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Abstract— In this paper we present the current improvements
of our biologically motivated interacting and learning vision
system for humanoids. Building on the work presented in [1]
the system features now a very natural gaze selection and
interaction for learning freely presented complex objects in real-
time. The new features are facilitated by two major contributions.
First, by the introduction of an internal needs dynamics based
on unspecific and specific rewards governing and exploring
the parameterization of the basic behaviors. And second, by
extending the object recognition pathway by sensory and object
memory pathways as well as speech input / output for interactive
confirmation and object labeling.

I. INTRODUCTION

The long term goal of this work is the creation of a
humanoid robot that is equipped with mechanisms for learning
and development. The concrete goal here is to present an in-
teractively behaving vision system that comprises already both
kind of mechanisms: autonomous developmental mechanisms
influencing the behavior generation and selection of the system
and interactive learning mechanisms allowing for teaching the
system new objects to be recognized online. Related work
exists for both kind of mechanisms separately, see for example
[2]–[5] for developmental mechanisms and [6]–[10] for related
work on online learning of visually defined objects. Both
mechanisms regarded separately already represent a valuable
step towards autonomous adaptive systems. Since we are
pursuing a systems oriented approach it is important for us
to show how these mechanisms can principally be combined.

In [1] we have presented a biologically motivated interactive
vision system for humanoids with preset basic behaviors being
able to recognize objects and gathering training data for offline
learning of new objects. The basic architecture presented at
this time was already designed in a scalable and flexible
way in order to allow for further research towards more
intelligence and autonomy in interaction and learning. The
basic behavior of the system was already defined by a small
set of parameters allowing for some kind of adaptation, but
the parameters were fixed by design and not learned by the
system. In this work we will lift this constraint and present a
mechanism building on an internal needs dynamics based on

unspecific and specific rewards governing and exploring the
parameterization of the basic behaviors. We will show that
based on this mechanism the system can explore to interact
in real-time, paving the way towards autonomous learning of
behaviors. Those behaviors can be task-unspecific as in the
case of general type of interaction, or more task-specific as in
the case of learning and recognizing objects. We will show that
the same basic mechanism can be employed governing both
areas. The current major task of the system is the interactive
learning of freely presented objects. Based on the work as
presented in [1] we have extended the basic architecture by a
sensory and an object memory pathway as well as speech input
/ output for interactive confirmation and and object labeling.
Together with the visual interaction behaviors described above
the system reaches a new quality in learning and recognizing
new objects in real-time. Based on the memory and interaction
concepts there is no artificial distinction between learning
and recognizing anymore, and due to the achieved speed it
is possible to correct misclassifications immediately during
interaction.

The body of the paper is structured as follows. First we
will present the overall architecture of the system, then we
will focus on the extensions for online learning and behavior
exploration. We will show the achieved performance by a
series of experiments and conclude with a discussion and
summary.

II. OVERALL SYSTEM ARCHITECTURE

The experimental setting is a humanoid stereo camera head
with pan and tilt degree of freedoms. The overall systems
architecture is as depicted in figure 1. The major functional
blocks can be identified as follows: The basic gaze selection
loop comprises image acquisition, visual saliency, motion-
and disparity-saliency selection, summation and visuomotor
mapping, gaze selection and head motor control. The visual
gazing behavior is determined by this loop and mainly param-
eterized by the weights of the different saliency maps wD , wM
and wV for disparity, motion and visual saliency, respectively.
For details see [1]. The relative weighting of the parameters



Fig. 1. Systems schematics. See text for detailed description.

determines the influence of the different saliency channels on
the gaze.

Of special interest here is the disparity saliency selection
and the parameter wD. The disparity saliency selection per-
forms a disparity computation and the selection of the closest
connected region within a specific distance range and angle
of view. The position of this region in image coordinates
is represented as an activation blob within the map SD. If
there is no stimulus within the specified range and angle
of view, the activation of the map is all zero. This simple
mechanism represents a first approximation to the concept of
the peripersonal space. It establishes a body-centered zone
in front of the system that directly influences the behavior
of the overall system. If the weight wD is larger than zero
the gaze direction is attracted to the closest object within the
peripersonal space. If the weight is less than zero the system’s
gaze direction is repelled by the closest object within the
peripersonal space. This mechanism can be used for sharing
the object of interest with the system. With an appropriate set
of weights the system focuses on the object a user holds into
the peripersonal space of the system. In [1] the weight were
heuristically fixed to be wV = 1.0, wM = 3.0 and wD = 4.0.
This results in an autonomously gazing system driven by visual
saliency, that can be attracted by actions like waving with a
hand at the system, and that continously focuses on the closest
object within the peripersonal space.

