
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Generalization improvement in multi-objective
learning

Lars Gräning, Yaochu Jin, Bernhard Sendhoff

2006

Preprint:

This is an accepted article published in International Joint Conference on Neural
Networks. The final authenticated version is available online at:
https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Generalization Improvement in Multi-Objective Learning

Lars Gräning, Yaochu Jin, Senior Member, IEEE, and Bernhard Sendhoff, Senior Member, IEEE

Abstract— Several heuristic methods have been suggested
for improving the generalization capability in neural network
learning, most of which are concerned with a single-objective
(SO) learning tasks. In this work, we discuss generalization
improvement in multi-objective learning (MO). As a case study,
we investigate the generation of neural network classifiers based
on the receiver operating characteristics (ROC) analysis using
an evolutionary multi-objective optimization algorithm. We
show on a few benchmark problems that for MO learning such
as the ROC based classification, the generalization ability can be
more efficiently improved within a multi-objective framework
than within a single-objective one.

I. INTRODUCTION

One of the main challenge in neural network learning is
to improve the generalization capability of neural networks.
A lot of heuristic methods have been suggested to improve
the generalization capability of learning models by avoiding
over-fitting. An overview of the existing techniques for gen-
eralization improvement, e.g., early stopping, regularization,
network pruning and weight decay can be found in [3] or
[21]. Almost all existing methods consider single-objective
learning only, probably because classical learning algorithms,
e.g., the gradient-based learning methods, cannot deal with
multiple learning objectives efficiently. Although evolution-
ary algorithms have widely been employed for optimizing
the weights as well as the topology of neural networks [24],
most evolutionary learning algorithms are also based on a
single criterion.

In contrast, most machine learning problems have more
than one objective. In general, they can be categorized
into two groups. In the first category, the algorithm has
to optimize only one objective, e.g., the mean squared
error. To improve the generalization ability of the learning
model, additional objectives, e.g., a regularization term, has
to be considered in the learning algorithm. Thus, though the
learning problem per se has only one target, it can be better
handled if it is considered as a multi-objective problem. In
the second category, machine learning tasks themselves have
more than one objective. For example in receiver operating
characteristics (ROC) analysis of classifiers [7], one needs
to maximizing the true positive rate (TPR) and minimize the
false positive rate (FPR) at the same time. Other learning
algorithms that minimizes multiple error measures have
also been investigated [22]. Another example is sequential
learning, where more than one task needs to be learned. The
main challenge here is the learning of a new task may cause

Lars Gräning, Yaochu Jin and Bernhard Sendhoff are with Honda Re-
search Institute Europe GmbH, Carl-Legien-Strasse 30, D-63073 Offenbach
(Main), Germany (email: lars.graening@honda-ri.de; yaochu.jin@honda-
ri.de; bernhard.sendhoff@honda-ri.de)

the forgetting of the previously learned tasks, which is often
known as catastrophic forgetting [17].

Existing SO learning approaches often combine the multi-
ple objectives into a scalar cost function to make the learning
problem tractable. In the recent years, multi-objective ma-
chine learning has received increasing attention, see [13] for
an overview, partly due to the great success of evolutionary
multi-objective algorithms [5]. However, most existing re-
search is concerned with the first category of multi-objective
learning with a few exceptions. One of the early papers where
the optimization of neural networks has been considered
as multi-objective task came from the field of medical
diagnostics [16], where the weights of neural classifiers are
optimized with respect to both TPR and FPR. A recent
paper [6] adapted the weights of neural classifiers based on
the ROC and extended the algorithm to multi-class problems.

In this work we attempt to investigate the generalization
issue for the second category of multi-objective learning
problems. An evolutionary MOO algorithm is employed
for simultaneously optimizing the structure and the weights
of neural networks for solving binary classification tasks,
where the TPR is to be maximized and the FPR is to
be minimized. We improve the generalization ability by
perturbing the training patterns during optimization. We
show that by using a multi-objective learning framework,
the generalization ability can be more efficiently improved
compared to an evolutionary single-objective optimization
algorithm, where multiple objectives are combined to form
a scalar cost function.

