
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Efficient search for robust solutions by means of
evolutionary algorithms and fitness
approximation

Ingo Paenke, Jürgen Branke, Yaochu Jin

2006

Preprint:

This is an accepted article published in IEEE Transactions on Evolutionary
Computation. The final authenticated version is available online at:
https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 1

Efficient Search for Robust Solutions by Means of
Evolutionary Algorithms and Fitness Approximation

Ingo Paenke, Jürgen Branke, IEEE, Member and Yaochu Jin, IEEE, Senior Member

Abstract— For many real-world optimization problems, the
robustness of a solution is of great importance in addition
to the solution’s quality. By robustness, we mean that small
deviations from the original design, e.g., due to manufacturing
tolerances, should be tolerated without a severe loss of quality.
One way to achieve that goal is to evaluate each solution under
a number of different scenarios, and use the average solution
quality as fitness. However, this approach is often impractical,
because the cost for evaluating each individual several times
is unacceptable. In this paper, we present a new and efficient
approach to estimating a solution’s expected quality and variance.
Basically, we propose to construct local approximate models of
the fitness function, and then use these approximate models to
estimate expected fitness and variance. Based on a variety of
test function, we demonstrate empirically that our approach
significantly outperforms the implicit averaging approach as well
as the explicit averaging approaches using existing estimation
techniques reported in the literature.

Index Terms— Evolutionary Optimization, Uncertainty, Ro-
bustness, Fitness Approximation.

I. INTRODUCTION

IN many real world optimization scenarios, it is not suffi-
cient for a solution to be of high quality, but the solution

should also be robust. Some examples include

• In manufacturing, it is usually impossible to produce
an item exactly according to the design specifications.
Instead, the design has to allow for manufacturing toler-
ances, see e.g., [2], [14], [39].

• In scheduling, a schedule should be able to tolerate small
deviations from the estimated processing times or be able
to accommodate machine breakdowns [17], [23], [32].

• In circuit design, the circuits should work over a wide
range of environmental conditions like different temper-
atures [36].

• In turbine blade design, the turbine should perform well
over a range of conditions, e.g., it should work efficiently
at different speeds. Similar requirements exist for airfoil
design [31], [40].

There are a number of different possible definitions for ro-
bustness (see e.g., [6], p. 127). Generally speaking, robustness
means some degree of insensitivity to small disturbances of
the environment or the design variables. One definition for
robust solutions is to consider the best worst-case performance.
Another definition of robust solutions is to consider a so-
lution’s expected performance over all possible disturbances,

Ingo Paenke and Jürgen Branke are with the Institute AIFB, University of
Karlsruhe, Germany. Yaochu Jin is with the Honda Research Institute Europe,
63073 Offenbach, Germany. Authors contributed equally.

which corresponds to a risk-neutral decision maker’s choice.
In these two definitions for robustness, only one objective is
considered, and we denote such approaches single objective
(SO) robustness optimization. However, robustness of solutions
might be better defined by considering both the quality and
the risk separately, i.e., by converting the problem into a
multi-objective problem [22]. We denote such approaches
as multi–objective (MO) robustness optimization. This paper
suggests model-based fitness approximation methods that can
be employed to improve the computational efficiency of both
SO and MO approaches to robustness optimization.

Disturbances may appear in both environmental variables
and design variables. In the following, we focus on robustness
against disturbances of design variables, which is important,
e.g., in the case of manufacturing tolerances. Formally, if x

denotes a design vector (solution) of dimension d, and f(x) is
the fitness (in the context of robustness optimization f(x) is
also often called raw fitness, fraw) of that particular solution,
then the expected fitness of solution x is defined as

fexp(x) =

∫ ∞

−∞

f(x + δ) · p(δ)dδ, (1)

where δ is a disturbance that is distributed according to
the probability density function p(δ). Similarly, the fitness
variance of a solution can be defined as

fvar(x) =

∫ ∞

−∞

(f(x + δ)− fexp(x))
2
· p(δ)dδ. (2)

Unfortunately, for reasonably complex problems, Equa-
tions (1) and (2) cannot be computed analytically, usually
because f is not known in a closed form. Alternatively, fexp
and fvar can be estimated by Monte Carlo integration, i.e., by
sampling over a number of realizations of δ. However, each
sample corresponds to one fitness evaluation, and if fitness
evaluations are expensive, this approach is clearly not viable.

Therefore, new approaches are needed which allow to
estimate a solution’s expected fitness and variance more ef-
ficiently. In this paper, we propose to use an approximation
model to estimate a solution’s robustness. Instead of using
the costly raw fitness function in the above mentioned Monte
Carlo integration, we rely on the approximation model for that
purpose. In principle, this idea could be used in combination
with any suitable approximation model like artificial neural
networks, kriging models, or Gaussian processes. In this
paper, we use local approximation models, which have the
advantage of being relatively easy to construct and also seem
appropriate to approximate the performance of a solution over
a distribution of local disturbances. Within that framework,

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 2

we compare and discuss a number of alternatives w.r.t. the
approximation model used (interpolation or regression), the
complexity of the model (linear or quadratic), the number and
location of approximation models constructed, the sampling
method, and how approximation methods should be exploited
for estimation. Empirical results confirm the superiority of our
approach to some previous approaches for either SO or MO
robustness optimization.

Note that we subsequently use the terms raw fitness and
real fitness. Here raw fitness is used in contrast to robustness
(fexp, fvar), whereas real fitness is used in contrast to approx-
imated fitness.

The paper is structured as follows. Section II provides
a brief overview of related work. We then introduce the
evolutionary algorithm (EA) for robustness optimization in
Section III. A short discussion of the approximation techniques
used can be found in Section IV. Then, in Section V, we
present our new approaches to estimating a solution’s expected
fitness and variance. These approaches are evaluated empiri-
cally in Section VI based on a variety of benchmark problems.
The paper concludes with a summary of this paper and some
ideas for future work.

II. RELATED WORK

There is a wealth of publications regarding the use of
approximation models to speed up EAs. Feedforward neural
networks [16], [21], radial basis function networks [33], and
polynomials [7], [24] have been employed to improve the
efficiency of EAs. Besides, estimation of distribution algo-
rithms (EDAs) can also be considered as a class of algorithms
that approximate the fitness landscape implicitly [41]. In the
following, we will focus on related literature regarding the
search for robust solutions. For a general overview on the use
of approximation models in combination with EAs, the reader
is referred to [18], [19].

As has been mentioned in the introduction, evolutionary
approaches to robustness optimization can be categorized into
single-objective (SO) and multi-objective (MO) optimization
approaches. By far, the majority of research activities in this
field follows the SO approach.

A. SO robustness optimization

An analytical expected fitness function is often not available,
therefore, it is necessary to estimate a solution’s expected
fitness. The probably most common approach is to sample a
number of points randomly in the neighborhood of the solution
x to be evaluated, and then take the mean of the sampled
points as the estimated expected fitness value of x (see, e.g.,
[4], [14], [39]). This straightforward approach is also known
as explicit averaging. The explicit averaging approach needs
a large number of additional fitness evaluations, which might
be impractical for many real-world applications. To reduce the
number of additional fitness evaluations, a number of methods
have been proposed in the literature:

1) Variance reduction techniques: Using derandomized
sampling techniques instead of random sampling reduces
the variance of the estimator, thus allowing a more

accurate estimate with fewer samples. In [5], [26], Latin
Hypercube Sampling is employed (cf. Appendix B),
together with the idea to use the same disturbances for
all individuals in a generation.

2) Evaluating important individuals more often: In [4],
it is suggested to evaluate good individuals more often
than bad ones, because good individuals are more likely
to survive and therefore a more accurate estimate is
beneficial. In [6], it was proposed that individuals with
high fitness variance should be evaluated more often.

3) Using other individuals in the neighborhood: Since
promising regions in the search space are sampled
several times, it is possible to use information about
other individuals in the neighborhood to estimate an
individual’s expected fitness. In particular, in [4] it is
proposed to record the history of an evolution, i.e. to
accumulate all individuals of an evolutionary run with
corresponding fitness values in a database, and to use the
weighted average fitness of neighboring history individ-
uals. Weights are assigned according to the probability
distribution function of the disturbance. We will use this
method later for comparison and refer to it as Weighted
history.

While all of the above methods explicitly average over
a number of fitness evaluations, Tsutsui and Ghosh present
in [37], [38] an idea to simply disturb the phenotypic fea-
tures before evaluating an individual’s fitness. As the EA is
revisiting promising regions of the search space, it implicitly
averages over a set of disturbed solutions, which can be
seen as an implicit averaging approach. Using the schema
theorem, Tsutsui and Ghosh show that given an infinitely
large population size and the proportional selection method, a
genetic algorithm with single disturbed evaluations is actually
performing as if it would work on fexp. This implicit av-
eraging has proven successful for low-dimensional problems.
Subsequently we refer to this approach as Single disturbed.

