIES

In this section, we compare the conventional single-
objective (SO) approach to pseudo-rehearsal and the pro-
posed multi-objective (MO) approach to alleviating catas-
trophic forgetting in neural network learning. Similar to the
experimental setups in the literature [33], the neural network
is required to memorize two sets of binary patterns. Both
base patterns and new patterns consist of 25 pairs of random
patterns with 10 inputs and 10 outputs.

The population size of the evolutionary algorithm is 100.
Between each generation, 50 iterations of learning using the
Rprop+ algorithm are performed. In the SO approach, the
cost function of the life-time learning is the MSE on the
patterns to be learned. For the Rprop+ algorithm, the step-
sizes are initialized to 0.01 and bounded between [0, 50]
during the adaptation, and ξ− = 0.5, ξ+ = 1.2. The maximal
number of hidden nodes is set to 7. In the MO approach, we
minimize either the MSE on the union of the base and the
new patterns in case of direct rehearsal, or the MSE on the
union of the pseudo-patterns and the new patterns in pseudo-
rehearsal. We will discuss this setup afterward since this
setup turns out to be not ideal for the MO learning approach.

In the evolution, an equal probability of 0.25 is imple-
mented for the five genetic operators, namely, node insertion,
node deletion, connection insertion and connection deletion,
and weight jogging. When new weights are inserted, they
are initialized randomly and uniformly in the interval of
[−0.2, 0.2]. Within the first 100 generations, the neural
network attempts to learn the base patterns. From the 101-
th to the 400-th generations, the new patterns are presented
to the neural network. The target is that the neural network
is able to remember the new patterns without forgetting the
base patterns. In our simulations, we use a tolerance level of
0.3 to judge if a pattern is memorized. That is to say, if a
desired output is 0, then the output of the neuron should be
smaller than 0.3. If the desired output is 1.0, then the neural
output should be larger than 0.7. If all 10 output neurons
satisfy the tolerance, we say that the pattern is memorized
correctly.

The first experiment we do is to show that catastrophic
forgetting does exist in evolutionary sequential learning, see
Fig. 5. Different to conventional learning methods, we notice
that the base patterns are completely forgotten within one
generation. This is due to the fact that within one generation,
the structure has been changed and 50 iterations of learning
are conducted. An interesting point is that it takes only 6
generations to memorize 21 of the 25 new patterns, while it
has taken 63 generations to learn the 25 base patterns. We
can assume that the neural network structure evolved for the
base patterns is also sub-optimal for the new patterns due to
the similarity in nature between the new and base patterns.
The network fails to memorize 4 of the new patterns,
probably due to the fact that there is inconsistency among
the new patterns, recalling that all the associative patterns
are generated randomly.

In a second experiment, we perform direct rehearsal using
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Fig. 6. Direct rehearsal. (a) SO approach, and (b) MO approach.

the SO approach and the MO approach. In this case, we
assume that the base patterns are still available for training
when learning the new patterns. Therefore, the base patterns
are simply combined with the new patterns for the neural
network to learn from generations 101 to generations 400.
The results are shown in Fig. 6. It can be seen that in the SO
approach, the network memorized 24 of the 25 base patterns,
and 21 of the 25 new patterns within approximately 250
generations. Similar results are observed in the MO approach.
On the other hand, we find that the learning speed is slowed
down greatly when the base patterns are learned together
with the new patterns. Recall, however, that direct rehearsal
is not always practical in machine learning and biologically
implausible.

Now let us investigate if pseudo-rehearsal is able to avoid
catastrophic forgetting. According to [32], we generate 25
pseudo-patterns by creating random inputs. From Fig. 7, we
see that neither the SO approach, nor the MO approach is
able to avoid catastrophic forgetting, since in both cases, the
base patterns are forgotten completely.

To improve the chance of a successful avoidance or
alleviation of catastrophic forgetting, we impose similarity
checking of the generated random inputs to those of the
base patterns. This operation is supported by the findings in
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Fig. 7. Pseudo-rehearsal using random inputs. (a) SO approach, and (b)
MO approach.

biology that in the brain, only relevant cells in the neocortex
are continuously activated by the hippocampal-neocortical
connections so that the connections of these activated cells
in separate regions of the neocortex are strengthened [4],
[36]. In this work, we assume that the inputs of the base
patterns are available for similarity checking. The similarity
checking here is functionally similar to the reverberating
neural networks suggested in [7], where the random inputs
are fed into an auto-associative sub-network so that the
random inputs will converge to the most similar base pattern
input.

