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Learning Lateral Interactions for Feature Binding
and Sensory Segmentation from Prototypic Basis

Interactions
Sebastian Weng, Heiko Wersing, Jochen J. Steil, Helge Ritter

Abstract— We present a hybrid learning method bridging the fields of
recurrent neural networks, unsupervised Hebbian learning, vector quan-
tization, and supervised learning to implement a sophisticated image and
feature segmentation architecture. This architecture is based on the com-
petitive layer model (CLM) dynamic feature binding model which is ap-
plicable on a wide range of perceptual grouping and segmentation prob-
lems. A predefined target segmentation can be achieved as attractor states
of this linear threshold recurrent network, if the lateral weights are chosen
by Hebbian learning. The weight matrix is given by the correlation matrix
of special pattern vectors with a structure dependent on the target labeling.
Generalization is achieved by applying vector quantization on pairwise fea-
ture relations, like proximity and similarity, defined by external knowledge.
We show the successful application of the method to a number of artifical
test examples and a medical image segmentation problem of fluorescence
microscope cell images.

Keywords— Recurrent Neural Network, Feature Binding, Perceptual
Grouping, Supervised and Unsupervised Learning.

I. INTRODUCTION

The concept of feature binding has been proposed to provide
elegant solution strategies to the segmentation problem in per-
ception [21], [24], [25], [30]. Many feature binding models have
thus tried to reproduce grouping mechanisms, like the Gestalt
laws of visual perception, e.g. connectedness and good continu-
ation, using temporal synchronization [1], [3], [13], [24], [25] or
spatial coactivation [2], [4], [20], [30] for binding. In these mod-
els, grouping is based on lateral interactions between feature-
representing neurons which characterize the degree of compat-
ibility between features. Currently, in most of the approaches
this lateral interaction scheme is chosen heuristically, since the
experimental data on the corresponding connection patterns in
the visual cortex is insufficient. Nevertheless, in more complex
feature spaces this heuristic approach becomes infeasible, rais-
ing the question for more systematic learning methods for lateral
interactions.

Mozer et al. [13] suggested supervised learning for a dy-
namic feature binding model of complex-valued directional
units, where the connections to hidden units, guiding the group-
ing dynamics, were adapted by recurrent backpropagation learn-
ing. The application was limited to synthetic rectangle patterns.
Sirosh et al. [22] combined self-organizing maps in feature
space with Hebbian learning of lateral connections. Hofmann et
al. [7] considered unsupervised texture segmentation by a pair-
wise clustering approach on feature vectors derived from Gabor
filter banks at different frequencies and orientations. In their
model the pairwise feature compatibilities were determined by a
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divergence measure of the local feature distributions, which was
shown to achieve good segmentation results for a range of image
types. The problem of segmentation can also be phrased as a la-
beling problem, where relaxation labeling algorithms [21] have
been used as a popular tool in a wide range of computer vision
applications [10]. Pelillo & Refice [19] suggested a supervised
learning method for the compatibility coefficients of relaxation
labeling algorithms, based on minimizing the distance between a
target labeling vector and the output after iterating a fixed num-
ber of relaxation steps. The main problem are multiple local
minima arising in this highly nonlinear optimization problem.

As was shown recently, linear threshold (LT) networks pro-
vide interesting architectures for combining properties of digital
selection and analog context-sensitive amplification [5], [29],
[32] with efficient hardware implementation options [5]. Xie
et al. [31] demonstrated how these properties can be used to
learn winner-take-all competition between groups of neurons in
an LT network with lateral inhibition. We use the competitive
layer model (CLM), a large-scale, topographically organized re-
current network of linear threshold neurons which has proved
its capability to solve a large variety of feature binding prob-
lems [16], [28], [30], mostly in computer vision. Like other
feature binding methods, the CLM dynamics is based on evalu-
ating a pairwise interaction function, which indicates the mutual
degree of compatibility between two features with respect to the
desired grouping. Suitable interactions for the CLM were de-
rived from Gestalt principles [16], [20], [30] or had to be “hand-
crafted” using problem-specific knowledge. The key to learning
the compatibility function from a given labeled example is the
fact that stable binding states of the CLM dynamics are charac-
terized by a large number of consistency inequalities [30]. In
[28], a quadratic consistency optimization (QCO) approach has
been introduced to find feasible interaction weights considering
all consistency inequalities. In this contribution, we show that
the inequalities do not have to be explicitly computed because an
interaction which is optimal with respect to a given example la-
beling can be derived from a form of one-shot Hebbian learning
(HL). Generalization then can be achieved by projecting this op-
timal configuration to a number of basis functions which cover
the whole space of potential feature combinations. We show the
efficiency of this approach on a number of benchmark problems
and a challenging medical image segmentation problem.

In section II we present the architecture and dynamics of the
CLM. In section III we formulate the learning problem in terms
of consistency inequalities with respect to a given target labeling
and elaborate on the Hebbian learning result. This section fur-
ther introduces the basis function approach and describes, how
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basis functions can be generated in a data driven way. Section IV
shows the application of the learning architecture to controlled
artificial binding problems of increasing complexity and to the
real world problem of fluorescence cell segmentation. All re-
sults are compared to the earlier introduced quadratic optimiza-
tion approach. Section V discusses the relation of the CLM to
other feature binding architectures. Finally, we give a conclu-
sion in section VI.