B. MO robustness optimization

In design optimization, several papers have treated the
search for robust optimal solutions as a MO problem, see
e.g. [8], [9]. However, relatively little attention has been paid
to evolutionary MO search for robust solutions. Ray [30], [31]
considers robust optimization as a three-objective problem,
where the raw fitness, expected fitness and the standard devia-
tion are optimized simultaneously. In that work, a large number
of additional neighboring points are sampled to estimate the
expected fitness and standard deviation. In [22], search for
robust optimal solutions is considered as a trade-off between
optimality (the raw fitness) and robustness, which is defined
as the ratio between the standard deviation of fitness and the
average of the standard deviation of the design variables. To
estimate the robustness measure, the mean fitness and the
standard deviation are estimated using neighboring solutions
in the current generation, without conducting any additional
fitness evaluations, but only using the individuals in the
current generation to estimate the local fitness variance. This
becomes feasible because the local diversity of the population

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 3

is maintained by using the dynamic weighted aggregation
method [20] for multi-objective optimization.

C. Main Contributions of the Paper

One of the main research efforts in evolutionary search for
robust solutions is to reduce the number of computationally
expensive fitness evaluations. So far, the main idea has been
to calculate the mean fitness in the SO the approach [4], [6]
or the fitness variance in the MO approach [22] directly based
on the neighboring solutions in the current population or in
the entire history of evolution.

Using the existing neighboring solutions to calculate the
mean and variance of the fitness is only a very rough ap-
proximation of the Monte Carlo Integration. To address this
problem, this paper suggests to construct computationally effi-
cient models using available solutions to replace the expensive
fitness function in calculating the mean and variance of fitness
values. If the model is sufficiently good, we can estimate
the mean and variance much more reliably using the Monte
Carlo method. Both interpolation and regression methods in
combination with a variety of model distribution techniques,
such as single model, nearest model, ensemble, and multiple
models are investigated. The effectiveness of using models to
estimate the mean and variance of fitness values are verified
on 6 test problems for the SO approach and 3 test problems
for the MO approach to robust optimization.

III. EVOLUTIONARY ALGORITHM FOR ROBUSTNESS

OPTIMIZATION

The evolutionary search for robust solutions proposed in
this paper uses approximation models to estimate a solution’s
expected fitness as well as the variance without additional
fitness evaluations. While in principle, this idea is independent
of the approximation model, we use local approximations of
the fitness surface [24], [33]. Training data for the approxi-
mation model are solely collected online, i.e., the EA starts
with an empty history and collects data during the run. In
each generation, the real fitness function is evaluated at the
location of the current individuals, these data are then stored
in a database which we denote history. See Algorithm 1 for
the pseudo-code of the algorithm. With this data collection
strategy, the total number of real fitness evaluations equals
the number of generations times population size, which is the
same as required for a standard EA. Thus, additional fitness
evaluations needed for robustness evaluation is avoided.

In robustness optimization, the question on how to deal
with constraints is a challenging research topic. Compared to
optimization based on the raw fitness, a solution is no longer
strictly feasible or infeasible in search for robust solutions.
Instead, it might be feasible with a certain probability. Promis-
ing approaches to handle constraints are presented in [26],
[30]. However, a further discussion of this topic is beyond the
scope of this paper. In the EA used in this paper, we simply
bounce off the boundary if a an individual would lie outside
the parameter range. Samples drawn from an infeasible region
are set to a bad constant value.

Algorithm 1 Robustness EA
t← 0
initialize population P (0)
evaluate P (0) with real f
add P (0) to the History
estimate fexp (fvar) of P (0) individuals
REPEAT

selection: mating pool M(t)← select(P (t))
recombination: M ′(t)← recombine(M(t))
mutation: M ′′(t)← mutate(M ′(t))
evaluate M ′′(t) with real f
add M ′′(t) to the History
estimate fexp (fvar) of M ′′(t) individuals
update-population: P (t + 1)← u(P (t) ∪M ′′(t))
t← t + 1

UNTIL termination criterion met

IV. FITNESS APPROXIMATION

A. Interpolation and Regression Techniques

We attempt to estimate the expected fitness and the variance
of each candidate solution based on an approximate model
that is constructed using history data collected during the
optimization. In this way, no additional fitness evaluations
are needed. For fitness approximation, we use interpolation
and local regression. In the following, we provide a short
description of interpolation and regression techniques. This
kind of models has been used in [24] to smooth out local
minimums in evolutionary optimization. Readers are referred
to [25] for further details on interpolation and regression
techniques.

A quadratic polynomial interpolation or regression model
can be described as follows:

f(x) = β0 +

d∑

i=1

βixi +

d∑

i=1

d∑

j=1

βd−1+i+jxixj , (3)

where d is the dimensionality of x. Equation (3) can be re-
written as:

f(x) =

nc∑

j=1

Xjβj , (4)

where X = [1 x1 ... xd x1x2 ... xd x2
1 ... x2

d] and β is the
vector of model coefficients of length nc = (d + 1)(d + 2)/2.
Typically, we have a set of nin ≥ nc training data (X(1), y(1)),
(X(2), y(2)),..., (X(nin), y(nin)), and the goal is to find model
parameters β that minimize the error on the training data.

The most popular estimation method is the least square
method, which minimizes the residual sum of squared errors:

min J =

nin∑

i=1

(y(i) − f(X i))2, (5)

Additionally, weights can be assigned to the residual distances,
i.e.,

min J =

nin∑

i=1

wi(y
(i) − f(X i))2, (6)

where wi is a weight for the i-th training sample. This is
also known as local regression. As training data we choose

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 4

all history data which lie within the range of the disturbance
distribution of the estimation point, i.e. nin can be different
for different approximation points. If, however, nin is smaller
than the desired minimum number of training data (as specified
beforehand) data points from outside the disturbance range
are used, too (cf. Table II in the simulation studies section).
Weights are usually assigned w.r.t. the distance between the
location of the training sample point and the so-called fitting
point around which the model is constructed (denoted as xfp

hereafter). As weight function wi, the tricube function is used
(Equation 7), where b denotes the bandwidth that is chosen
such that it covers all model input data:

wtricube(x
(i), x(0)) =

(
1−

(
‖ x(i) − x(0) ‖2

b

)3)3

. (7)

Solving Equation (6), we get:

β∗ = (XT WX)
−1

XT y, (8)

where W > 0 is a diagonal matrix with wi as diago-
nal elements, X = [X(1) X(2) ... X(nin)]T , and y =
[y(1) y(2) ... y(nin)].

Note that to fully determine the parameters in the model,
it is required that the number of training data nin be equal
to or larger than the number of coefficients nc. The special
case of nin = nc represents interpolation. In this case, a β∗

exists such that residual error in Equation (6) can be reduced
to zero, i.e., the approximate function intersects all training
data points. We need to find a β such that Equation (9) is
true:

Xβ = y. (9)

By inverting X we get the solution

β∗ = X−1y. (10)

Our motivation to distinguish between interpolation and
regression is that a surface which is generated by an in-
terpolation model intersects the nearest available real fitness
points whereas regression aims at smoothening a given data
set. With a deterministic fitness function, there is no need
of smoothening because there exists no noise that can be
removed by regression. However, regression has the advantage
of covering a larger neighborhood space.

From the large number of available interpolation methods
[1] we decided to use one of the simplest methods, which
chooses the nearest available history points as training data
to construct the model. As a result, some of the points
on the approximated surface are interpolated, and some are
actually extrapolated ([29], Chapter 3). Nevertheless, we
denote this method interpolation throughout this paper. This
type of interpolation may return a discontinuous surface. A
method that generates a continuous landscapes is Natural
neighbor interpolation [35], which chooses the training data
such that the model fitting point lies within the convex hull
defined by the training data. The drawback of natural neighbor
interpolation is its high computational complexity, particularly
when the dimension of the design space is high. Thus, we
use the standard interpolation method which uses the nearest
neighbors, in this paper. For local regression, we choose the

nearest available history data as training data for the model,
too. Again, the distance is measured with respect to the model
fitting point.

Successful interpolation and regression requires X to have
a rank of nc, i.e., nc of the training samples have to be
linearly independent. This might not always be the case, in
particular when the EA converges. If, in regression, we find
X to be singular, we simply add the nearest available data
points (which are not yet used) to the model, and check again
for linear dependencies. This loop is repeated until X has a
full rank. In this case, Equation (8) is solved by Cholesky
decomposition [29]. In interpolation, however, linearly depen-
dent training data points in X need to be detected and replaced
by other points. Therefore, we first need to check for linear
dependencies before solving Equation (10). In our methods,
this is done using QR decomposition with column pivoting
[13]. If X has a full rank, Equation (10) can be solved by LU
decomposition [13], otherwise this loop continues until X has
a full rank.