Section II of the paper describes existing work on multi-
objective learning in more detail. Section III presents the
evolutionary multi-objective algorithm for optimization of
neural classifiers. Two methods for generating perturbations
to training patterns are also described briefly. Simulation
studies are conducted in Section IV, where we show that
the generalization ability can be more effectively improved
if the MO learning approach is adopted. A summary of the
work is provided in Section V.

II. GENERALIZATION AND MULTI-OBJECTIVE LEARNING

A. Generalization by Multi-objectivization

The main goal in machine learning is to find learning
models (e.g., neural networks) that are optimal with respect
to the training data as well as to unseen data for one or
multiple learning objectives. Of course there is in principal
no knowledge about unseen data available. That is the reason
why one has to control the learning process in order to learn
a general approximation of the underlying problem and to
avoid over-fitting to the training data.

yaochu
Text Box
To appear: WCCI'06, Vancouver, IEEE Press, July 16-21, 2006



In SO learning, many methods for improving generaliza-
tion, such as early stopping, weight decay, regularization and
adding artificial noise during training have been suggested.
In SO learning, the underlying problem is often defined by
one scalar objective function, e.g., the mean squared error. As
commonly known the complexity of neural networks plays
a crucial role in improving generalization capability and
neural networks with an overly complex structure are more
likely to overfit the training data than neural networks with
a simpler structure. To control the complexity, regularization
techniques can be used in SO learning tasks to penalize the
complexity by adding a penalty term to the original cost
function:

f = E + λΩ,

where E defines the objective function and Ω the com-
plexity term. One drawback of this regularization technique
is that the parameter λ has to be determined to control
the impact of penalization. As shown in [11], regularization
can be formulated as a multi-objective optimization problem,
where one objective is to minimize the error metrics itself
and the second one is to minimize the complexity:

f1 = E

f2 = Ω.

The MOO algorithm will result in a set of neural networks
that trade off between accuracy and complexity. By analyzing
the neural networks on the Pareto front, neural networks
from which interpretable rule can be extracted [12], or neural
networks that generalize well [14], can be identified.

Another idea of using MOO for improving the generaliza-
tion capability is described in [1], where the available training
data D is divided into two data sets, D1 and D2. After that
two objectives can be formulated, where each objective is to
minimize the error on each data set:

f1 = E(D1)
f2 = E(D2).

This approach may work only for relatively small neural
networks, otherwise the algorithm may result in one neural
network that overfits both data sets.

B. Generalization Improvement in Multi-objective Learning

As previously discussed, there are multi-objective prob-
lems where more than one objective has to be considered
without taking generalization into account. In this case,
generalization must be addressed explicitly. As indicated in
[8], a network may overfit the training data with respect
to one objective, but not with respect to another. Thus, it
becomes difficult to define a single stop criterion if early
stopping is adopted to avoid overfitting. In [8], two tech-
niques for improving the generalization capability of neural
networks in multi-objective learning have been suggested.

The first approach is inspired by the cross-validation method
from single-objective learning, where the training data set
is divided into a training data set and a validation data set.
Potential solutions which are non-dominated by the solutions
in the training archive are tested on the validation archive.
Only if the found solution is also non-dominated by the
solutions in the validation archive, the solution is added
to the validation data set. The second method is based
on bootstrapping techniques, where the training data set is
bootstrapped to generate n subsets. The worst fitness on all
bootstrapped subsets becomes the final fitness value.

Another idea to prevent overfitting in multi-objective learn-
ing is suggested in [23], where an MO learning algorithm for
solving face detection tasks has been studied. The training
data set has also been divided into a training set and a
validation set. The training data set is used to evaluate the
fitness, whereas the validation data set is used for life-time
learning. The cross-validation approach between learning and
evolution is an improvement compared to other methods
but it has also been noticed that improving generalization
capability should be focus of further research.

Similar to SO learning algorithms, an additional objective
to regulate for example the complexity of neural networks
can be introduced explicitly to improve the generalization
ability in multi-objective learning.

III. EVOLUTIONARY ALGORITHM FOR THE

OPTIMIZATION OF NEURAL CLASSIFIERS

In this section the evolutionary algorithm for the optimiza-
tion of neural classifiers is described, which has been used
both for the single-objective as well as the multi-objective
learning algorithms. The evolutionary algorithm is combined
with a lifetime learning algorithm and both the weights and
the structure of the neural networks are optimized. Fig. 1
illustrates the major elements of the a generic evolutionary
algorithm.