II. THE CLM ARCHITECTURE

A. The General Architecture

The CLM [20] consists of a set ofL layers of feature-selective
linear threshold neurons (see Fig. 1). The activity of a neuron
at position r in layer α is denoted by xrα, and a column r de-
notes the set of the neuron activities xrα, α = 1, . . . , L, shar-
ing a common position r. Associated with each column r is a
particular feature vector mr which contains a set of local prop-
erties, e.g. local edge elements characterized by position and
orientation (xr, yr, ϕr). A binding between two features mr

and mr′ is expressed by simultaneous activities xralpha(r) > 0
and xr′α(r′) > 0 that share a common layer α(r) = α(r′). All
neurons in a column r are equally driven by an external input hr
which represents the significance of the detection of feature r by
a preprocessing step, for simplicity, we assume in this work all
hr to be equal to one. The afferent inputhr is fed to the activities
xrα with a connection weight J > 0. Within each layer α the
activities are coupled via lateral connections frr′ which charac-
terize the degree of compatibility between features mr and mr′ .
frr′ = f(mr,mr′) is a symmetric function of the feature pa-
rameters, thus frr′ = fr′r. Positive values of frr′ express com-
patibility through excitatory connections, while negative values
of frr′ express incompatibility through inhibitory connections.

The purpose of the layered arrangement in the CLM is to en-
force a dynamical assignment of the input features to the layers
using the contextual information stored in the lateral interac-
tions. The unique assignment to a single layer is realized by
a columnar Winner-Take-All (WTA) circuit which uses mutual
symmetric inhibitory interactions with absolute strength J > 0
between neural activities xrα and xrβ that share a common col-
umn r. Due to the WTA coupling, for a stable equilibrium state
of the CLM only one neuron from a single layer can be active
within each column [30]. Thereby the whole attractor state de-
scribes a separation of the input features into several groups,
where each group is active in a different layer. Remarkably the
number of layers does not predetermine the number of active
groups, since for sufficiently many layers only those are active
that carry a salient group.

The combination of afferent inputs and lateral and vertical in-
teractions is combined into the standard linear threshold additive
activity dynamics

ẋrα = −xrα + σ
(
J(hr −

∑

β

xrβ) +
∑

r′
frr′xr′α

)
, (1)

where σ(x) = max(0, x). This corresponds to gradient de-
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Fig. 1. The competitive layer model architecture (see text for description).

scent in the energy

E = −
∑

rα

Jhrxrα +
1

2

∑

rαβ

Jxrαxrβ −
1

2

∑

αrr′

frr′xrαxr′α.

(2)
The minima of (2) correspond to stable states of the CLM. It is

proved [30] that for J large compared to the lateral weights frr′
a single active neuron in each column reproduces its afferent
input, xrα(r) ≈ hr, while the other neurons of the column are
inactive xrβ = 0, β 6= α(r). The assignments of the features
r to the layers α(r) are characterized by consistency conditions
for a minimum in E:
∑

r′
frr′xr′β <

∑

r′
frr′xr′α̂(r) for all r, β 6= α̂(r), (3)

expressing that each feature r is assigned to the layer α(r) =
argmaxα

∑
r′ frr′xr′α, where it receives the maximal support

from the other features in this layer.
The CLM-dynamics can be implemented by a Gauss-Seidel

approach that iteratively tries to find a fixed point solution of
(1) for a randomly selected neuron. This implementation can be
extended by an annealing technique introducing a pseudo tem-
perature T to prevent suboptimal attractor states. We present the
simulation algorithm in appendix I, details can be found in [30].

B. Figure-Background Separation

A special goal in many grouping and segmentation tasks is the
separation of the relevant objects in the data from noisy or inco-
herent parts that form some kind of background for the desired
information. This requirement can be easily integrated into the
CLM architecture by using an additional layer b, where the lat-
eral interactions are restricted to a self-interaction with strength
m such that f brr′ = mδrr′ (δrr′ is the Kronecker delta). Using
this expression as right respectively left hand side of the consis-
tency conditions (3) yields thatm defines a threshold of minimal
mutual support that is necessary to assign a featuremr to one of
the relevant groups (α 6= b). All features whose mutual support
lies below this threshold are assigned to the background.

III. LEARNING OF LATERAL INTERACTIONS

A. Formulation of the Learning Problem

The learning problem consists of finding a suitable compati-
bility function frr′ = f(mr,mr′) which expresses the prefer-
ence to bind similar features mr,mr′ from a problem-specific
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feature domain F = {m1, . . . ,mNF} by positive values or
the preference to segregate dissimilar features by negative val-
ues, respectively. We assume that a set of M labeled train-
ing patterns P i, i = 1, . . . ,M is given. For each P i a subset
Ri = {mi

1, . . . ,m
i
Ni} of N i different features and their cor-

responding target labels αi(r) = α(mi
r) ∈ {1, . . . , L} is ob-

tained, where L is the maximal number of groups in a pattern
and r ∈ {1, . . . , N i}.

We first consider the case of a single training pattern P i = P
to skip the index i and consider generalization to a larger train-
ing set later. Unless otherwise stated, we use the convention
that r ∈ {1, . . . , N i} and that α(r) denotes the target label for
feature mr while β and β′, denote other possible labels from
{1, . . . , L}, (β 6= α(r) 6= β′).