In section IV we will present an internal needs dynamics
based on unspecific and specific rewards governing and ex-

ploring the parameterization of the basic behaviors. In other
words the system will learn to interact with a user instead of
having a hard coded parameter setting forcing the system to
interact by design. We consider this extension as the basis of
learning different kinds of behavior. The elements providing
those kind of functions are the unspecific interaction measure
as the unspecific reward, the learning progress measure as the
specific reward, the needs dynamics as well as the weight
exploration and selection.

The general kind of interaction the system can perform is
the base for more task oriented performances. The first task we
have chosen is the learning and recognition of freely presented
complex objects in real-time. In [1] we have presented a
system that could recognize those kind of objects already in
real-time, but the learning and teaching did not meet real-
time constraints yet. With the proposed structure for learning
we build on the concept of peripersonal space for interacting.
The visual region comprising the closest object within the
peripersonal space is the candidate / hypothesis of the object
to be learnt or recognized. In section III we present the
extensions of the system leading to real-time performance of
the system: the sensory memory, the working memory, the
temporal integration and the speech input / output for labeling.

The resulting overall system then learns to interact and
learns in interaction. In the experimental section we will
show how the same needs mechanism providing the “learn
to interact” part also improves the “learning in interaction”
part, since the interaction can be terminated by the system if



the object learning has converged to a certain extent.

III. OBJECT LEARNING AND RECOGNITION

As described in section II, the visual region comprising the
closest “object” within the peripersonal space is the candidate
/ hypothesis of the object to be learned or recognized. This
region comprises usually the object of interest and the hand
of the presenter. With a segmentation based on the adaptive
scene dependent filters proposed in [11] the visual elements
corresponding to the hand are removed and the segmentation
of the object with respect to the background is improved. The
classifier then has then to deal with the remaining visual parts
not belonging to the object of interest.

Those enhanced segments are further processed by the
model of the ventral visual pathway of Wersing & Körner [12]
to obtain a complex feature map representation that is based
on 50 shape and 3 color feature maps. The color channels
are just downsampled images in the three RGB channels. The
output is a high-dimensional view-based representation of the
input object, that serves to classify or learn the current object.
Those representations are stored within the sensory memory
as long as the object did not leave the peripersonal space. This
time history of sensory object hypotheses is communicated to
the object memory.

Within the object memory, a persistent representation that
carries consolidated and consistently labeled object views
is created. As long as an object is presented within the
peripersonal space and has not been labeled or confirmed,
the obtained feature map representations of views are stored
incrementally within the sensory memory. At the same time,
all newly appearing views are being classified using the
persistent object memory. If the human teacher remains silent,
then the system will either generate a class hypothesis, or
reject the presented object as unknown and verbalize this using
the speech output module. The human teacher can confirm the
hypothesis or make a new suggestion on the correct object
label. As soon as feedback by the teacher is available, the
learning architecture starts the concurrent transfer from the
sensory memory buffer into the consolidated object memory.
This extends over the whole history of collected views during
the presentation phase and also proceeds with all future views,
as long as the object is still present in the peripersonal space.
The labeling of the current object can be done by the teacher
at any time during the dialogue and is not restricted to being
a reaction on a class hypothesis of the recognition system.
The concept of a context-dependent memory buffer makes a
separation into training and testing phases unnecessary. The
transfer from the sensory to the object memory is sufficiently
fast to remain unnoticed to the human trainer and the learning
success can be immediately tested, allowing for a real online
learning interaction.