Encoding and Initialization

Decoding and Evaluation

Parents

Mutation,
(Recombination)

Offspring

Decoding and
 Evaluation

Selection

Offspring
[+Parents]

Termination

Reproduction

Life-time learning

Offspring

Fig. 1. A generic evolutionary algorithm including lifetime learning.

All individual pi = pi(Ci, Wi), i = 1, . . . , µ of the
parent population are initialized randomly. A direct encoding
scheme has been used to encode the neural classifiers. A
connection matrix C and a weight matrix W are stored in



the genotype of the individual as shown in Fig. 2, where
the connection matrix is encoded as a binary string and the
weight matrix as a string of real-valued numbers. In this
work feed-forward neural networks with one hidden layer
and sigmoid-like activation functions are used. A threshold
ϑ ∈ [−1, 1] is applied to the continuous output of the neural
network to derive class membership. The threshold remains
constant during optimization (ϑ = 0).

1

-1Σ

1

-1Σ

1

-1Σ ϑ

1 1

c
1 1

... c
i j

w
1 1

... w
i j

C W
c
c

c
c

1 1 1 2
c

1 j

2 1 2 2

...
c

2 j
...

...
c

i 1
c

i 2

...
...

...
c

i j

w
w

w
w

1 1 1 2
w

1 j

2 1 2 2

...
w

2 j
...

...
w

i 1
w

i 2

...
...

...
w

i j

Fig. 2. Encoding of neural network classifiers.

A tournament selection with tournament size two has been
employed to create parent individuals for the next generation
from a combination of the parent and offspring of the current
generation. During the selection, two parents are chosen
randomly and the “fitter” one is copied to the next generation.
Recall that the definition of a fitter solution is different in SO
and MO learning, which will be discussed in greater detail
later. Afterwards each offspring oj = oj(Cj , Wj), j = 1 . . . λ
is mutated randomly using one out of the following five
mutation operators:

• add a neuron,
• delete a neuron,
• add a connection,
• delete a connection and
• jog weights.

No recombination operator has been adopted. The weights
of the neural classifiers are modified in two ways. At first, the
“jog weights” mutation operator is used to perform a global
search in the weight-space by adding a normally distributed
random number to all weights. Then, a number of life-time
learning iterations are embedded in order to do a more
local search within the weight-space. Here, an improved
version of the RProp algorithm [10] is used, which adapts
the weights of the neural network by minimizing the mean
squared error. After learning, the weights are coded back
into the genotype of the offspring, based on the paradigm of
Lamarckian evolution [9].

IV. SINGLE-OBJECTIVE OPTIMIZATION OF NEURAL

CLASSIFIERS

The main difference between SO and MO learning algo-
rithms is the number of objectives that define the quality of
an individual. In SO learning, the fitness is defined by a scalar
value. In this work, the Matthews correlation coefficient
(MCC) [19] is used to determine the quality of the neural
classifiers:

QMCC =
TP · TN − FP · FN

p
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

,

where the correct classifications are defined by the number
of true positives (TP ) and the number of true negatives
(TN ), whereas the misclassifications made by the classifier
are defined by the number of false positives (FP ) and the
number of false negatives (FN ). The MCC evaluates the
correlation between the prediction of the neural classifier
�y ∈ {−1, 1}N and the correct class �c ∈ {−1, 1}N , where
N is the number of patterns in a data set. The objective is to
maximize the MCC f = max{QMCC}, QMCC ∈ [−1, 1].

During the tournament selection, the one with a larger
QMCC is considered as fitter and wins the tournament.

The SO learning algorithm results in one optimized classi-
fier. A ROC curve is then generated by varying the threshold
ϑ between 0 and 1. During operation, one can choose a
threshold depending on one’s preference over TPR and FPR.
The preference often depends on the costs of misclassifica-
tions.