To obtain a target attractor y for the CLM dynamics from
the desired labels α(r), r = 1, . . . , N , we set the activations of
neurons that describe a correct assignment α(r) to one and all
others to zero:

yrα(r) = 1; yrβ = 0; for all r, β 6= α(r). (4)
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Fig. 2. Target state of the CLM: Activations of neurons that describe a correct
assignment yrα(r) are set to one, while all others are set to zero.

The learning goal is to choose frr′ such that these target states
are stable states of the CLM grouping dynamics in the sense of
minima of (2) which implies that they must be consistent with
respect to (3). Therefore we substitute the target states (4) into
(3) to obtain N(L− 1) target consistency conditions

N∑

r′=1

frr′yr′β <

N∑

r′=1

frr′yr′α(r) for all r, β 6= α(r). (5)

In [28] and [26], the problem to violate the conditions (5) as lit-
tle as possible is treated as a quadratic consistency optimization
(QCO) problem in the variables frr′ , for details see Appendix
II. Already this approach yields remarkable grouping quality
and will be compared with our new methods below. The draw-
back of the quadratic optimization is that it requires to compute
and store all N(L − 1) inequalities in (5) which for most ap-
plications is computationally demanding or impossible. Below
we show that this effort can be avoided, based on theoretical
considerations on Hebbian learning.

B. Hebbian Learning

To fulfill (5) we choose a matrix F̂ = (frr′) of lateral in-
teractions as the correlation matrix of all differential vectors

(yγ − yµ), where the vectors yγ and yµ represent all compo-
nents in the γth and µth layer of the goal state y (see fig. 2)

F̂ =
∑

γ

∑

µ6=γ
(yγ − yµ)(yγ − yµ)T . (6)

Because of the special structure of the vectors (yγ − yµ) we
can evaluate F̂ without explicit computation. Without restric-
tion consider the features and target labels ordered, such that
r ≤ r′ ⇔ α(r) ≤ α(r′). By this permutation we get new goal
state vectors yordγ and yordµ . Since the vectors (yordγ − yordµ )
have only entries 1, -1, and 0, and due to the ordering of the
labels, we obtain the block-diagonal matrix

F̂

2
=




[
L−1

]
N1×N1

[
−1
]
N1×N2

. . .
[
−1
]
N1×NL[

−1
]
N2×N1

[
L−1

]
N2×N2

. . .
[
−1
]
N2×NL

...
. . . . . .

...[
−1
]
NL×N1

[
−1
]
NL×N2

. . .
[
L−1

]
NL×NL




(7)

where [·]Ni×Nj is a constant matrix of size Ni ×Nj . We show
a more descriptive derivation of (7) for the concrete example of
3 groups with 3, 2, and 1 feature in the appendix III.

We find that the positive entries are scaled against negative
ones with a scalar factor λ = 1

L−1 which only depends on the
number of groups in the pattern. This reflects that there exist for
each r a total of L− 1 consistency inequalities (5). The block-
diagonal structure of (7) fulfills (5), because all positive values
yr′β on the left hand side are multiplied with negative weights
frr′ < 0, while all positive values yr′α on the right hand side
are multiplied with positive weights frr′ > 0. This property
still holds for all simultaneous permutations of the columns and
rows of (7) that describe an arbitrary ordering of the features in
a concrete pattern.

Obviously, for any positive value of λ the interaction matrix
(7) makes the target labeling consistent for the CLM according
to (5), because it preserves the block-diagonal structure of pos-
itive and negative values in the interaction matrix F̂ . For the
moment we keep λ = 1

L−1 fixed, while in the later chapters we
will show how the modification of λ controls the segmentation
level of the output labeling of the CLM.

To apply well-known arguments from Hebbian learning to
store attractor states in a Hopfield network [8], we make the
consistency inequalities (5) more restrictive by introducing fur-
ther assumptions about the stable states of the CLM. We require
the support of all features mr belonging to a group α(r) to be
of equal strength in all other layers β and β′ which can be ex-
pressed by the equations:

N∑

r′=1

frr′yr′β =
N∑

r′=1

frr′yr′β′ . (8)

On the other hand assume that the inequalities in (5) for the
target label hold with a strict margin of one:

1 +

N∑

r′=1

frr′yr′β =

N∑

r′=1

frr′yr′α(r). (9)
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We collect all lateral weights frr′ corresponding to the feature
mr as a row vector fr = (fr1, . . . , frN) and all components yµr
in the layer µ, of the target state y as yµ = (y1µ, . . . , yNµ)T

and rewrite (8) and (9) as scalar products

fr(yβ − yβ′) = 0⇔ fr(yβ′ − yβ) = 0, (10)
fr(yα(r) − yβ) = 1⇔ fr(yβ − yα(r)) = −1. (11)

Now choose two arbitrary labels γ, µ ∈ {1, . . . , L} and collect
all equations from (10) and (11) which contain the vector (yγ −
yµ), then for all r:

fr(yγ − yµ) = 1, α(r) = γ (⇔ (yγ − yµ)r = 1) ,

fr(yγ − yµ) = −1, α(r) = µ (⇔ (yγ − yµ)r = −1) ,

fr(yγ − yµ) = 0, γ 6= α(r) 6= µ (⇔ (yγ − yµ)r = 0) .