The mechanism facilitating the online learning is an adap-
tive vector quantization working on the feature representations
as detailed in [13]. For each class a set of reference vectors is
maintained. During learning, new reference vectors are created
if the incoming patterns are sufficiently different from the

already stored reference vectors for this class. For recognition,
the incoming patterns are efficiently compared to the reference
vectors of all classes.

The speech input and output is very important for the
intuitive training interaction with the system. We use a system
with a headset, which is the current state-of-the-art for speaker-
independent recognition. The vocabulary of object classes is
specified beforehand, to be able to label arbitrary objects we
also use wildcard labels such as “object one”, “object two”
etc.

The resulting system shows a natural and smooth interaction
with users. The hypothesis built into the system is that
objects are presented within the hand, otherwise there are no
assumptions about the objects. The properties leading to the
robust recognition are distributed over the system. Translation
invariance is achieved by gazing, scale invariance by normaliz-
ing the 3D object hypothesis by distance estimation delivered
by the disparity computation. Rotation invariance is enhanced
by normalizing the first principle axis of the object. The online
learning performance is facilitated by the efficiency of the
hierarchical processing and by the locality of the plasticity,
i.e. learning only on the highest hierarchy level.

For more details on the vision part the reader is referred to
[14]. Here we focus on the more abstract level of elements
in order to present the coupling with the behavioral part.
The most significant elements here are the disparity saliency
selection with the corresponding weight wD and the object
memory. The modulation of wD determines whether the
attention of the system is drawn towards the object within the
peripersonal space (wD > 0) or whether it is repelled by the
object within the peripersonal space (wD < 0). The behavior
learning will build on this modulation. The object memory
provides the signal for the learning progress. It is based on
the number of reference vectors that are transferred from the
sensory memory buffer into the consolidated object memory.

IV. GROUNDED BEHAVIOR LEARNING

The previous section described gaze selection with fixed
weights of the saliency channels. The experiments (section V)
show that such an attentional system provides a very robust
and natural means of interacting with a robot. However it has
a drawback: if an object is not presented by a human, but is
simply a static part of the scene close to the system, it will
also be fixated. This can be interpreted as a symbol grounding
problem. The mapping from the depth signal to the interaction
hypothesis is created by the designer. The reality does not
always correspond to this mapping but the system can not
find out the discrepancy on its own. It can not detect if the
depth signal comes from “background” or from the user who
wants to interact.

One possible solution would be the redesign of the hypothe-
sis about the object to learn. Additionally to the closeness we
could require the presence of motion, skin color or speech.
There are two reasons why we prefer another solution.

First, the abovementioned percepts are not sufficiently ro-
bust. The user can present an object for a while without



moving and saying anything. He can do it also in a way
that the skin is not visible. Also vice versa, it is possible that
the speech, skin color and movement are present without an
intention of the user to teach the system an object. The state of
an object as ”learnable” or not is rather hidden than perceptive.

The second, and more important reason is our aim to equip
the system with means to recognize on its own the failure
of the reactive behavior and to adapt appropriately. For this
purpose we introduce two measures of the quality of systems
behavior: the quality of interaction with the environment and
the learning progress of the object recognition.

In [5] it was proposed to use the learning progress as a
measure of getting better in predicting the results of one’s
behavior. Here the learning progress is not a general measure
for all behaviors, but specific to the object recognition. In this
way we can decouple the general evaluation of a situation
as favorable for learning from learning progress which can
be delayed or specific to the implementation of learning
algorithm. In [15] we discuss in detail the difference between
usage of specific and general rewards.

Generally speaking the quality of the interaction with the
environment is high if the action of the robot leads to consis-
tent sensory observations. In our example we measure directly
the correlation between the gaze direction and the position of
the object in the depth map. Thus the quality of interaction is
high if either the robot tracks the object, or the object follows
the gaze direction of the robot. Both situations are favorable
for learning. The learning progress is high if the transfer occurs
from the sensory memory buffer into the consolidated object
memory.