V. MULTI-OBJECTIVE OPTIMIZATION OF NEURAL

CLASSIFIERS

The MO learning algorithm simultaneously optimizes the
TPR and FPR. Two objectives can be formulated by maxi-
mizing the TPR

f1 = max{TPR} = max
{ TP

TP + FN

}
,

and minimizing the FPR

f2 = min{FPR} = min
{ FP

TN + FP

}
,

where TP +FN is the number of positive patterns (c(k) =
1) and TN +FP is the number of negative patterns (c (k) =
−1) in a data set. Consequently the fitness of an individual
that describes the quality of the neural classifier is a vector
�f containing two elements, the TPR and the FPR.

Besides the number of objectives an MO learning algo-
rithm differs from a SO learning algorithm mainly in the
selection method. While in SO learning, it is straight-forward
to choose the “fitter” individual during the tournament selec-
tion, and pass it to the next generation, it is more complicated
when more than one objective has to be considered. In this
work, the crowded tournament selection suggested in NSGA-
II algorithm [4] has been adopted. In the crowded tournament
selection, the union of the parent and offspring individuals
are sorted according their rank based on the concept of



Pareto-dominance. Besides, a crowding distance reflecting
how “crowded” it is near each individual is calculated to pro-
mote the diversity of the population. The Pareto-dominance
can be defined as follows for a minimization problem:

A vector �f∗ = (f∗
1 , . . . , f∗

m) is said to dominate
a vector �f = (f1, . . . , fn), if f∗

i ≤ fi, ∀i =
1, 2, . . . , m and ∃j ∈ {1, . . . , m}, such that f ∗

j <
fj .

Here m is the number of objectives. In Fig. 3, the perfor-
mance of three classifiers A, B and C is visualized in the
ROC space in order to illustrate the concept of dominance.
By definition it can be seen that classifier A dominates
classifier C because classifier A is better in the TPR as
well as in the FPR. Classifier A and classifier B are not
dominated by any other classifiers. In this sense, they belong
to the set of non-dominated solutions. Among the non-
dominated solutions, one cannot say one solution is better
than another. In this example, we cannot say that solution
A is better than B nor that classifier B is better than A. If
a solution is non-dominated in the entire feasible solution
space, then the solution is said to be Pareto-optimal, and the
union of all Pareto-optimal solutions is termed as the Pareto
front. The goal of multi-objective learning algorithm is to
approximate the Pareto front.

The readers are referred to [4] for the details of the
crowded tournament selection.

Fig. 3. Three solutions are shown in the objective space. Solutions A
and B dominate solution C. The solutions A and B belong to the set of
non-dominated solutions.

A number of non-dominated classifiers can be acquired in
the MO learning approach. An even larger set of classifiers
can thus be obtained by varying the threshold of all non-
dominated solutions.

VI. NOISE BASED GENERALIZATION IMPROVEMENT

One heuristic method that can directly be applied to multi-
objective learning is the perturbation of training patterns
during learning. Perturbing the training patterns results in
a noisy fitness function and only neural networks that are
robust against small changes in the training patterns will be
competitive against other networks. In this way, overfitting
of the training data can be avoided. Two approaches to
perturbing the training patterns are investigated in this work.

In the first approach, Gaussian noise is added to the features
of the training patterns, whereas in the second approach
the training patterns are perturbed by means of averaging
training patterns in a local neighborhood (which should be
in the same class). In both approaches one has to assume
that small variations in the features of the training patterns
do not change their class membership.

A. Additive Gaussian Noise

The training patterns for learning neural networks are
presented in form of input/output pairs, where �xk is the
input and ck is the desired output. In each generation a new
artificial training data set is generated by adding a normal
distributed random number to each element of the input
vector �xk , this can be written as

x̃
(k)
i = x

(k)
i + N (0, σ2

k),

where σ2
k is the standard deviation of the Gaussian distribu-

tion. There are two ideas of choosing the standard deviation
σ2

k. An intuitive idea is to choose a predefined value. A
better idea is to choose a relative value depending on the
distribution of the training patterns within the feature space.
Here we take the minimal distance between the k-th pattern
and the remaining patterns in the feature space:

σ2
k =

1
ξ

min
l,l �=k

{√√√√ N∑
i=1

(x(k)
i − x

(l)
i )2

}
,

where parameter ξ controls the impact of noise, N is the
number of all patterns. It is more feasible to pre-define such
a parameter than to pre-define the standard deviation directly
because this parameter can be chosen independent of the
distribution of the training patterns. After adding noise to
the input of each training pattern the perturbed data set can
be used to determine the fitness of the neural classifiers. So in
each generation a new data set is presented to the classifiers
for fitness evaluation.