Stacking the vectors fr to obtain the desired interaction matrix
F = (fT1 , . . . , f

T
N )T yields the matrix-vector product

(F (yγ − yµ))r =





1 : (yγ − yµ)r = 1
−1 : (yγ − yµ)r = −1

0 : (yγ − yµ)r = 0
. (12)

If we now assume that we are not seeking the lateral connec-
tions for the linear threshold neurons of the CLM, but interprete
the matrix F as a weight matrix of a Hopfield network with bi-
nary neurons, we see that the learning problem is similar to the
problem of storing the L(L− 1) pattern vectors yγ − yµ in the
weight matrix of a Hopfield network. According to standard
Hebbian learning we can choose F̂ as the correlation matrix of
all vectors (yγ − yµ) as in (6).

The argument of Hebbian learning holds exactly, if all pattern
vectors (yγ−yµ) are orthogonal. In our case, every two vectors
(yα−yβ) and (yα−yβ′) have an overlap proportional to the size
of the groupα. Nevertheless, (6) is a reasonable choice, because
essentially we are not interested in the exact reconstruction of
the pattern vectors (yα−yβ), but rather want to reconstruct the
correct grouping indicated by yα. In this respect, the overlap
causes a self-reinforcement of the groups proportional to their
size rather than to distort the grouping. Consequently, the CLM
dynamics becomes biased towards finding larger groups faster
than smaller ones.

C. Generalization to New Patterns

In general, the feature domain F ∈ Rd is a high-dimensional
discrete or a non finite set and the training examples cover only
a small and discrete subset of F . Therefore we have to gen-
eralize the discrete interaction matrix F̂ obtained by the Heb-
bian learning as described above to an interaction function de-
fined on the full feature domain f : F2 → R. As proposed
already in the context of the quadratic optimization approach
to CLM learning [28], generalization can be obtained by de-
composing the interaction function into a linear combination
of a set of K arbitrary symmetric basis interaction functions
gjrr′ = gj(mr,mr′) : F2 → R, j = 1, . . .K which are de-
fined on the whole feature space such that

frr′ =
∑

j

cjg
j
rr′ . (13)

The analysis above provides an elegant way to choose suitable
coefficients cj by projecting the Hebbian correlation matrix F̂
in (6) onto the basis functions gj

cj =
∑

r,r′

f̂rr′g
j
rr′/ ‖ gj ‖ . (14)

We see that the basis functions embody contextual knowledge
that is used to reduce the dimension of the learning problem.
Equation (13) is only a good approximation of frr′ , if there is
a high overlap between f̂rr′ and the shape of gjrr′ such that the
coefficients cj describe the relevant components of f̂rr′ . There-
fore the manual definition and adjustment of suitable basis inter-
actions requires both problem-specific knowledge and detailed
knowledge about the functionality of the CLM and results in
much training and testing work for the user. Thus we turn now
to the problem how suitable basis functions can be generated au-
tomatically without making assumptions about the shape of the
interaction function [26].

Assume the basis functions as binary step functions (gjrr′ ∈
{0, 1}) that describe a disjunct partitioning of the space F 2

(gjrr′g
i
rr′ = δij). This partitioning should be symmetric accord-

ing to feature exchange (gjrr′ = gjr′r) to ensure symmetry of the
matrix F . Now we can simplify the projection of the theoretical
interaction onto the basis functions (14) to the average interac-
tion value within the respective region of F2.

cj =
∑

r,r′

f̂rr′g
j
rr′/

∑

rr′

gjrr′ . (15)

We can approximate this average by random sampling of fea-
ture pairs (mr,mr′) from the training set, evaluation of the ba-
sis functions, and using f̂rr′ = 1, if the features belong to the
same group, and f̂rr′ = −1/(L− 1), if they belong to different
groups, respectively.

We see, that (13) can only be a good approximation of frr′ , if
the partitioning described by the basis functions defines regions
which consist either mainly of feature-pairs with f̂rr′ > 0 or
mainly of feature-pairs with f̂rr′ < 0, so that the interactions
coefficients can adopt high absolute values. Therefore the bor-
ders of the basis functions should as good as possible describe
the borders between positive and negative values f̂rr′ in F2.

There are two principal approaches to this problem: The first
is to discretize F2 to a lattice structure. However through the
curse of dimensionality in F2 for a fine discretization this ap-
proach results in an impractical high number of basis functions.

The second approach is to train a standard classifier in F 2

to separate the regions of f̂rr′ > 0 and f̂rr′ < 0 from each
other. This approach was tested in [27] by application of the
Multi Layer Perceptron (MLP) and the Support Vector Machine
(SVM) on the problem of fluorescence cell image segmentation
and compared with results of the original QCO approach. The
application of SVM showed good qualitative results, while in
case of MLP is was difficult to choose an appropriate network
architecture and learning parameters. However, practically the
application of SVM and MLP seems not adequate, because in
real world problems like the cell segmentation example the re-
gions of f̂rr′ > 0 and f̂rr′ < 0 have a severe overlap, such
that they cannot be separated exactly. As a result, the learned
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Fig. 3. Sketch of the Approximated Hebbian Learning (AHL). Starting from a set of hand-labeled patterns which can be interpreted as goal states of the CLM-
dynamics, the learning algorithm extracts two kinds of information. Each pair of features (mr ,mr′) is transferred into a proximity vector drr′ by applying
a set of predefined proximity functions dp(mr,mr′), p = 1, . . . , P . Each feature pair is also associated with a desired positive or negative interaction value.
In the first learning phase, a set of randomly chosen proximity vectors drr′ is clustered to obtain a Voronoi partitioning of the proximity space. In the second
learning phase, the distribution of positive and negative interaction within the proximity space is measured by counting feature pairs with positive and negative
associated interaction within the Voronoi cells (dark color shows low number of feature-pairs and light color shows high number). These two density distributions
are combined by the scaling parameter λ to the resulting interaction function (there dark color symbolizes negative interaction and light color symbolizes positive
interaction).