In order to monitor these signals we give them a quality of
rewards and introduce corresponding needs vector with two
elements N(t) ∈ R2. The needs are satisfied if their values
are close to zero. If the needs are below a chosen threshold
N0 > 0 they are set to this threshold. Otherwise they change
according to dynamics of the Lotka-Volterra type:

τNdN/dt = N(t). ∗ (R0 −R(t)−N(t))

where .∗ means component-wise multiplication, τN is a time
constant, R0 ∈ R2 characterize the speed of the need growth
in absence of rewards, and R(t) ∈ R2 are the corresponding
rewards for the unspecific interaction quality and the learning
progress.

If the reward is absent for a long time the need exceeds
the threshold for starting the exploration. The system tries
out a different weight wnewD of the depth map according to
the following simple heuristic: wnewD = woldD + SE ∗ DE ,
where DE is the direction and SE the strength of exploration.
Exploration makes Nhyst steps in one direction. If in all of
these steps the need continues to increase, then it changes the
direction and increases the strength.

As soon as the system discovers negative values of the
disparity weight it starts to avoid the object in the peripersonal
space. If the object is just “background”, then it does not
react and there is nearly no correlation between the action
of the system and the sensory map. If the object is shown by

a user, then it is natural for the user to slightly follow the head
movement of the robot in order to stay in interaction.

This means that an “appropriate”, from human point of view,
behavior would be to stop tracking the object if there is no
learning progress and force through avoiding of the object to
provide a new view of the object or to provide a new object.
If the interaction from user’s side is observed, then the system
should switch again into the tracking mode.

For such behavior the systems should “know” that

1) the tracking provides the maximal learning progress,
2) it should stop the tracking if the learning progress is

missing for a long time,
3) if interaction is observable in avoidance, then it is

probable to get the learning progress by tracking.

Below we describe how we implement the system with the
above stated properties. The point two is created by design
of the monitoring mechanism. The point three is covered
by our choice of rewards because the probability of “good”
tracking can be derived from the similarity of the rewards
during interactive tracking and avoidance. The first point
needs the representation of possible rewards and careful vector
quantization of the behavior-reward space.

The actual implementation of the vector quantization is very
simple because we were interested more in the interplay of
the different parts of the system than in the perfect working
of one part. We record the disparity weight and corresponding
reward into a table of possible constellations. The table has the
following format: [WM (i), RM (i), C(i)], i ∈ [1 . . .M ], where
M is the number of recorded constellations, WM represents a
used weight of the disparity, and RM represents the observed
rewards. The confidence C keeps track of how good the entry
matches the observing data. It is initialized with 1.0 and its
updating will be described later.

The situation at the time-step t is compared to the entries
of the table according to following formulas inspired by [16]:

λW (i, t) = exp(−||WM (i)− wD(t)||2/δ2
P )

λR(i, t) = exp(−||RM (i)−R(t)||2/δ2
R))

λ(i, t) = λW (i, t) ∗ λR(i, t) . (1)

The similarity measures λW (i, t) and λR(i, t) are close to 1.0
if the actual constellation is close to the table entry with index
i. The entry with the highest responsibility λ(i, t) is most
similar to the actual constellation. The parameters δP and δR
define the responsibility radius of the recorded constellations
and thus the sampling rate of recording.

Every time a highest responsibility of known constellations
is lower than a threshold λT , a new entry is added to the table.
The confidence of the best matching entry ibest (with highest
responsibility) is increased if the responsibility is above a
threshold CT and decreased otherwise:

C(ibest, t) = f(C(ibest, t− 1) + τC ∗∆C) with (2)
∆C = sin((λ(ibest, t)− λT − CT )/CT ∗ π/2)(3)
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Fig. 2. Presentation scenario for our online learning architecture (a), and
average recognition performance versus training time (b) for training the
10th object after 9 were already trained, with and without segmentation
and temporal integration.(c) demonstrates the typical rotation variation that
is applied during all experiments.

Here f(x) is a step function, so that the confidence is truncated
over 1.0 and below 0.0. If the confidence of the best matching
entry is too low, then the entry is changed to the actual
constellation.

While exploring possible constellations the system may
record a very improbable situation (high learning progress
while avoiding of the object). On the other side some typical
situations are not always persistent. For example the tracking
behavior can give a high learning progress if the user shows
different object views and gives no learning progress if the user
doesn’t move an object. For this reason we can’t use statistical
learning. We have to decide whether a constellation has to be
unlearned or whether it is only actually not possible for a
short time period. For this purpose we introduce a temporary

measure of a reward mismatch:

RMM (i, t) =

{
R(t)−RM (i) +RT , if i = ibest ,
0.0 , else .