B. Adding Noise by Means of Averaging

In the second approach, new artificial patterns are gen-
erated by averaging the original patterns within a local
neighborhood. This can be formulated as

x̂
(k)
i =

1
ν + 1

ν∑
l=0

x
(l)
i ,

where ν defines the local neighborhood and is determined
randomly between ν = 0 and ν = νmax. If ν = 0 the
original pattern is added to the new data set, otherwise the
mean of the local neighborhood is calculated for each input
dimension and the pattern with the average inputs x̂(k) is
added to the new training data set. The parameter νmax has
to be determined before optimization. Finally the new data
set is used for fitness evaluation.



Diabetes Heart Card
Features 8 35 51
Nmax

H 30 20 10
DTrain 576 690 518
Npos 197 301 227
Nneg 379 389 291
DTest 192 230 172
Npos 70 110 80
Nneg 122 120 92

TABLE I

NUMBER OF PATTERNS, NUMBER OF FEATURES AS WELL AS THE

MAXIMAL NUMBER OF HIDDEN NEURONS FOR EACH BENCHMARK

PROBLEM.

VII. MAIN RESULTS

A. Experimental Setup

Both the SO learning algorithm and the MO learning
algorithm are applied to three binary classification bench-
mark problems taken from the UCI database [20], namely
Diabetes, Heart and Card. The Diabetes problem is to decide
whether a human is diabetes positive or not. The Heart
problem also comes from the field of medical diagnosis.
Based on the given features the classifier has to diagnose a
heart disease. The Card problem is a different one. Based
on the given features the task is to determine whether a
credit card can be approved or not. All of them are binary
classification problems with different numbers of features
and different numbers of samples in the available data set.
The data set D of each problem is divided into a training
set DTrain and a test set DTest. A list of the database sizes
and the class distribution within the training and test data
sets are shown in Table I. The given number of features for
each problem and the maximum number of hidden nodes are
listed as well. Depending on the classification problem the
number of hidden neurons is bounded by N max

H . Nmax
H is

chosen so that the maximal number of free parameters in the
network is smaller than or equal to the number of training
patterns but no less than N max

H = 30.
The size of the parent population is set to µ = 50. In

each generation λ = 50 offspring are reproduced and then
mutation and life-time learning is applied to the offspring.
The number of iterations for life-time learning is set to 200.
Each optimization run proceeds for 300 generations. In order
to get significant results, each optimization run is performed
10 times, which results in 10 ROC curves. To capture all
ROC curves a median curve with a confidence band, which
is generated by using fixed width bands [18], is calculated.
Fig. 4 illustrates an example, where the ROC curves, the
median curve and the confidence interval are plotted. The
confidence band captures about 90 percent of all ROC curves.

B. Comparing the SO and MO Learning Algorithms

As previously mentioned, each run of the SOO algorithm
results in one neural classifier. By varying the threshold of
the obtained classifier, we can obtain one ROC curve. Thus,
10 ROC curves can be obtained from 10 runs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

Confidence
boundaries

Median curve

Fig. 4. The ROC curves from 10 optimization runs. The ROC curves from
independent optimization runs can be captured by a median curve with a
confidence band.

The MOO algorithm results in a set of neural classifiers
with different structures and different weights showing dif-
ferent TPR and TFR tradeoffs. Additionally the threshold
of each resulting classifier is varied, which results in a set
of ROC curves in each optimization run. From these ROC
curves, we can generate one ROC curve representing the non-
dominated solutions among all the generated ROC curves.
Thus, both the SO and the MO learning algorithms result in
one ROC curve from one optimization run.

The resulting ROC curves on the training data for the three
problems are presented in Fig. 5. From the figures, we see
that the performance of the SO learning and MO learning are
comparable, all showing good performance on the training
data.

As we know, good performance on the training data does
not necessarily mean good performance on unseen data. The
test performance of the SO and the MO learning algorithms
from ten optimization runs is depicted in Fig. 6. Comparing
the performance on the training data and test data, it is clear
to see that overfitting has occurred in both SO and MO
learning. In the following, we attempt to address overfitting
by adding noise to the training data.