classification functions from MLP and SVM were very complex
and needed much more evaluation time than the results of QCO
on the basis function approach here preferred. This point is es-
sential for the application of the CLM, because the number of
lateral weights frr′ is quadratic in the number of features in a
pattern such that already the computation of the matrix F can
be very resource demanding if the definition of the basis func-
tions is too complex.

Learning of a qualitatively effective and computational effi-
cient interaction function demands adaptation of learning pa-
rameters, like the kernel shape and margin size of SVM, to the
presented learning problem.

We now present an alternative to these two approaches for
finding basis functions based on the unsupervised learning prin-
ciple of vector quantization (VQ) that results in a high evaluation
speed.

D. Data Driven Generation of Basis Interactions

As frr′ and thus as well gjrr′ express some degree of mutual
compatibility or proximity of a feature pair (mr,mr′) we first
transform each pair into a generalized proximity space D by
forming vectors

drr′ = [a1d1(mr,mr′), . . . , aP dP (mr,mr′)]
T . (16)

Each component dp(mr,mr′) defines a proximity function ac-
cording to some properties of the features mr and mr′ e.g. the
local distance between two features. These components are nor-
malized by their variance in the pattern or left unchanged, if the
variance is zero:

ap =

{ 1
σ2(dp(mr ,mr′ ))

: σ2(dp(mr,mr′)) > 0

1 : σ2(dp(mr,mr′)) = 0
. (17)

It has to be emphasized, that the proximity functions
dp(mr,mr′) need not define a metric in a strict sense. The only
constraint is that they are symmetric under feature-exchange
dp(mr,mr′) = dp(mr′ ,mr), allowing a high freedom in defin-
ing grouping principles for the interaction function. Additional
properties, like translation, rotation, and scale invariance of the
proximity functions, can be required to achieve a generalization

of the desired grouping behavior according to object properties,
like position, size and orientation.

We use a variation of vector quantization, the activity equili-
bration vector quantization AEV [6], to map the proximity vec-
tors drr′ to a set of K prototypes d̃j. Then we choose as j-th
basis interaction gj the membership function

gjrr′ =

{
1 : (mr,mr′) ∈ Vj
0 : (mr,mr′) 6∈ Vj (18)

of the corresponding j-th multidimensional Voronoi cell [26]:

Vj = {(mr,mr′) | ∀i 6= j : ‖ drr′ − d̃j ‖≤‖ drr′ − d̃i ‖}.
(19)

Since clustering techniques are dependent on the initialization
of prototypes there can occur states with “unused” prototypes,
which results in low activation of prototypes d̃j measured by
low values of Aj = |Vj |. The AEV uses a heuristic to reini-
tialize prototypes with low activation close to prototypes with a
high activation that causes an activity equalization of the proto-
types such that we neglect the normalization term in (15) in the
following.

The representation of the basis functions as Voronoi cells in
the proximity space simplifies the computation of the interaction
weights frr′ . For a given feature pair we have to compute the
proximity vector drr′ , evaluate it’s nearest neighbor from the set
of K prototypes d̃j, and return the interaction coefficient cj of
this prototype. Figure 4 shows a sketch of this procedure.

E. Aspects of Implementation

From the special structure of the theoretically derived inter-
action matrix F̂ in section III-B and the basis functions in the
last section we come to an efficient straight-forward learning al-
gorithm with the possibility to control the segmentation level of
the grouping result.

The theoretical interaction weights f̂rr′ (6) can adopt only
one positive and one negative value, where the negative is scaled
against the positive one by the factor λ = 1

L−1 . Neglecting the
normalization because of the activity equilibration we rewrite
(15) as
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vector drr′ and taking the interaction coefficient cj of the nearest proximity prototype d̃j as their pairwise interaction. Then F is used as the weight-matrix for the
lateral connections within the layers of the CLM and the dynamics of the CLM is simulated, until it converges to an attractor state which defines the output labeling.

cj =
∑

r,r′|α(r)=α(r′)

gjrr′ −
∑

r,r′|α(r)6=α(r′)

λgjrr′ . (20)

Denote the positive and negative part of the cj by

c+j =
∑

(mr ,mr′ )∈Vj |
α(r)=α(r′)

1; c−j =
∑

(mr ,mr′ )∈Vj |
α(r)6=α(r′)

1. (21)

Then the computation of cj means counting of feature pairs
(mr,mr′) with positive and negative values f̂rr′ within the cor-
responding Voronoi cells. Obviously

c = c+ − λc−, (22)

where c, c+ and c− are the vectors of the values cj , c+j and c−j ,
j = 1, . . . ,K respectively.