It should be pointed out that when interpolation is used, it is
possible to produce severely incorrect estimations in situations
when the history data are ill-distributed, for example, when
some of the nearest neighbors are located very close to each
other compared to their distance to the model fitting point
on a steep part of the fitness function. In order to reduce the
bias introduced by such wrong estimations, we need to detect
severe outliers. In particular, history data are sorted with regard
to their fitness value. An approximation f̂(xs) at a sample
point xs is defined as an outlier, if

bf (xs) /∈ [H0.01 − 5 (H0.99 − H0.01) ; H0.99 + 5 (H0.99 − H0.01)],
(11)

where H0.01, H0.99 represent the 0.01 and 0.99 quantiles of the
sorted history fitness values. This detection method is common
in the realm of box plots. Outliers are replaced by the average
real fitness of the current population (which is available at
that time, cf. Algorithm 1). Theoretically, this method can cut
off extremely good (correctly estimated) individuals, however,
with the setting as in Equation 11 this is very unlikely. In
our experiments, it is found that cutting off extreme estimated
fitness values leads to more reliable results.

B. Computational Complexity

The motivation to use approximate models instead of addi-
tional samples is that in many applications the computational
cost of a fitness evaluation is larger than the cost of building
up an approximate model. In the following we briefly present
a theoretical analysis of the computational overhead for the
approximate models used in this paper, namely interpolation
and regression.

The three steps for building up an approximation model are:

1) Calculate the Euclidean distance between the model
fitting point and all available history training data (nh).
Since the Euclidean distance can be computed in linear
time (w.r.t. the dimensionality d), the overall cost are in
the order O(nhd).

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 5

2) Sort training data w.r.t. to the Euclidean distance. The
complexity of the Quicksort algorithm [15] is in the best
case O(nh log2 nh) and the worst case O(n2

h).
3) Computing the interpolation / regression polynomial.

In interpolation, the most expensive element is QR de-
composition which requires O(n3

c) flops 1. In regression
the most expensive element is Cholesky decomposition
which requires O(n3

c) flops, where nc is the number
of model coefficients. This means both approximation
methods have a complexity of O(nc

3).

The overall complexity for building up one approximation
model sums up to

O(nhd + n2
h + nc

3). (12)

In case of singularities, matrix X is modified and step 3 is
repeated, thus, the computational cost increases. On a state-of-
the-art personal computer, the computation time is in the mili-
second order, which can be regarded as negligible compared
to expensive fitness evaluations of many real-world problems.
For example, a computational fluid dynamics simulation for
blade design optimization takes often from tens of minutes to
several hours. Of course, the computation time can no longer
be negligible if a more complex model is constructed with a
large number of samples.

V. ROBUSTNESS ESTIMATION

Since we cannot expect the overall fitness function to be of
linear or quadratic nature, any linear or quadratic approxima-
tion model is usually only a local approximation. Thus, for
estimating the fitness at different points in the search space,
different approximation models have to be constructed. In this
section, we discuss the questions of where approximation mod-
els should be constructed, how many should be constructed,
and how they should be used to estimate fexp and fvar of all
individuals of the population.

A. Integral approximation

The integrals of Equation (1) are estimated for a given point
x0 by evaluating (w.r.t. the approximated fitness function f̂)
a set of n samples xi = x0 + δi in the neighborhood of x0.
We get the estimations

f̂exp(x0) =

n∑

i=1

1

n
f̂(xi),

f̂var(x0) =
n∑

i=1

1

n
[f̂(xi)− f̂exp(x0)]2.

(13)

To generate the samples xi, we use Latin hypercube sam-
pling (refer to Appendix B) which has proven to be the
most accurate sampling method given a limited number of
sample points [5]. In Latin hypercube sampling, the number
of samples solely depends on the number of quantiles and is
independent of the dimensionality, thus the size of the sample
set can be arbitrarily scaled.

1flop - floating point operation, i.e., one addition, subtraction, multiplica-
tion, or division of two floating-point numbers

B. Model distribution

As has been explained above, we estimate a solution’s
robustness based on the estimated fitness of a number of
sampled points in the neighborhood. Since local approximation
models are only reliable in a small neighborhood of their fitting
point, several models are needed to evaluate a population.
One important question therefore is where to construct the
approximation models. In principle, one might attempt to place
them at strategically favorable positions, so that a maximum
accuracy can be obtained with a minimum number of models.
In this paper, we used two simple strategies: to construct
one model around each individual in the population, and to
construct one model around each sample point. While the latter
promises to be more accurate, it requires to build many more
models and therefore demands for much higher computational
resources.

The next question is how the models are used for estimating
the fitness of a particular sample. We have tested three possible
approaches. First, one might use the model constructed around
an individual to estimate the fitness of all samples used to
evaluate this individual. Second, one can use the nearest model
(i.e., where the Euclidean distance to the model fitting point is
minimal) for each sample, because that model probably has the
highest accuracy. And finally, one might combine the estimates
of several models in the hope that the estimation errors of the
different models cancel out.

Overall, we have tested the following four different settings:

• Single model: In this straight-forward approach, we build
one approximation model per individual, i.e. the models’
fitting points are the same as the individuals’ locations in
the search space, and we use this model for all sample
points generated to estimate that individual’s fitness. This
approach, of course, assumes that the simple linear or
quadratic models are sufficient to approximate the raw
fitness function within the range of expected disturbances
δ.

• Nearest model: Again, one model is constructed around
each individual, but we always use the nearest model to
estimate the fitness of a sample. Note that the nearest
model can be that of a neighboring individual and is not
always the one of the associated individual (which can
have a greater distance).

• Ensemble: This approach is also based on one model
constructed around each individual. However, we estimate
the function value at a particular sample point xs by a
weighted combination (ensemble) of models that corre-
spond to the m nearest fitting points. The approximated
functional value is calculated as follows:

f̂ENS(xs) =
1∑

1≤i≤m vi

∑

1≤i≤m

vi f̂i(xs)

vi =
1

‖xfp − xs‖2
,

(14)

where vi is a weight function and m the ensemble size.
• Multiple models: In this approach, a separate model is

constructed around each sample, and exactly this model
is used to estimate the sample’s fitness.

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 6

The first three methods share the same advantage that the
number of approximation models needs to be constructed is
small. In fact, they even use the same model locations, namely,
exactly one model at the location of each individual in the
population.

Fig.1 illustrates the difference between the Single model and
Multiple models approaches for 1-dimensional case using a
linear interpolation model. It can be seen that in this example,
a single interpolation model cannot fully describe the local
fitness landscape that is given by the history data.

x

history

estimation
point

q1 q2 q3

f(x)

x

history

estimation
point

q1 q2 q3

f(x)

Fig. 1. Illustration of Single model (left) and Multiple models (right) for
the 1-dimensional case. The quantiles of the δ distribution are denoted q1, q2
and q3. The dotted lines represent boundaries of the quantiles. Samples are
drawn from the center of each quantile and evaluated with the approximation
model.

C. Estimator properties

In general, a desired property of an estimator is that the
model is as accurate as possible, i.e., the estimation error
e = |f̂(x0)− f(x0)| is minimal. In most applications, it is
also desired that the estimator is unbiased, i.e., the expected
estimation error is zero, E(f̂(x0)) = f(x0). In the context of
an EA, however, a low standard deviation of the estimation
error σe seems more important, provided that the biases
on different points are consistent. The following example
illustrates the point: Assume that for a given estimator, e
has a probability distribution, with mean µe and standard
deviation σe. Consider the extreme case σe = 0: With rank-
based selection, an EA performs exactly as if the real fitness
is used independent of µe, but even with fitness proportional
selection the influence of µe on the composition of the next
generation is low. We conclude that the standard deviation
of the estimation error is the important estimator property in
the context of EAs. See [16] for more discussions on error
measures for models in fitness approximation.

D. Computational Complexity

In Section IV-B we calculated the computational cost of
building a single approximation model. Using a number of
approximate models to estimate robustness incurs additional
computational cost. The computational cost using the four
proposed model distribution methods varies. Due to space
limitations, we do not present a detailed analysis for each
method, but briefly list the cost components of which each
robustness estimation is composed.

• Building up approximation models. The cost for build-
ing one approximation model as given in Equations 12

are to be multiplied by the number of models that are
needed per estimation. In case of Single model, Nearest
model and Ensemble, only 1 model is built per estimation
whereas in Multiple models n models are built (cf.
Equation 13).

• Constructing the Latin hypercube set is possible in
linear time, i.e. O(n) where n is the number of samples.

• Cost incurred by evaluating polynomials: For a single
polynomial the complexity is O(nc) where nc is the
number of model coefficients. How many polynomials
are to be evaluated depends on the number of sample
points n and the model distribution method, i.e. in case
of Single model, Nearest model and Multiple models, 1
polynomial is evaluated per sample point, but in case of
Ensemble a set of m polynomials is evaluated, where m
is the ensemble size.

• Calculating f̂exp(x), or (f̂exp(x), f̂var(x)) , i.e. aver-
aging (the square) is done in linear time w.r.t. the sample
size, i.e. O(n) (cf. Equation 13).