The issue now is that how large the similarity should be
to ensure successful pseudo-rehearsal. In the simulations, we
find that for this experimental setup, a successful pseudo-
rehearsal can be observed in the MO approach only if
the input similarity between the pseudo-pattern inputs and
the base pattern inputs are larger than 0.8. Unfortunately,
catastrophic forgetting persists in the SO approach even if
the similarity is 1, which means that the inputs of the pseudo-
patterns are the same as the base pattern inputs. This is
actually obvious if we take a look at the learning procedure
in Fig. 8 (a), where the similarity is 0.8. It can be seen
that all base patterns are forgotten within one generation.
In this case, it is unrealistic to expect that pseudo-patterns
generated from the network can be of any help for learning
the base patterns. It should also be pointed out that an elitist
selection does not help in the SO approach. In the MO case,
the situation is quite different. Thanks to the multi-objective
selection criterion, the network with the minimal error on
the base patterns are maintained. Thus, the information on
the base patterns are transferred to other neural networks
gradually as the learning proceeds, refer to Fig. 8 (b), where
13 out of 25 base patterns, and 20 out of 25 new patterns
are memorized. The number of forgotten base patterns is
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Fig. 8. Pseudo-rehearsal using inputs similar to the base patterns. The
required similarity is equal to or larger than 0.8. (a) SO approach, and (b)
MO approach.

still quite high though, however, it should be noticed that
the number of new patterns need to be learned is also quite
high compared to the experimental setups in the literature.

The above observations are true under the assumption that
the inputs of the pseudo-patterns are generated once and
the outputs of the pseudo-patterns need to be re-calculated
in every generation using the neural network having the
minimal error on the base patterns.

Although the MO approach is able to memorize part of
the base patterns, the final generation does not provide us a
variety of neural networks with different errors on base and
new patterns. Rather, the entire population have converged
to one solution.

Taking a closer look at the MO approach, we find that
the life-time learning based on the Rprop+ is still single-
objective (learning the union of the pseudo-patterns and the
new patterns), though the evolutionary algorithm tries to
optimize two objectives simultaneously. We therefore make
a small modification to the simulation setup. Instead of
always learning the union of the pseudo-patterns and the
new patters, the network learnings the union of the pseudo-
patterns and the new patterns at a probability of 0.5 The
non-dominated solutions of the obtained neural networks are
shown in Fig. 9 and Fig. 10 with respect to the MSE and
the number of remembered patterns, respectively. We see
that we do achieved 19 different solutions, the number of
remembered base patterns are relatively low.

In a further experiment, we change the probability of
learning the union of the pseudo-patterns and new patters to
2/3 and that of learning the new patterns to 1/3. The results
show that we can generate neural networks that memorize
as many as 11 base patterns while learning 21 of 25 new
patterns, however, the diversity is greatly reduced again, refer
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Fig. 9. Pareto-optimal solutions from the MO approach. The life-time
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at a probability of 0.5.
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The life-time learning minimizes the union of the pseudo-patterns and the
new patterns at a probability of 0.5.

to Fig. 11.
It turns out that life-time learning minimizing the union

of the pseudo-patterns and the new patterns tends to reduce
the diversity of the population. To rectify this weakness, we
modified the setup further so that either the pseudo-patterns
or the new patterns are learned randomly. The neural network
learns the pseudo-patterns at a probability of 1/3 and the new
patterns at a probability of 2/3. The non-dominated solutions
w.r.t. the MSE on the pseudo-patterns and the new patterns
are shown in Fig. 12, denoted by stars. To verify how much
the pseudo-patterns are reflecting the base patterns, we also
plot the same solutions w.r.t. the MSE on the base patterns
and the new patterns, denoted by circles. It can be seen that
the errors on the pseudo-patterns and on the base patterns
are quite different.