The quality of the so-constructed interaction function (13) de-
pends on the angle between the vectors c+ and c−, because we
can only get clear positive or negative interaction weights frr′ ,
if for each basis function gjrr′ either the value of c+j dominates
against c−j or vice versa. Otherwise, the values of the c+

j and
c−j annihilate each other and the resulting cj are close to zero.
In this sense the learned interaction is optimal, if (c+)T c− = 0
holds, while in the other cases it depends on the strength of the
factor λ and the relation between c+

j and c−j whether the cor-
responding cj become positive or negative. Thus the angle be-
tween c+ and c− is a good measure for the evaluation of learn-
ing success. It yields information whether the basis functions
have been chosen appropriately and whether the labeled train-
ing pattern is compatible with this choice.

Regarding the scaling factor λ as a variable parameter, we
find (see Fig. 5) that equation (22) defines a line within the
learning parameter spaceRK . The choice of λ affects the group-
ing behavior of the CLM: a decrease of λ biases the interaction
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c−
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c = c+ − λc−

Fig. 5. Choice of λ: The vector c+ describes the projection of the positive
components of F onto the basis functions gj

rr′ , while c− shows the projection
of the negative components of F to the basis functions. If we want to compute c
by c = c+−λc−, the fulfillment of the consistency conditions is implied, if we
choose λ in such a way, that c lies between the lines cT c− = 0 and cT c+ = 0.
We see, that the importance of the right choice of λ depends essentially on the
angle between c+ and c−. If both vectors are linearly independent, we can
choose λ > 0 almost arbitrarily, while the feasible interval for λ shrinks with the
angle between c+ and c−. Therefore the qualitative performance of the learning
approach depends on a good choice of basis functions which are orthogonal for
feature pairs within and between groups.

function towards a higher attraction, which results in fewer but
bigger groups in the segmentation of new patterns; an increase
biases the interaction function towards a higher repulsion, which
results in more but smaller groups in the output of the CLM.
Thus after training of c+ and c−, we can use λ to adjust the
CLM to a finer or rougher segmentation of the input pattern.

To constrain the range of λ, we once more inspect the con-
sistency conditions (5) which are fulfilled, if the left hand side
of equation (5) is always < 0 and the right hand side is always
> 1. By separate summation of all left hand sides and all right
hand sides, the insertion of the superposition of basis functions
(13), and the comparison of the result with the definitions of the
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components c+j and c−j in (21), we get the two inequalities:

cT c+ > 0 and cT c− < 0. (23)

From (22) and (23) we get an upper and lower bound for λ (see
Fig. 5) as:

(c+)T c+

(c−)T c+
> λ >

(c+)T c−

(c−)T c−
. (24)

We can perform a linear search between the upper and lower
bound to adjust λ to a desired segmentation level. In the follow-
ing we will use the convention, that c+ and c− will be normal-
ized by 1

‖c+‖ and 1
‖c−‖ , where ‖ · ‖ means the sum of all (per

definition nonnegative) values c+
j respectively c−j to uniquely

specify the value of λ.
In this framework, the only choice left to the user is the se-

lection of appropriate feature properties, like color, position and
orientation, an adequate distance function dp(mr,mr′), and the
number of basis functions K. From this choice, the learning is
fully self-contained with λ as the only free parameter left for
putting a bias on larger or smaller groups.

F. Extension to Training Sets with several Training Patterns.

Up to now, we have assumed that the training set consists only
of a single pattern. This approach can be sufficient to learn a
grouping behavior, because our learning algorithm mainly uses
statistics on pairwise feature relations and their correlation ac-
cording to the hand labeling. A single pattern can comprise a
huge set of pairwise feature combinations and therefore can be
sufficient to represent the statistics of the desired grouping be-
havior.

The algorithm can be applied to a training set with several
patterns without major modifications. We can simply perform
the scaling of proximity functions (17), the clustering step of
AEV, and the estimation of c+ and c− (21) on a representative
sample of feature pairs which is uniformly chosen from all pat-
terns, provided the two features forming a pair are drawn from
the same pattern. An implementation of the whole learning al-
gorithm which we call Approximated Hebbian Learning (AHL),
can be found in the appendix IV, a summary of the complete
approach is sketched in Fig. 3. An additional sketch for the
application process of the CLM is given in Fig. 4.

G. Estimation of the Background Layer Strength

If the CLM contains a special background layer g, the strength
of self-interactionm in the background layer has to be weighted
against the lateral interactions frr′ . A feature mr is assigned
to the background, if m is bigger than the support in all other
layers, while it is assigned to the relevant groups, if the support
in at least one layer is higher thanm. Thereforem is constrained
by additional consistency conditions, where m has to be bigger
or smaller than the maximal lateral support maxα

∑
r′ frr′xrα

of the feature mr in the other layers α 6= b, whether the feature
mr should be assigned to the background or not.