This value is positive if the actual reward is higher than
recorded and negative if the difference to the recorded reward
exceeds the tolerance margin RT .

The reward mismatch gives an a posteriori information
about how likely a reward recorded in the best matching entry
is. For an a priori decision to switch the behavior we also
need a priori information. We suppose that constellations with
similar reward to the observed one are apriori more likely.

The similarity λR(i, t) as a priori information and reward
mismatch RMM (i, t) as a posteriori information both give us
a hint if it is likely to get the reward recorded in entry i. This
information is accumulated over time as likeliness lR(i, t) of
getting reward recorded in entry i:

lR(i, t) = τl∗ lR(i, t−1)+(1.0−τl)∗(λR(i, t)+RMM (i, t)) ,

where parameter τl expresses the conservaty of the system’s
belief about the actual context. This parameter together with
the parameter of confidence decrease τC has to be chosen in
the way that the switching of behavior occurs on the faster
time-scale than switching of the entries in the recording table.

Finally the weight of the disparity map is selected in three
steps:

1) The system monitors in which constellation it is by
calculating responsibility λ(i, t), eqn. (1).

2) The system calculates the likeliness of recorded con-
stellations l(i, t). The constellations are possible if their
likeliness is higher than the threshold lT .

3) The system chooses the weight from the possible con-
stellations with the maximal reward for the highest need.
We call the index of the chosen constellation imax. If
both needs are at the lowest level, the priority is given
to the need of learning progress.

In the second part of the experimental section we will report
on the character of the achieved behavior adaptation.

V. EXPERIMENTS

We conduct our experiments with a pan / tilt stereo camera
head with humanoid dimensions. The first experiment we
would like to report on is the interactive learning of freely
presented complex objects. Here we assume optimal experi-
mental conditions and cooperative users. Those experiments
show primarily the performance of the online learning and
recognition subsystem.

The complete system has been realized on a cluster of
one dual processor PC for gaze control and image capture,
one desktop PC running the speech recognition and synthesis
system, and one dual processor PC performing all visual
processing and online learning after the gaze selection. It
is implemented within our integration framework [17]. The
recognition system is running at a frame rate of roughly
6Hz, which enables interaction and online learning with direct
feedback on the learning result. A generic training scenario



is shown in Fig. 2a, with typical ROI views of objects that
are being processed. During all experiments the objects were
freely rotated by hand to obtain a strong appearance variation.

In Fig.2b we show a plot of the recognition performance
versus training time during online learning. For this evaluation
we train nine objects from a training set of 10 objects that
was generated by storing 300 views per object from a typical
training session. Then the tenth object is trained in steps of 10
images (1.67 sec in Fig. 2c) and a testing step is performed.
The test is done by classifying a completely disjoint test set
of 300 views per object that was collected using a different
training person. Test performance is measured over all 300 test
images of the currently trained object giving the classification
rate as percentage of correctly recognized objects at this point
of online learning. Then training proceeds until all 300 training
images are used. The plot shown in Fig. 2b shows the resulting
classification rate, averaged over an ensemble of experiments,
where each of the 10 objects was one time the final object.

We visualize the actual time course of the different memory
types during a training session of 18 objects in Figure 3. The
plot displays the number of used representatives in the sen-
sory and object memories together with the training dialogue
(abbreviated, the actual dialogue is a little more elaborate).
Starting from a completely empty object memory, we first
perform a training of 10 objects. In this first phase the system
first consistently matches the cola can to the previously trained
“sun cream” object, and thus classifies the cola can initially as
“sun cream”, which is then corrected by the teacher. Due to
the similar red-white color and shape composition the “mini
car” is also first confused with the cola can, and is corrected.
Due to the shape similarity the green bottle is first labeled
as blue bottle, which is a reasonable error, as long as no
correction signal is given. After the feedback by the teacher,
the system has learned to discriminate the first 10 objects after
5 minutes of training from many different viewing angles,
which is evaluated directly afterwards. In the second training
phase 8 objects are added. The initial confusion occurs quite
reasonably between cola can and a yellow can, another red
car and the mini car, a new blue mug and the first blueishly
patterned mug, and a new blue rubber duck and the initial
yellow one. After the initial training in the second phase,
the garlic press and police car object have to be additionally
refined. After that second retraining phase, all 18 objects are
classified from any reasonable viewing angle without further
errors.