The solutions measured by the number of remembered
base patterns and the number of remembered new patterns
are plotted in Fig. 13. It can be seen that except for one
solution that remembers 1 base pattern and 1 new pattern
simultaneously, no neural network is able to remember both
base patterns and new patterns, which is somewhat surprising
in contrast to to the tradeoff on the MSE. We have also
performed additional simulations with a different probability
for learning different patterns during life-time learning, but
no significantly better results have been achieved.

Through the above simulations, we find that if we use
a combination of the pseudo-patterns and the new patterns
during life time learning, the population will converge to few
solutions that can memorize both base and new patterns,
and the diversity of the population is lost. In contrast, if
we separate pseudo-patterns and new patterns during the
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Fig. 11. Pareto-optimal solutions w.r.t. the number of remembered patterns.
The life-time learning minimizes the union of the pseudo-patterns at a
probability of 2/3 and the new patterns at a probability of 1/3.
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Fig. 12. Pareto-optimal solutions from the MO approach. The life-time
learning minimizes the MSE on the pseudo-patterns at a probability of 1/3
and that on the new patterns at a probability of 2/3.

life-time learning, a large number of neural networks that
trade off between the error on the base patterns and the new
patterns can be obtained. Unfortunately, these networks can
memorize either base patterns or new patterns only.

Finally, we combine the above setups during the learning.
In other words, three different sub-tasks are learned at
random, namely, the pseudo-patterns, the union of the pseud-
patterns and new patterns, and the new patterns. The results
are shown in Figs. 14 and 15, where the former shows
the tradeoff between the MSE on the pseudo-patterns and
that on the new patterns, and the latter shows the number
of the base and new patterns remembered by each non-
dominated solution. We see that the diversity has been
improved somehow, but again, the MSE on the pseudo-
patterns is quite different from that of the base patterns.
Besides, neural networks that memorize the base patterns
well behaves poorly on the new patterns.

Interestingly, if we assume the input of the pseudo-patterns
are known in generating pseudo-patterns, then quite different
results are obtained. In this case, the MSE on the pseudo-
patterns is much closer to the MSE on the base patterns, and
a few neural networks that perform well on both base and
new patterns have been obtained, refer to Figs. 16 and 17.

VI. CONCLUSIONS

Avoiding catastrophic forgetting is an important issue
when connectionist networks are used to simulate the mem-
ory mechanisms of the brain. This paper suggests a method
for alleviating catastrophic forgetting using multi-objective
pseudo-rehearsal. The advantage of the MO approach is that
the network that has the minimal error on the base patterns
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Fig. 13. Pareto-optimal solutions w.r.t. the number of remembered patterns.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

MSE

M
S

E

 

 

pseudo−patterns vs. new patterns
base patterns vs. new patterns

Fig. 14. Pareto-optimal solutions w.r.t. the MSE on base, new and pseudo
patterns.

can be maintained, which makes it possible to avoid the
runaway effect.

Several questions remain open concerning the multi-
objective pseudo-rehearsal method suggested in this paper.
First, it is unclear how pseudo-patterns can be generated
in a biologically plausible way. Though the auto-associative
reverbrating network in [7] is a possible approach, it is
still impossible to guarantee that pseudo-pattern inputs are
sufficiently similar to the base patterns. Second, life-time
learning poses a new challenge in multi-objective learning.
At the first glance, life-time learning is similar to local search
in evolutionary multi-objective optimization. However, the
genetic operators in multi-objective neural network learning
mainly change the structure of the networks. Thus, the
genetic search is quite rough and the life-time learning plays
an essential role in finding neural networks with acceptable
performance on accuracy. It should be pointed out that the
multi-objective learning in this work is quite different to
the existing research on multi-objective learning where the
main goal is to improve the generalization performance, and
therefore the second objective introduced is usually related
to the generalization ability, e.g., minimizing complexity,
maximizing diversity, or minimizing the error on a test data
set, where life-time learning does not cause a big problem.
Third, it is found that randomly generated pseudo-patterns
makes it quite difficult for the networks to learn the new
patterns too. How to resolve this difficulty should also be
investigated.
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Fig. 15. Pareto-optimal solutions w.r.t. the number of remembered base
and new patterns.
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Fig. 16. Pareto-optimal solutions w.r.t. the MSE on base and new patterns.
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