• Additional cost: In case of Nearest model, additional
calculations are to be done in order to determine the
nearest model. In Ensemble additional cost is incurred
because the m nearest models need to be found and the
averaging over the polynomial evaluation results needs to
be done.

VI. SIMULATION STUDIES

The first goal of the simulation studies is to investigate
empirically whether fitness approximation is able to effec-
tively guide the evolutionary search for robust solutions.
Additionally, we compare performance of interpolation and
regression for fitness approximation. Another interesting issue
in fitness approximation is the influence of model distribution
on the performance of fitness approximation and thus on the
search effectiveness. Finally, we compare our methods to the
previously proposed methods Single disturbed [37], [38] for
SO robustness optimization and Weighted history [4], [22] for
both SO and MO robustness optimization (cf. Section II). Note
that in the MO case Weighted history estimates both fexp and
fvar empirically by evaluating the nearest neighbors of the
history. This is an extension of the original MO method [22]
because here the estimate is calculated based on the current
population only, and no weighting is used. Preliminary exper-
iments showed that adding these two features to the method
improves the performance. Additionally, we run the EA using
the raw fitness as optimization criterion, i.e. the EA is run
without robustness scheme. Since fexp is different from the
raw fitness optimum, this setting is expected to have poor
performance, and only serves for reference purposes. Finally,
we run the EA, estimating robustness by evaluating samples
with the real fitness instead of approximations. In other words,
the EA has a very good estimator for the real fexp as defined
in Equation 1. We denote this real fexp although this is strictly
speaking only a very good estimation. This method of course
requires a large number of real fitness function evaluations.
For example in our 5-dimensional test problems, it requires
250000 fitness evaluations, which is 50 times (the number of

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 7

TP 1 TP 2 TP 3

0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

x

f ,
 f ex

p

f
f
exp

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

x
f ,

 f ex
p

f
f
exp

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

x

f ,
 f ex

p

f
f
exp

TP 4 TP 5 TP 6

−0.4 −0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

x

f ,
 f ex

p

f
f
exp

0.2 0.4 0.6 0.8

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x

f ,
 f ex

p

f
f
exp

0 2 4 6 8 10
−2

−1

0

1

2

x

f ,
 f ex

p

f
f
exp

Fig. 2. 1-dimensional test problems for SO robustness optimization (TP 1-6). Figures show f and fexp (in TP 4 we zoom into the interesting area).

samples) higher than when approximation models are used.
This becomes infeasible in many real-world applications. For
our test problems, however, it provides a good reference of
the performance that our approximation methods could reach.
For clarity, Table I summarizes all compared methods.

TABLE I

SUMMARY OF COMPARED METHODS

New techniques (linear and quadratic , interpolation and regression)
SM Single model
ENS-5 Ensemble method with ensemble size 5
NEAR Nearest model
MM Multiple models
Benchmark techniques used for comparison
fraw Raw fitness optimization (without robustness

scheme)
Single disturbed Individual is disturbed before evaluation
Weighted history Estimation of fexp based on the weighted mean of

(previously evaluated) neighbors
real fexp Estimation of fexp based on real fitness function

evaluations (latin hypercube sampling)

A. Experimental Settings

1) Test Problems: To compare different algorithms for
solving robust optimization, a number of test problems (TPs)
are suggested in this paper. We identify four categories of TPs
for SO robustness according to the fitness landscape change
from the raw fitness to the effective fitness. Additionally, three
TPs are designed for MOO approach to robust solutions, of
which TP 7 has a continuous Pareto front and the TP8 has
a discrete Pareto front. All TPs considered in this work are
minimization problems and a detailed description of the TPs
can be found in Appendix A.

In the following, we attempt to divide the TPs into four
categories according to the differences between the raw and
expected fitness landscapes.

• Identical Optimum (Category 0): Raw fitness and
robust optimum are identical. Since these problems could
be solved by simply optimizing the raw fitness, they are
not really challenging. In the simulation studies we do
not test problems of this category.

• Neighborhood Optimum (Category 1): Raw fitness and
robust optimum are located on the same hill (w.r.t. raw
fitness).

• Local-Global-Flip (Category 2): A raw fitness local
optimum becomes the robust optimum.

• Max-Min-Flip (Category 3): The robust optimum (min.)
is located at a raw fitness maximum.

The above categorization is not tailored for our approximation
approach but illustrates challenges to robustness optimiza-
tion in general. With regard to approximate models, another
meaningful categorization might be to distinguish between
continuous and discontinuous fitness landscapes, since the
latter are expected to be more difficult to be approximated.

Now we present six test problems (TPs 1-6, see Fig.2) part
of which are taken from the literature. All test problems are
scalable to arbitrary dimensions. In this work, experiments are
conducted on the TPs of dimensions 2, 5 and 10.
TP 1, which is taken from [6], is a discontinuous Category 1
test problem. Although it is uni-modal, the problem might be
difficult to be approximated because of the discontinuity.
TP 2 is a continuous version of TP 1 and thus is a Category 1
problem, too. We expect the approximation methods to per-
form better on TP 2 than on TP1.
TP 3 is taken from [37] and is a variant of the function used

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 8

TP 7 TP 8 TP 9

0 2 4 6 8 10
−1

−0.5

0

0.5

x

f ,
 f ex

p ,
f va

r

f
f
exp

f
var

0 2 4 6 8 10
−2

−1

0

1

2

x

f ,
 f ex

p ,
f va

r

f
f
exp
f
var

0 2 4 6 8 10
−2

−1

0

1

2

x

f ,
 f ex

p ,
f va

r

f
f
exp
f
var

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.05

0.1

0.15

f
exp

f va
r

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

f
exp

f va
r

−1 −0.5 0 0.5 1

0

0.5

1

1.5

f
exp

f va
r

Fig. 3. 1-dimensional test problems for MO robustness optimization (TP 7-9). upper row: f , fexp, fvar, lower row: trade-off between fexp and fvar

in [11]. There are four sharp peaks and one broader peak.
The global optimum for fexp is located on the third (broad)
peak, which is a local optimum in the raw fitness landscape.
Thus, TP 3 is a Category 2 test problem. In [37], this test
problem was tested for dimensions 1 and 2, in our simulation
studies we will use this test function in up to 10 dimensions.
In particular in higher dimensions, this test function becomes
extremely difficult since the number of local optima equals 5d.
TP 4 is multi-modal w.r.t. f , whereas the fexp landscape is
uni-modal [34]. In the 1-dimensional illustration (Fig.2), we
see that the raw fitness optima (located on a d-dimensional
sphere) are “merged” to a single robust optimum (xi = 0).
Interestingly, the robust optimum (minimum) is a maximum
in the raw fitness landscape. Therefore TP 4 is Category 3 test
problem.
TP 5 is similar to TP 4, but here a single robust optimum
is divided into multiple optima. Since the new robust optima
are located where the raw fitness maxima are, TP 5 falls into
Category 3, too.
TP 6 is a variant of the function used in [22]. When the
feasible range of xi, i = 1, ..., d, is restricted to [0; 10], the
optimum w.r.t. fraw is at xi = 0.5, whereas the fexp optimum
is at xi = 3.5. Similar to TP 3, this test problem becomes very
difficult for a large d. For TP 3, no clear assignment to one
of the categories is possible, however, it combines aspects of
TP 2 and TP 3 and can thus be seen as a mixed Category 1-
Category 2 problem.

For MO robustness optimization we define problems
that provide a trade-off between the first objective fexp
and the second objective fvar, i.e. problems with a Pareto
front in a fexp − fvar space. Since MOEAs aim at finding
a set of Pareto-optimal solutions, the test problems may
categorized according to the continuity of the Pareto front.
For MO approaches to robustness optimization, we carried

out empirical studies on a set of 3 test problems (TPs 7-9),
see Fig.3.
TP 7 is extremely simple w.r.t. the optimization of a single
objective f or fexp. For MO optimization with fexp and
fvar, it provides a continuous Pareto-front. The challenge to
the MOEA here is to converge to a population which has a
broad coverage of the Pareto front. Of course the difficulty
increases with an increase of the dimensionality. In the
simulation studies we set d = 5.
TP 8, which is taken from [22], provides a discontinuous
Pareto-front. Since the number of separated Pareto-optimal
solutions increases rapidly with the increase of the dimension,
we used this test problem with d = 2.
TP 9 is a variant of TP 8 and has similar properties. The
main difference is that the number of Pareto-optimal solutions
is relatively lower. We used this test problem with d = 5.

2) Performance Measure: In the SO case, we choose the
best individual of the final generation w.r.t. the approximated
f̂exp as the final solution. Then, we re-evaluate fexp of the
final solution using the real fitness function and Stratified
Sampling (see Appendix B) with a large number of samples to
get a rather accurate estimate of the real expected fitness value.
In the figures, we simply refer to this criterion as fitness. To
reduce the influence of randomness, all reported results in the
SO simulation studies are averaged over 20 runs with different
random seeds. Statements about significance are based on 1-
sided t-tests and 1-sided Fisher tests with a significance level
of 97.5%.