We try to estimate a suitable value for m by assuming the
average maximal support of all features in the background as
lower boundmlow

mlow =

∑
mr |α(r)=b maxα (

∑
r′ frr′yr′α)

#mr|α(r) = b
, (25)

and the average maximum support of all features in the figure
groups as upper bound mup for m.

mup =

∑
mr |α(r)6=b maxα (

∑
r′ frr′yr′α)

#mr|α(r) 6= b
. (26)

A simple heuristic which proofed to work is, to set m between
mlow and mup, e.g.

m = (mlow + 3mup)/4. (27)

IV. APPLICATION
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Fig. 6. Proximity measures for oriented line segments: Two line segments mr

and mr′ define a triangle (pr ,pr′ , I(mr ,mr′)), where I(mr ,mr′) is the
intersection point of the two line segments. The proximity of mr and mr′ is
expressed by the local distance ||d|| and the three angles within the triangle,
where we swap θ2 and θ3, if θ3 > θ2 to ensure the symmetry of drr′ . So
drr′ = (a1||d||, a2θ1, a3θ2, a4θ3)T . If I(mr ,mr′) does not exist, because
both features have parallel orientation, θ1 is set to zero, describing an infinite
sharp angle. θ2 and θ3 describe the angles between the orientation of the two
features and the vector d under the constraint θ1 + θ2 + θ3 = π.

For systematic benchmarking, we use artifically generated
datasets and investigate the problem of binding local line seg-
ments to regular geometrical polygons of certain size and shape.

A polygon is described by the parameters (x, y,R, θstart, S),
where x, y and R define the center and radius of a circle. Start-
ing on the circumfence of this circle at the angle θ = θstart,
we get a regular geometrical object by successively increasing θ
with 2π

S and stepping to the next point on the circumfence at the
angle θ. Therefore S defines the shape of the polygon as point,
line, triangle, square, etc.

These lines are divided in into small line segments of equal
length which define feature vectors mr = (pr, ϕr)

T by their
position pr = (xr, yr) and orientation or = (dxr, dyr) mapped
to an orientation angles ϕr ∈ [0, π].

A pattern is given by one to five objects of same shape S
and similar size R, where the remaining object parameters are
chosen randomly as x, y ∈ [R, 3R] and θstart ∈ [0, 2π].

The CLM task is to segment patterns which contain objects
of the same shape S and size R into the distinct objects, i.e. it
has to adapt the compatibilities to detect typical angles and dis-
tances within the observed polygons. To model this task with
basis functions, we assume that each two features define a trian-
gle (see Figure 6). We combine the local distance between two
features with the three angles within the corresponding triangle
to a four-dimensional proximity space D.

Note that this choice includes some redundancy, since a trian-
gle is specified uniquely by one side length and two inner angles.
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Fig. 7. Training results for contour grouping on artifical data: the first column shows three training patterns, with five ideal triangles, squares and circles of size
R = 20. The labels of the features are displayed by color and number. The second column displays parts of interaction functions resulting from the application of
AHL (λ = 0.5) on the training patterns. In each diagram a discretization (according to position and orientation) of line segments is plotted which have a positive
interaction with a reference segment at position (50,50) with horizontal orientation. The length of the line segments reflects the strength of positive interaction. The
negative interactions are not visualized here. They show the remaining feature orientations that are positioned on the same lattice structure as seen in the positive
interaction fields. The third column shows unlabeled test patterns. The last column shows results of a ten-layered (nine figure-layer, one groundlayer) CLM which
applies the learned interaction function to the test image.

However, it is a feature of the AHL learning approach that it can
deal with redundant and spurious proximity dimensions, since
positive and negative interactions detach along the relevant di-
mensions.

We cluster the proximity vectors drr′ occurring in one typical
training pattern to 100 prototype vectors d̃j whose Voronoi cells
define the basis functions according to (18). Then we apply the
algorithms QCO (κ = 100) and AHL (λ = 0.5) to estimate
the interaction coefficients cj of these basis functions. Some ex-
amples for training patterns, learned interaction function, input
pattern and CLM-output are shown in Figure 7 for datasets con-
taining triangles (S=3), squares (S=4) and approximated circles
(S=20) of size R = 20.

Figure 8 shows the labelings resulting from the triangle inter-
action function in Figure 7 applied on two different configura-
tions of two triangle input groups. The upper row shows two
triangles in uncorrelated orientation, while the lower row shows
a more complicated configuration with two neighboring triangle
sides in parallel orientation. Each column belongs to a concrete
choice of the segmentation control parameter λ.

Equation (24) suggests for the learned interaction function an
upper bound λmax ≈ 7.5 and a lower bound λmin ≈ 0.45 for
λ.

In the first case of uncorrelated orientations the choices of

λ = 0.2, λ = 2 and λ = 4 result in a correct labeling. This
can be explained by the fact that only parallel line segments or
line segments with an inner angle of 60 degrees have positive
interaction, while all other pairs of line segments have negative
interaction. Between λ = 4 and λ = 6 the triangles start to
decompose into single lines, because the interactions between
lines with an inner angle of 60 degrees are shifted into the nega-
tive quadrant. This splitting process proceeds with the increase
of λ, until each layer of the CLM is occupied by one group. A
further increase of λ has no effect on the output labeling, since
the consistency conditions (3) imply that the groups with the
least inter-group inhibition are merged in the same layers.

In the second case the parallel triangle sides are connected by
additional positive interaction. For moderate values of λ, e.g.
λ = 2 to 4, this attraction between the two groups is compen-
sated by negative connections between high distance line seg-
ments of an inner angle 60 degrees such that the correct labeling
is returned. At small values of λ, e.g. λ = 0.2, the necessary
negative interaction is weakened and both groups are merged to
the same layer, while larger values of λ result in an over seg-
mentation of the pattern.