An important property of the system is that learning occurs
most of the time and is not separated into artificial training and
testing phases. This can be seen from the time course in Fig. 3,
where during the first evaluation of the first 10 objects between
320s and 420s the object memory is still expanding, due to
the confirmation signals of the human teacher on the system
classifications. The same applies to the second evaluation and
error correction phase between 640s and 850s. The complete
duration of the session until no further recognition errors are
encountered is about 12 minutes. This highlights the gain in
learning speed that can be achieved due to the active error

correction process during learning. When the object memory
is enlarged over time, we encounter a slight slowing down of
the system frame rate from 6Hz to approximately 4Hz, since
the comparison to the memory takes longer.

For the next experiment we assume that the user could
be uncooperative, i.e. presenting objects without labeling or
presenting objects statically without providing new views for
learning.

Figure 4 shows the run of a typical experiment. The weight
of the disparity channel is set initially to wD = 4.0. This is
a pre-designed solution as described in section II. The first
entry made by the system into the record table corresponds
to just looking around without interaction and learning. About
the time-step 10 of the needs monitoring subsystem the user
starts teaching a new object. The second entry put into the table
reflects the fact that the system can receive a high interaction
quality and learning progress during tracking. About time-
step 20 the user introduces a static object. It can’t be learned
because it is not labeled. It is also not interacting, thus the
system decides that it is in the situation without interaction.
However the system doesn’t know any other behavior than
tracking yet and keeps fixating the static object.

With time the needs are growing over the threshold and
the system starts exploration. During the exploration (time-
steps 30 − 70) the system records 3 new constellations: that
it can ignore an object (wD = 0.0), avoid a static object and
avoid an object that tries to stay in interaction (wD = −2.0).
After this exploration and learning phase the system shows a
more appropriate behavior. While the user presents the object
statically so that the learning progress decreases (time-steps
100−103) the likeliness to get learning progress from tracking
decreases. At the time-steps 114, 115 the system switches to
the avoidance mode (wD = −2.0). But because the user
follows the system switches back to tracking (time-step 116).
Time-steps 180, 181 represent a similar situation. If the user
doesn’t follow the system remains in avoidance mode or
switches to ignoring (steps 188− 196).

The shown results are preliminary and a more carful anal-
ysis has to be done regarding the stability of results over a
longer run with different user behaviors. Further we would like
to investigate the sensitivity of the algorithms to the choice of
parameters (thresholds, time constants, etc.). It would be also
interesting to investigate more elaborative vector quantization
mechanisms.

VI. CONCLUSION

In this paper we have presented the current improvements
and state of our biologically motivated interacting and learning
vision system for humanoids. To our knowledge it is the first
system showing real online learning and recognition of several
objects of arbitrary appearance in conjunction with an internal
needs dynamics governing and exploring the parameterization
of the basic behaviors. Both parts individually represent al-
ready major contributions to the current research landscape. It
was one aim of this work to explore how these two parts can
principally interact. We don’t consider the proposed interaction
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Fig. 3. Temporal learning dynamics during a training session for 18 objects. The plot shows the number of representatives for the sensory memory (“sawtooth”
at bottom of plot) and representatives for each object in the object memory over time. The corresponding training dialogue is stated synchronously at the
top. The top row states the given labels by the human trainer, while the bottom row gives the classification results of the system, before a human labeling is
given. Errors of the system are printed in bold italics. From 0 to 310s the first 10 objects are trained, the recognition of these 10 objects is evaluated from
320s to 420s without any errors. From 420s to 730s another 8 objects are added, and all 18 objects are checked after 730s without errors.

as final, but it provides an idea what kind of research questions
can be addressed by such kind of integrations.
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