A similar method in MO would have been to compute the
set of non-dominated solutions based on the approximated
fitness values of the final generation. However, the non-
dominated solutions based on the approximation model may
no longer be non-dominated when they are re-evaluated with

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 9

dimension 2 dimension 5 dimension 10

TP 1

 SM NEAR ENS−5 MM
−0.84

−0.74

−0.64

−0.53

−0.43

fit
ne

ss

 SM NEAR ENS−5 MM
−0.86

−0.77

−0.68

−0.59

−0.50

fit
ne

ss

 SM NEAR ENS−5 MM
−0.85

−0.78

−0.71

−0.65

−0.58

fit
ne

ss

00.050.1
9

9.05

9.1

lin.interpol.

quad.interpol.

lin.regres.

quad.regres.

f_raw

single dist.

weighted hist.

real f_exp

TP 2

 SM NEAR ENS−5 MM
−0.82

−0.75

−0.68

−0.61

−0.54

fit
ne

ss

 SM NEAR ENS−5 MM
−0.82

−0.77

−0.72

−0.67

−0.62

fit
ne

ss

 SM NEAR ENS−5 MM
−0.82

−0.78

−0.73

−0.69

−0.65

fit
ne

ss

00.050.1
9

9.05

9.1

lin.interpol.

quad.interpol.

lin.regres.

quad.regres.

f_raw

single dist.

weighted hist.

real f_exp

TP 3

 SM NEAR ENS−5 MM
−0.54

−0.47

−0.41

−0.34

−0.27

fit
ne

ss

 SM NEAR ENS−5 MM
−0.56

−0.48

−0.40

−0.32

−0.24

fit
ne

ss

 SM NEAR ENS−5 MM
−0.60

−0.50

−0.40

−0.30

−0.20

fit
ne

ss
00.050.1

9

9.05

9.1

lin.interpol.

quad.interpol.

lin.regres.

quad.regres.

f_raw

single dist.

weighted hist.

real f_exp

TP 4

 SM NEAR ENS−5 MM
+0.38

+0.47

+0.56

+0.65

+0.74

fit
ne

ss

 SM NEAR ENS−5 MM
+1.60

+2.33

+3.05

+3.77

+4.50

fit
ne

ss

 SM NEAR ENS−5 MM
+6.00

+6.88

+7.75

+8.62

+9.50

fit
ne

ss

00.050.1
9

9.05

9.1

lin.interpol.

quad.interpol.

lin.regres.

quad.regres.

f_raw

single dist.

weighted hist.

real f_exp

TP 5

 SM NEAR ENS−5 MM
−0.41

−0.39

−0.38

−0.36

−0.34

fit
ne

ss

 SM NEAR ENS−5 MM
−0.40

−0.38

−0.36

−0.35

−0.33

fit
ne

ss

 SM NEAR ENS−5 MM
−0.40

−0.38

−0.35

−0.33

−0.31

fit
ne

ss

00.050.1
9

9.05

9.1

lin.interpol.

quad.interpol.

lin.regres.

quad.regres.

f_raw

single dist.

weighted hist.

real f_exp

TP 6

 SM NEAR ENS−5 MM
−0.68

−0.50

−0.31

−0.13

+0.06

fit
ne

ss

 SM NEAR ENS−5 MM
−0.70

−0.50

−0.30

−0.10

+0.10

fit
ne

ss

 SM NEAR ENS−5 MM
−0.70

−0.50

−0.30

−0.10

+0.10

fit
ne

ss

00.050.1
9

9.05

9.1

lin.interpol.

quad.interpol.

lin.regres.

quad.regres.

f_raw

single dist.

weighted hist.

real f_exp

Fig. 4. Results of SO simulation studies (cf. Table I): All test problems (TP 1 - TP 6) in dimensions 2, 5, 10, averaged over 20 runs. If symbols are missing
in the figures, this indicates that the corresponding method’s performance is worse than the largest fitness value on the respective axis.

the real fitness function. Therefore, we decided to use a
simpler technique: We evaluate fexp and fvar of the entire
final generation using the real fitness and compute the non-
dominated front based on these evaluations. As performance

criterion, we plot the 50% attainment surface [12] based on
the attainment surfaces of 11 runs. The 50% attainment surface
can be interpreted as the typical result. We refer to it as median
attainment surface. Since the median attainment surface only

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 10

allows a qualitative comparison, we additionally used a quan-
titative performance index. From the large number of proposed
performance indices [28], we used the hypervolume [42].

3) Robustness Estimation Methods and Modeling Tech-
niques: The compared modeling techniques are linear interpo-
lation, quadratic interpolation, linear regression and quadratic
regression. For robustness estimation the following four meth-
ods have been tested: Single model (SM), Multiple models
(MM), Nearest model (NEAR) and the Ensemble method
(ENS). For the ensemble method, a number of ensemble sizes
have been tested. Considering all test problems, an ensemble
size of 5 turned out to be most effective and stable. We
therefore present in all figures Ensemble with an ensemble
size of 5 (ENS-5). In the simulation, the sample size (n in
Equation (13)) of Latin hypercube sampling was set to 10, 50
and 100 when the dimension equals 2, 5 and 10, respectively.
Other related parameters are provided in Table II.

4) Evolutionary Algorithm: A conventional evolution strat-
egy has been employed for SO search of robust optimal
solutions, whose parameters are outlined in Table II. NSGA-
II [10], which is one of the most efficient MOEAs, has been
employed for the MO search of robust solutions and the
parameters used in the simulations are listed in Table II. Note
that instead of the simulated binary crossover (SBX) used in
the original algorithm [10], the conventional 1-point crossover
and mutation have been adopted. With these settings, the total
number of calls to the real fitness function amounts to 5000
in our simulations.

TABLE II

EA PARAMETERS.

Parameters of the standard ES
(µ, λ) - reproduction scheme (15, 100)
standard evolution strategy σinit ∈ [0.01; 1.0]
recombination (obj. variables) discrete
recombination (strat. variabl.) generalized intermediate
no. generations 50
NSGA-II parameters
representation gray coding
number of bits (representation) 30
crossover probability 0.9
number of crossover points 1
flip probability (mutation) 0.01
population size 100
no. generations 50
Approximation parameters
history size (max) 5000
regression bandwidth disturbance range
regression min. training data 2× no. model coefficients
regression weight function tricube

B. SO Results

All results of the SO simulation studies are presented in
Fig.4. As can be seen, many of our new methods (geomet-
ric symbols) yield excellent performance on the 2- and 5-
dimensional test problems (compared to the reference solution
real fexp denoted by the solid line). In dimension 10, however,
our best methods fail to achieve a solution quality comparable
to the case when using real fexp on two multi-modal test
problems (TP 3 and TP 6). This is to be expected, taking into

account that the same number of fitness evaluations (5000) has
been allowed independent of the number of dimensions.

1) Estimation methods: When comparing the different es-
timation methods, the results provide clear evidence that the
Multiple models method works best. In the 2-dimensional
problems the best regression method combined with Single
model in most cases achieves a similar solution quality.
However, only in one (TP 4) of the six 5-dimensional test
problems, Multiple models does not outperform the other
methods. In the 10-dimensional test problems the performance
difference between Multiple models and the other techniques
are reduced. On the one hand, this is because building a
larger number of models yields more accurate fitness surface
approximations only if the space is sufficiently covered with
history data. Meanwhile, some of the 10-dimensional Test
problems (TP 3,TP 4) seem to be too difficult to find a robust
solution with the limited number of 5000 fitness evaluations.
Here, none of the methods finds the global optimum. On most
test problems, Nearest model is slightly better than the simple
Single model method. Using an Ensemble of the 5 nearest
models yields an additional benefit when using the (more
stable) regression models.

As already discussed in Section V-C, a low standard de-
viation of the estimation error σe is expected to improve the
performance of a fitness estimation based EA. This could be
a reason why the Ensemble method performs better than the
Nearest model method: Fitness approximations usually suffer
from some approximation error. For estimating fexp, models
are evaluated at sample points and the fexp estimation is
a result of averaging. Technically speaking, the convolution
of ns approximation error distributions reduces σe. However,
this assumes the ns approximation error distributions to be
statistically independent. This is not realistic because many
approximation errors result from the same approximation
model. In the Single model method, for instance, all ns

samples are evaluated with just a single model. But even in
the Multiple models case, the models built at ns sample points
are likely to be equal or similar if the history data density is
low. If statistical dependencies are present, σe is increased
by the covariances of the approximation error distributions.
The Ensemble method features an additional convolution that
potentially reduces the standard deviation of the approxima-
tion error for a single sample. However, all ensembles are
constructed based on the same set of available approximation
models. Thus, the σe-reducing convolution effect is diminished
by statistical dependence. Based on the above discussions,
Ensemble would be expected to perform at least as good as
Nearest model. However, Ensemble suffers from taking models
into account with a fitting point that has a larger distance from
the sample, which naturally increases σe. In our simulation
studies, the σe reducing convolution effect of Ensemble seems
to be dominating, since Ensemble (with 5 models) yields better
results than the Nearest model method. This must be due to
the convolution effect, because Ensemble and Nearest model
make use of the same set of approximation models.