C. Additive Gaussian Noise

In this section, we compare the SO and the MO learning
algorithms when the training patterns are perturbed by adding
Gaussian noise to the input vectors of the training patterns
during fitness evaluation. The parameter ξ that influences
the impact of noise is empirically set to ξ = 0.3. Fig. 7
shows the performance of the resulting classifiers on the test
data set for all three classification problems. As can be seen,
the MO learning algorithm shows better performance than
the SO learning algorithm on all test problems. The ROC
curves generated using the MO learning algorithm from the
ten optimization runs are no worse than those using the SO
learning algorithm. Additionally it is noticed that the width
of the confidence band of ROC curves from the MO learning
algorithm, especially for the Card problem, is smaller than
that from the SO algorithm. We can thus conclude that the



(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO
MOO

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO
MOO

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO
MOO

Fig. 5. ROC curves on the training data from the SO and MO learning
algorithms. (a) Diabetes, (b) Heart, and (c) Card.

MO learning algorithm is more robust than the SO learning
algorithm in avoiding overfitting.

D. Adding Noise by Averaging

In this approach, the training patterns are perturbed by
averaging a pre-defined number of training patterns within a
local neighborhood. The parameter that defines the size of the
neighborhood is set to νmax = 10. The optimization runs are
performed under the same conditions as in the experiments
above.

Fig. 8 shows the results for the three classification prob-
lems. It can be seen that the MO learning algorithm improves
the generalization capability compared to the SO learning
algorithm in all the three problems. Comparing the results
in Fig. 8 with the results in Fig. 7, we notice that adding
Gaussian noise to the training patterns and perturbing the
training patterns by means of averaging show similar results,
though the former appears a little better.

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO
MOO

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO
MOO

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO
MOO

Fig. 6. ROC curves on the test data from the SO and MO learning
algorithms. (a) Diabetes, (b) Heart, and (c) Card.

VIII. CONCLUSIONS

In this paper we investigate improvement of generalization
ability of neural classifiers with multiple learning objectives.
We give a brief review of the techniques for addressing
overfitting in single-objective learning and stress that not
all these techniques can directly be transplanted to multi-
objective learning algorithms. Then, the perturbation method,
which can directly be used in MO learning, is empirically
studied in order to avoid overfitting in generating neural
classifiers based on ROC analysis . Two similar approaches
for perturbing the training patterns are investigated for evolu-
tionary single-objective and multi-objective learning. In the
first approach, Gaussian noise is added to the input of the
training patterns, whereas in the second approach artificial
training patterns are generated by means of averaging. In
both approaches the MO learning algorithm shows better
results than the SO learning algorithm on test data. The
results indicate that Pareto-based multi-objective learning
approaches should be preferred over single-objective learning



(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO with noise
MOO with noise

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO with noise
MOO with noise

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO with noise
MOO with noise

Fig. 7. Test performance using the SO and MO learning algorithms, where
the training patterns are perturbed by Gaussian noise during evaluation. (a)
Diabetes, (b) Heart, (c) Card.

algorithms that sum up the multiple learning objectives,
particularly when noise is added into training patterns to
avoid overfitting.

One weakness of the proposed MO learning method is
that the life-time learning is still based on a scalar cost
function that minimizes the mean squared error instead
of minimizing TPR and FPR simultaneously. This can be
addressed, e.g., by using a learning algorithm that maximizes
the TPR or minimizes FPR randomly. Besides, it remains to
be clarified if better performance can be obtained to perturb
the training data during the life-time learning. Third, the
noise based methods should be compared to other methods,
e.g., suggested in [8] and [23].

REFERENCES

[1] H.A. Abbass, Pareto neuro-evolution: Constructing ensemble of neural
networks using multi-objective optimization, In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC2003), vol. 3, pp.
2074–2080, IEEE-Press, 2003

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO with averaging
MOO with averaging

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO with averaging
MOO with averaging

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

SOO with averaging
MOO with averaging

Fig. 8. Test performance using the SO and MO learning algorithms by
perturbing the training patterns through averaging. (a) Diabetes, (b) Heart,
and (c) Card.