To summarize, the Multiple models method is the most
effective and reliable modeling method on the tested problems,
although at a relatively high cost, compared to Ensemble which

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 11

can be considered as extremely efficient in this case.
2) Approximation methods: From Fig.4, we find that the

regression methods outperform the interpolation methods in
most cases (the circle and square are below the diamond and
triangle in the same column). Considering all 4 estimation
methods on the 6 test problems in all dimensions (totals to
4 · 6 · 3 = 72 scenarios), the two exceptions occur on 2-
dimensional TP 4 when Ensemble method is used and on
the 10-dimensional TP 6, which has shown to be too difficult
for all methods. The superiority of regression can clearly be
observed on the 5-dimensional test problems.

The main reason is that the interpolation methods are
likely to produce severely wrong estimations: By counting
the number of outliers, we found that interpolation is much
more vulnerable to outliers. As a result, the standard deviation
of the estimation error (σe) is larger in interpolation than
in regression. This observation has been verified empirically
in an additional experiment, where 1000 and 10000 data
points were randomly generated in the 5-dimensional space.
Based on these data sets, fexp was estimated with different
approximation methods. By running the experiment multiple
times and comparing the estimations to the real fexp we get an
empirical distribution of the estimation error e. The resulting
empirical standard deviation σe is presented in Table III for
different approximation methods (TP 6, Multiple models, d =
5). We find a significant difference between the σe produced by
interpolation and regression. These results show that regression

TABLE III

σe (TP 6, Multiple models, d = 5)

Hist.data lin.interp. quad.interp. lin.regr. quad.regr.
1000 0.38 0.47 0.22 0.30
10000 0.25 0.28 0.18 0.13

is clearly the preferred method in our simulations.
3) Approximation polynomials: Concerning the two poly-

nomials used in the regression methods, no clear conclusion
can be drawn on whether a linear or quadratic model performs
better. In general, it would be expected that a quadratic regres-
sion model performs at least as good as a linear model because
a linear polynomial is a subset of a quadratic. However, a
quadratic model requires significantly more training data than
a linear model. By adding data points of a larger distance to
the model fitting point, the local fitting might become worse
although polynomials of a higher order are used. With Multiple
models, the model is only evaluated at its fitting point.

Whether to choose a linear or a quadratic model of course
will depend strongly on the problem properties. However, in
higher dimensions building up a quadratic model is no longer
feasible, because a large number of training data (at least
the number of model coefficients nc = (d + 1)(d + 2)/2)
are required. Since the linear model has demonstrated good
performance on our test problems when it is combined with
Multiple models, we propose to use the linear model in this
case.

4) Weighted history: Comparing our approach to Weighted
history (dashed line), we find that particularly in dimensions
higher than 2, the Multiple models method combined with
regression models performs significantly better on all test

problems. In the 2-dimensional case, our approach is supe-
rior in all test problems except TP 3 and TP 4. This may
be explained by the asymmetry that is given around the
global fexp optimum of most of the problems where our
approach is superior (TP {1,2,6}): Since Weighted history
only takes into account the Euclidean distance of available
history data, the sample average might be strongly biased. In
higher dimensions, Weighted history fails to find an acceptable
solution. This is due to the sparsity of history data in higher
dimensions. Sufficient estimation accuracy with the Weighted
history approach requires that a minimum number of history
data lie in the stochastic neighborhood of the individual. In
contrast, when using approximation models, additional history
data points from outside the disturbance range can be used to
construct the model.

To summarize, estimating robustness based on approxima-
tion models seems to be more effective than using a Weighted
history method.

5) Single disturbed: In the SO case, we finally compare the
proposed methods (explicit sampling with help of approximate
models) with the Single disturbed approach with implicit
averaging [37]. From Fig.4, we see that on all test problems,
this approach fails to find an acceptable solution (dotted line).
This is at the first sight surprising, since TP 3 is taken from
reference [37] where the single disturbed approach has proven
successful in the 2-dimensional case. However, in that paper
a binary-coded genetic algorithm with proportional selection
is employed, whereas the real-coded evolution strategy with
strategy parameter self-adaptation is employed in this work.

For a fair comparison of the methods, 5 settings for the
EA with single disturbed evaluations have been tested, in par-
ticular EA’s without self-adaptation combined with different
selection pressures were tested, and compared against our best
approximation method (achieved with Setting 1). The different
settings are listed in Table IV, the results of the simulation are
shown in Fig.5.

TABLE IV

PARAMETER SETTINGS FOR COMPARISON

Setting 1 “Standard setting”, i.e. (15, 100), standard evolu-
tion strategy with σinit ∈ [0.01; 1.0], recombina-
tion (objective parameters): discrete; recombination
(strategy parameters): generalized intermediate

Setting 2 as Setting 1, but no strategy parameter self-
adaptation, object variables are mutated normally
distributed with σ = 0.1

Setting 3 as Setting 2, but (50, 100)
Setting 4 as Setting 1, but no strategy parameter self-

adaptation, object variables are mutated normally
distributed with σ = 0.5

Setting 5 as Setting 4 but (50, 100)

As can be seen, Single disturbed performs worse than
the explicit averaging method using an approximate model
independent of the parameter settings. Also, Single disturbed
seems to be particularly ineffective in combination with self-
adaptation. This can be seen by comparing Settings 1 and 2.
Since the step-size cannot be adjusted without self-adaptation,
we tested different (fixed) step-sizes. Reducing the selection
pressure in form of a larger parent population size (Settings 3
and 5) improves the performance of Single disturbed.

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 12

Set.1 Set.2 Set.3 Set.4 Set.5
−0.60

−0.50

−0.40

−0.30

−0.20

fit
ne

ss

Set.1 Set.2 Set.3 Set.4 Set.5
−0.70

−0.40

−0.10

+0.20

+0.50

fit
ne

ss

real f_expbest approx.Single dist.

Fig. 5. Comparison of the best approximation method with Tsutsui and
Ghosh’s implicit averaging (Single disturbed) on different EA parameter
settings. left: TP 3, d = 5; right: TP 6, d = 5 (averaged over 20 runs).

For a better understanding of how self-adaptation of the
step-sizes influences the performance of the algorithms, we
recorded the adaptation of the step-sizes for the explicit
averaging using Multiple models combined with a quadratic
regression model, and Single disturbed using the standard
setting for TP 6 of dimension 2 (cf. Fig.6). Clearly, in the
case of Multiple models with quadratic regression, the self-
adaptation works properly and the step-sizes converge after a
certain number of generations, whereas in the Single disturbed
approach, the step-sizes for both variables diverge seriously.
This phenomenon indicates that the implicit averaging method
does not work for standard evolution strategies with strategy
parameter self-adaptation, probably because the estimated ex-
pected fitness is too noisy and thus the self-adaptation fails.
A further analysis of this finding is beyond the scope of this
paper. We refer to [3] for an extensive analysis on the effect of
noise in evolution strategies. To summarize, explicit averaging

0 10 20 30 40 50
0

0.5

1

1.5

2

generations

st
ep

 s
iz

e

var 1
var 2

0 10 20 30 40 50
0

20

40

60

80

100

generations

st
ep

 s
iz

e

var 1
var 2

Fig. 6. Self-adaptation of the step-sizes (typical run). left: Multiple models
with quadratic regression; right: Single disturbed.

based on approximation models seems to be more effective
than implicit averaging as in Single disturbed.

6) Convergence process: Finally, Fig.7 shows some typical
convergence plots.

In the initial generations, none of the methods produces a
sufficiently accurate estimation. However, after some genera-
tions, the space is filled with history data and the estimations
become increasingly accurate. With an increasing estimation
accuracy, the algorithm approaches the global optimum, in the
case when the regression models are used in combination with
Multiple Models or Ensemble. The interpolation methods do
not manage to reduce the estimation error significantly over
time, and thus fails to converge to the global optimum.

Quadratic Regression

0 10 20 30 40 50
−0.70

−0.40

−0.10

+0.20

+0.50

generation

f ex
p

0 10 20 30 40 50
−1.35

−0.98

−0.60

−0.23

+0.15

generation

f ex
p e

st
im

at
io

n
er

ro
r

f_raw Single
dist.

Weight.
hist.

SM NEAR ENS−5

f_exp
real

MM

Multiple Models

0 10 20 30 40 50
−0.70

−0.40

−0.10

+0.20

+0.50

generation

f ex
p

0 10 20 30 40 50
−1.35

−0.98

−0.60

−0.23

+0.15

generation

f ex
p e

st
im

at
io

n
er

ro
r

f_raw Single
dist.

L.Intp. Q.Intp.
Weight.

hist.

L.Regr.

f_exp
real

Q.Regr.

Fig. 7. Convergence and development of the estimation error on the 5-
dimensional TP 6. Estimation error is calculated bfexp(x) − fexp(x) where
bfexp(x) is the estimated expected fitness and fexp(x) is the real expected
of the best individual (averaged over 20 runs).
Upper row: Quadratic regression with different model distribution methods
(cf. Table I), performance (top-left) and corresponding estimation error (top-
right). Lower row: Multiple models with different approximation meth-
ods, performance (bottom-left) and corresponding estimation error (bottom-
right). Convergence and improvement of estimation accuracy are reinforcing.

C. MO Results

In the MO approach we use the Multiple models method
only, since this method has shown to be most effective in the
SO simulations. Fig.8 compares the median attainment sur-
face achieved by different approximation models for different
problems. For clarity, the methods are additionally compared
in Table V based on their rank regarding the hypervolume
(area above the median attainment curve in Fig.8).

Let us first consider the 5-dimensional TP 7. The median
attainment surface produced when using the real (fexp, fvar)
dominates all suggested methods almost everywhere. The
Weighted history method fails to find solutions with a low
variance. A possible explanation for this might be the sparsity
of history data: If only a small number of history data points
are located within the disturbance range of an individual
(perhaps only one), this results in seriously wrong estimations
of the fitness variance. At the same time the effect on fexp-
estimation might be moderate since there exists no trade-off
between the raw fitness and the expected fitness on the MO
test problems.

Among the approximation models, the quadratic models

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 13

−0.5 −0.4 −0.3 −0.2
0

0.005

0.01

0.015

0.02

f
exp

f va
r

lin.intp.
quad.intp.
lin.regr.
quad.regr.
weight.hist.
real (f

exp
,f

var
)

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1
0

0.2

0.4

0.6

0.8

1

f
exp

f va
r

lin.intp.
quad.intp.
lin.regr.
quad.regr.
weight.hist.
real (f

exp
,f

var
)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
0

0.1

0.2

0.3

0.4

0.5

f
exp

f va
r

lin.intp.
quad.intp.
lin.regr.
quad.regr.
weight.hist.
real (f

exp
,f

var
)

Fig. 8. MO simulation results. Median attainment surfaces (11 runs): left: TP 7, d = 5, center: TP 8, d = 2, and right: TP 9, d = 5.

TABLE V

METHODS RANKED ACCORDING TO HYPERVOLUME OF MEDIAN

ATTAINMENT SURFACE (LOW RANKS CORRESPOND TO LARGER

HYPERVOLUME AND ARE BETTER)

TP 7 TP 8 TP 9Approach
(d = 5) (d = 2) (d = 5)

Avg

Weighted history 6 5 4 5
Linear interpolation 4 6 5 5
Quadratic interpolation 3 3 6 4
Linear regression 5 4 3 4
Quadratic regression 2 2 2 2
Real fexp 1 1 1 1

seems to work best, and among those, regression works better
than interpolation.

Next, we consider the 2-dimensional TP 8 (Fig.8(b)). Here
the results are less clear. However, the quadratic regression
model again yields the best results of all approximation
models. Also, Weighted history and linear interpolation are
clearly inferior.

Finally, Fig.8(c) shows the results on the 5-dimensional
TP 9. Clearly, the quadratic regression model performs best
(again), followed by the linear regression model. Again,
Weighted history fails to find solutions for a low variance.
Somewhat surprisingly, as can be seen in Table V, quadratic
interpolation performs poorly on this problem.

VII. CONCLUSIONS AND DISCUSSIONS

The goal of this work was to explore new methods for effi-
cient search for robust solutions, i.e., methods that require only
a small number of fitness function evaluations. We investigated
how information about the fitness surface that is collected
throughout the run of an EA can be exploited most effectively
for the purpose of robustness estimation. For both SO and MO
approaches to robust solutions, we showed that the suggested
methods improve the search performance compared to some
well-known existing approaches to robustness optimization
like implicit averaging (Single disturbed) [37] or weighted
explicit averaging (Weighted history). Comparing different
approximation models, we found for both approaches that
regression seems to be the preferred approximation method
for robustness optimization. This was somewhat surprising as
the fitness function is deterministic. However, the reason of the

poor performance of interpolation lies in its property of being
liable to severe estimation errors. Thus, the standard deviation
of the estimation error increases and misguides the search.

We introduced multiple methods to distribute and evalu-
ate approximation models. Besides the rather intuitive Sin-
gle model and Multiple models, we also investigated two
additional approaches called Nearest model and Ensemble.
Although the ensembles were based on a very simple model
distribution, this approach yields significant improvements in
some cases. Although at a much higher cost, the Multiple
models approach guides the search most effectively in our
simulations.

No definite conclusion can be drawn concerning whether a
linear or a quadratic model guides the search better. However,
since it becomes impossible with a limited number of training
data to build a quadratic model in higher dimensions, a linear
model must be used, which fortunately turned out to be as
good as the quadratic in most cases when combined with the
best model distribution method, namely Multiple models.

Two promising ideas for future research arise from the
above findings. First, it is very desirable to develop a more
sophisticated model distribution strategy so that the models
are able to better describe the fitness landscape searched by
the current population. Second, it would be very interesting to
further investigate the influence of ensembles of approximation
models on the search performance.

The MO approach to robustness optimization represents a
greater challenge to our new methods. The findings regarding
the choice of the approximation model are consistent with the
findings in SO: Regression is the recommended method, and
the quadratic model seems preferable (for variance estimation).

Scalability is an important issue if the proposed methods are
going to be employed to solve real-world problems. With an
increasing dimensionality d the approximation models require
a larger number of input data nin. However, when local linear
regression is used, which has shown to be very effective in
combination with Multiple models, nin increases linearly with
d. Thus the computational cost for building high-dimensional
linear regression models is still acceptable compared to that
of fitness evaluations in many real-world problems. Applying
the proposed algorithms to complex real-world problems will
be one of our future research topics.

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 14

ACKNOWLEDGMENTS

We would like to thank Tatsuya Okabe for his technical
assistance. Yaochu Jin and Ingo Paenke would like to thank
Bernhard Sendhoff and Edgar Körner for their support. Ingo
Paenke thanks Hartmut Schmeck for his support. Authors are
grateful to Xin Yao and anonymous reviewers whose com-
ments and suggestions have been very helpful in improving the
quality of this paper. The simulation code was implemented
based on the SHARK C++ library package, which is public
software available at http://shark-project.sourceforge.net/.

APPENDIX A
TEST PROBLEMS

The disturbance of each design variable is normally dis-
tributed with N (0, σ), where σ is chosen with respect to the
shape of the test function. In order to have a finite probability
distribution we cut the normal distribution at its 0.05- and
0.95- quantiles. The test problems (test function, feasible x-
domain and σ) are listed below:

f1(x) =
1

n

dX

i=1

f2b
(xi) , x ∈ [0; 10]d , σ = 0.5 ,

with f1b
(xi) =

(
2−xi

6
: 0.2 < xi ≤ 0.8 ,

0 : otherwise .

f2(x) =
1

n

dX

i=1

f2b
(xi) , x ∈ [0; 10]d , σ = 0.5 ,

with f2b
(xi) =

(
−(8 − xi)

0.1e−0.2(8−xi) : xi < 8 ,

0 : otherwise .

f3(x) =
1

n

dX

i=1

f3b
(xi) , x ∈ [0; 1]d , σ = 0.0625 ,

with f3b
(xi) =

8
<
:

e−2ln2(x−0.1
0.8

)
2

| sin(5πx)|0.5 : 0.4 < xi ≤ 0.6 ,

e−2ln2(x−0.1
0.8

)
2

sin6(5πx) : otherwise .

f4(x) = (x2 − α)
2

, x ∈ [−5;+5]d , σ = 0.5 ,

with α =

8
><
>:

0.1 : d = 2 ,

0.175 : d = 5 ,

0.3 : d = 10 .

f5(x) =
1

n

dX

i=1

f5b
(xi) , x ∈ [0; 1]d , σ = 0.05 ,

with f5b
(xi) =

8
>>>><
>>>>:

−0.5e
−0.5

(xi−0.4)2

0.052 : xi < 0.4696 ,

−0.6e
−0.5

(xi−0.5)2

0.022 : 0.4696 ≤ xi ≤ 0.5304 ,

−0.5e
−0.5

(xi−0.6)2

0.052 : otherwise .

f6(x) =
1

n

dX

i=1

f6b
(xi) , x ∈ [0; 10]d , σ = 0.5 ,

with f6b
(xi) = 2 sin(10e(−0.2xi)xi)e

(−0.25xi) .

f7(x) =
1

n

dX

i=1

f7b
(xi) , x ∈ [0; 10]d , σ = 0.5 ,

with f7b
(xi) =

(
(xi−2)4

6
: 2 < xi ≤ 8 ,

0 : otherwise .

f8(x) =
1

n

dX

i=1

f8b
(xi) , x ∈ [0; 10]d , σ = 0.1 ,

with f8b
(xi) = 2 sin(10e(−0.08xi)xi)e

(−0.25xi) .

f9(x) =
1

n

dX

i=1

f9b
(xi) , x ∈ [0; 10]d , σ = 0.5 ,

with f9b
(xi) = 2 sin(3e(−0.08xi)xi)e

(−0.25xi) .