[2] P. Baldi and S. Brunak and Y. Chauvin and C. A. F. Andersen
and H. Nielsen, Assessing the accuracy of prediction algorithms for
classification: An overview, Bioinformatics, vol. 16, no. 5, pp. 412–
424, Oxford University Press, May 2000

[3] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon
Press, Oxford New York, 1995

[4] K. Deb and S. Agrawal and A. Pratap and T. Meyarivan, A fast elitist
non-dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II, Proceedings of Parallel Problem Solving from Nature,
PPSN VI, Springer, pp.849-858, 2000

[5] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
Wiley, 2001

[6] R.M. Everson and J.E. Fieldsend, Multi-objective optimization for
receiver operating characteristic analysis, in Multi-objective Machine
Learning, Y. Jin (Ed.), Springer, Feb. 2006

[7] T. Fawcett, ROC graphs: Notes and practical considerations for data
mining researchers, Technical report, HP Laboratories Palo Alto, 2003

[8] J.E. Fieldsend and S. Singh, Pareto evolutionary neural networks, IEEE
Transactions on Neural Networks, vol. 16, no. 2, pp. 338–354, 2005

[9] M. Hüsken and B. Sendhoff, Evolutionary optimization for problem
classes with Lamarckian inheritance, In Seventh International Confer-
ence on Neural Information Processing (ICONIP 2000) -Proceedings,
Edited by Soo-Young Lee, vol. 2, pp. 897–902, 2000

[10] C. Igel and M. Hüsken, Improving the RProp learning algorithm,



In Second International Symposium on Neural Computation, ICSC,
Academic Press, pp. 115–121, 2000

[11] Y. Jin and T. Okabe and B. Sendhoff, Neural network regularization
and ensembling using multi-objective evolutionary algorithms, Proceed-
ings of Congress on Evolutionary Computation, pp.1-8, Portland, 2004

[12] Y. Jin, B. Sendhoff, E. Körner. Evolutionary multi-objective op-
timization for simultaneous generation of signal-type and symbol-
type representations. Evolutionary Multi-Criterion Optimization, LNCS
3410, pages 752–766, 2005

[13] Y. Jin (editor). Multi-objective Machine Learning. Springer, Berlin,
2006

[14] Y. Jin, Simultaneous generation of accurate and interpretable neural
network classifiers. In: Multi-Objective Machine Learning, Y. Jin (ed.),
pp.291-312, 2006

[15] K.W.C Ku and M.W. Mak, Knowledge incorporation through lifetime
learning, In Knowledge Incorporation in Evolutionary Computation, Y.
Jin (ed.), Springer, pp.359-384, 2004

[16] M.A. Kupinski and M.A. Anastasio, Multiobjective genetic optimiza-
tion of diagnostic classifiers with implications for generating receiver
operating characteristic curves, IEEE Transactions on Medical Imaging,
vol. 18, no. 8, pp.675-685, 1999

[17] M. McCloskey and N.J. Cohen. Catastrophic interference in connec-
tionist networks: The sequential learning problem. The Psychology of
Learning and Motivation, 24:109–165, 1989

[18] S.A. Macskassy and F. Provost. ROC confidence bands: Methods and
an empirical evaluation, Workshop on ROC Analysis in AI, 61–70, 2004

[19] P. Baldi et al, Assessing the accuracy of prediction algorithms for
classification: An Overview. Bioinformatics Review, 16(5):412–424,
2000

[20] D.J. Newman and S. Hettich and C.L. Blake and C.J. Merz, UCI -
repository of machine learning database, 1998

[21] R. D. Reed and R. J. Marks II, Neural Smithing - Supervised Learning
in Feedforward Artificial Neural Networks, The MIT Press, Cambridge
Massachusetts, 1999

[22] Y. Wang and F. Wahl. Multiobjective neural network for image
reconstruction, IEEE Proceedings - Vison, Image and Signal Processing,
vol. 144, no. 4, pp. 233–236, 1997

[23] S. Wiegand and C. Igel and U. Handmann, Evolutionary multi-
objective optimization of neural networks for face detection, Interna-
tional Journal of Computational Intelligence and Applications, vol. 4,
no. 3, pp. 237–253, 2004

[24] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE,
87(9), pp. 1423–1447, September 1999