APPENDIX B
SAMPLING TECHNIQUES

The following sampling techniques are mentioned in this
paper:

• Stratified sampling [29] divides the space of possible
disturbances into regions of equal probability according
to the probability distribution of the noise and draws one
sample from every region.

• Latin hypercube sampling [27]: In order to draw n
samples, the range of disturbances in each dimension is
divided into n parts of equal probability according to the
probability distribution, and n random samples are chosen
such that each quantile in each dimension is covered by
exactly one sample.

SUBMITTED TO IEEE TEC: SPECIAL ISSUE ON EVOLUTIONARY OPTIMIZATION IN PRESENCE OF UNCERTAINTIES 15

For an arbitrary distribution, the division into regions of equal
probability is done by calculating the respective quantiles.
Fig.9 illustrates the sampling methods for the case of uniform

Fig. 9. left: Stratified sampling, right: Latin hypercube sampling

distribution. Here, possible sample sets for the 2-dimensional
case are depicted. In this illustration, the number of quantiles
is 3 for both sampling methods.

REFERENCES

[1] P. Alfeld. Scattered data interpolation in three or more variables. In
T. Lyche and L. Schumaker, editors, Mathematical Methods in Computer
Aided Geometric Design, pages 1–33. Academic Press, 1989.

[2] D.K. Anthony and A.J. Keane. Robust-optimal design of a lightweight
space structure using a genetic algorithm. AIAA Journal, 41(8):1601–
1604, 2003.

[3] D. Arnold. Noisy Optimization with Evolution Strategies. Kluwer
Academic Publishers, 2002.

[4] J. Branke. Creating robust solutions by means of an evolutionary
algorithm. In A.E. Eiben, T. Bäck, M.Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature - PPSN V, pages 119–128.
Springer, 1998.

[5] J. Branke. Reducing the sampling variance when searching for robust
solutions. In L. Spector et al., editor, Genetic and Evolutionary Com-
putation Conference (GECCO ’01), pages 235–242. Morgan Kaufmann,
2001.

[6] J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer
Academic Publishers, 2002.

[7] J. Branke and C. Schmidt. Fast convergence by means of fitness
estimation. Soft Computing, 9(1):13–20, 2005.

[8] W. Chen, J. Allen, K.Tsui, and F. Mistree. A procedure for robust design:
Minimizing variations caused by noise factors and control factors. ASME
Journal of Mechanical Design, 118:478–485, 1996.

[9] I. Das. Robustness optimization for constrained nonlinear programming
problems. Engineering Optimization, 32(5):585–618, 2000.

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton,
J.J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature - PPSN VI, pages 849–858, 2000.

[11] K. Deb and D.E. Goldberg. An investigation of niche and species
formation in genetic function optimization. In J.D. Schaffer, editor, Pro-
ceedings of the Third International Conference on Genetic Algorithms,
pages 42–50, 1989.

[12] C.M. Fonseca and P.J. Fleming. On the performance assessment and
comparison of stochastic multiobjective optimizers. In H.-M. Voigt,
W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature - PPSN IV, pages 584–593, 1996.

[13] G.H. Goloub and C.F. van Loan. Matrix Computations. The John
Hopkins Press, 3rd edition, 1996.

[14] H. Greiner. Robust optical coating design with evolution strategies.
Applied Optics, 35(28):5477–5483, 1996.

[15] C.A.R. Hoare. Quicksort. Computer Journal, 5(1), 1962.
[16] M. Hüsken, Y. Jin, and B. Sendhoff. Structure optimization of neural

networks for evolutionary design optimization. Soft Computing, 9(1):21–
28, 2005.

[17] M. T. Jensen. Generating robust and flexible job shop schedules using
genetic algorithms. IEEE Transactions on Evolutionary Computation,
7(3):275–288, 2003.

[18] Y. Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing, 9(1):3–12, 2005.

[19] Y. Jin and J. Branke. Evolutionary optimization in uncertain environ-
ments – A survey. IEEE Transactions on Evolutionary Computation,
9(3):303–317, 2005.

[20] Y. Jin, M. Olhofer, and B. Sendhoff. Dynamic weighted aggregation
for evolutionary multi-objective optimization: Why does it work and
how? In Genetic and Evolutionary Computation Conference, pages
1042–1049. Morgan Kaufmann, 2001.

[21] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary
optimization with approximate fitness functions. IEEE Transactions on
Evolutionary Computation, 6(5):481–494, 2002.

[22] Y. Jin and B. Sendhoff. Trade-off between optimality and robustness:
An evolutionary multiobjective approach. In C.M. Fonseca et al., editor,
International Conference on Evolutionary Multi-criterion Optimization,
volume 2632 of LNCS, pages 237–251. Springer, 2003.

[23] V.J. Leon, S.D. Wu, and R.H. Storer. Robustness measures and robust
scheduling for job shops. IIE Transactions, 26:32–43, 1994.

[24] K.-H. Liang, X. Yao, and C. Newton. Evolutionary search of approxi-
mated n-dimensional landscapes. International Journal of Knowledge-
Based Intelligent Engineering Systems, 4(3):172–183, 2000.

[25] C. Loader. Local Regression and Likelihood. Springer, 1st edition, 1999.
[26] D. H. Loughlin and S. R. Ranjithan. Chance-constrained genetic

algorithms. In Genetic and Evolutionary Computation Conference, pages
369–376, 1999.

[27] M. D. McKay, W. J. Conover, and R. J. Beckman. A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 21:239–245, 1979.

[28] T. Okabe, Y. Jin, and B. Sendhoff. A critical survey of performance
indices for multi-objective optimization. In IEEE Congress on Evolu-
tionary Computation, pages 878–885, 2003.

[29] W. H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, second edition edition, 1992.

[30] T. Ray. Constrained robust optimal design using a multi-objective evo-
lutionary algorithm. In IEEE Congress on Evolutionary Computation,
pages 419–424. IEEE, 2002.

[31] T. Ray and H. M. Tsai. A parallel hybrid optimization algorithm for
robust airfoil design. In AIAA Aerospace Sciences Meeting and Exhibit,
pages 11474–11482, 2004.

[32] C. R. Reeves. A genetic algorithm approach to stochastic flowshop se-
quencing. In Proceedings of the IEE Colloquium on Genetic Algorithms
for Control and Systems Engineering, number 1992/106 in IEE Digest,
pages 13/1–13/4. IEE, London, 1992.

[33] R.G. Regis and C.A. Shoemaker. Local function approximation in
evolutionary algorithms for the optimization of costly functions. IEEE
Transactions on Evolutionary Computation, 8(5):490–505, 2004.

[34] B. Sendhoff, H. Beyer, and M. Olhofer. The influence of stochastic
quality functions on evolutionary search. In K. C. Tan, M. H. Lim,
X. Yao, and L. Wang, editors, Recent Advances in Simulated Evolution
and Learning, volume 2 of Advances in Natural Computation, pages
152–172. World Scientific, New York, 2004.

[35] R Sibson. A brief description of natural neighbor interpolation. In
V Barnet, editor, Interpreting Multivariate Data, pages 21–36. John
Wiley, 1981.

[36] A. Thompson. Evolutionary techniques for fault tolerance. In Proc.
UKACC International Conference on Control, pages 693–698, 1996.

[37] S. Tsutsui and A. Ghosh. Genetic algorithms with a robust solution
searching scheme. IEEE Transactions on Evolutionary Computation,
1(3):201–208, 1997.

[38] S. Tsutsui, A. Ghosh, and Y. Fujimoto. A robust solution searching
scheme in genetic search. In H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature -
PPSN IV, pages 543–552. Springer, 1996.

[39] D. Wiesmann, U. Hammel, and T. Bäck. Robust design of multilayer
optical coatings by means of evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, 2(4):162–167, 1998.

[40] Y. Yamaguchi and T. Arima. Aerodynamic optimization for the transonic
compressor stator blade. In I. C. Parmee and P. Hajela, editors,
Optimization in Industry, pages 163–172. Springer, 2002.

[41] Q. Zhang and H. Mühlenbein. On the convergence of a class of esti-
mation of distribution algorithms. IEEE Transactions on Evolutionary
Computation, 8(2):127–136, 2004.

[42] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A
comparative study and the strength pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4):257–271, 1999.