This example shows that the segmentation control parameter
λ can be explored by seeking a trade off between an over and
under segmentation of a test pattern. The range of feasible val-
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Fig. 8. Output labelings of a ten-layered CLM for two triangles in different configurations resulting from the triangle interaction function at different values of λ.

ues of λ depends on the concrete configuration in the presented
input pattern. However, the bounds λmax and λmin indicate the
size of the interval and give a hint to start the search at the center
of [λmin, λmax].

The following four experiments address the evaluation of our
learning method according to the adaptation of object size and
shape, the influence of spurious features and the influence of
errors in feature position and orientation respectively. Therefore
we have to measure the grouping quality achieved with the CLM
and the learned interaction function.

Quality Measure: The resulting CLM labels αC(r) are com-
pared to the desired goal labels αG(r) from the pattern generator
by computing the percentage of features that have been labeled
correctly. For an algorithmic description see appendix V.

Adaptation to object size and shape: We investigate the ro-
bustness of the algorithms QCO and AHL using S ∈ {3, 4, 20}
and R ∈ {15, 20, 25, 30, 35, 40, 45, 50, 55, 60} to generate for
each combination of (algorithm, S, R) 10 random training pat-
terns with 5 objects. Each of the ten resulting interaction func-
tions is tested with a ten-layered (one ground layer, nine figure
layers) CLM on ten new patterns with the same object proper-
ties S and R, but with the number of objects varying from one
to five. Figure 9 plots the average grouping quality over all 100
resulting CLM responses.

The results show that AHL is always able to adapt the cor-
rect compatibilities for the relevant feature combinations in the
patterns. Remarkably the desired grouping behavior is learned
from a single pattern only, where the property of rotation invari-
ance is guaranteed from the design of the proximity functions.

QCO also performs well for R from 15 to 30. For larger val-
ues of R we observe a significant decrease in grouping qual-
ity for QCO. The reason is that a pattern with small R has a
smaller number of features than a pattern with large R, because
the length of the borderline grows, while the length of each local
edge feature is fixed. In QCO, for each of these features, a set
of L − 1 consistency conditions has to be computed which are
extended by the margin κ which is uniform for all conditions
(see Appendix II). The choice of κ = 100 seems not suitable
for all sets of conditions that arise when varying R. Actually
the qualitative performance of QCO for patterns with a higher
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Fig. 9. Average Grouping Quality for Objects of different Size: Plots of group-
ing quality against object size R (15 to 65) for S = 3 (triangles), 4 (squares) and
20 (circles). Top row shows stimulus examples.

value of R can be improved, if the value of κ is increased with
the number of features in the patterns. A second disadvantage
of QCO against AHL lies in the higher computation time which
becomes significant for patterns which consist of many features.

Influence of spurious features: In the other three exper-
iments we investigate how different types of errors in the
datasets affect the grouping performance of the CLM. Again
we test the learning algorithms QCO and AHL on objects S ∈
{3, 4, 20}, but this time keep R = 20 fixed. Instead we vary
η ∈ {5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%},
the percentage of features which are removed from the pattern.
These features are replaced by randomly generated features mr

with xr, yr ∈ [0, 5R], ϕr ∈ [0, π] that are labeled as background
features. The average grouping quality over 100 CLM responses
(10 tests for each of 10 training runs) is plotted in Figure 10 for
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Fig. 10. Statistic Grouping Quality for Noisy Patterns: Plots of grouping quality
against percentage of spurious features η (5% to 50%) for S = 3 (triangles), 4
(squares) and 20 (circles). Top row shows stimulus examples.

each combination of (algorithm, S, η).
We obtain a high grouping quality for AHL and QCO in all

test runs. These results highlight both the robustness of the two
learning methods and the robustness of the CLM against frag-
mentary data, which can be explained by the high redundancy
in the matrix of lateral interactions and the redundant character
of the CLM. These results also show that the CLM is able to
separate the relevant groups from a noisy background using the
background layer.

Influence of errors in feature position and feature ori-
entation: In the third and fourth experiment we repeat the
second experiment but substitute the error η by two other
errors εp ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} and εo ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0, 45, 0.5}. εp defines
an error in feature position, where all features in the dataset are
randomly shifted in x- and y-coordinate by dx, dy ∈ [−εp, εp].
εo defines an error in feature orientation, where all features in
the dataset are randomly rotated by an angle dϕ ∈ [−εo, εo].
The average grouping qualities of all combinations of (algo-
rithm, S, εp) are plotted in Figure 11, while the average group-
ing qualities of all combinations of (algorithm,S, εo) are plotted
in Figure 12.

The results show that the learned grouping principles are
fairly robust against errors in feature extraction. For the errors in
feature position both AHL and QCO show high grouping qual-
ity, which can by explained by the interaction fields in Fig. 7.
There each feature gets positive feedback not only from features
with the correct orientation, which are in a small interval of lo-
cal distance, but also from features which are shifted parallel to
the relevant orientation.

In the case of errors in feature orientation there is a noticeable
decrease in grouping quality which is serious for AHL. This dif-
ference between AHL and QCO becomes clear, if we inspect
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Fig. 11. Statistic Grouping Quality for Translation Errors: Plots of grouping
quality against translation error εp (0.5 to 5) for S = 3 (triangles), 4 (squares)
and 20 (circles). Top row shows stimulus examples.
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Fig. 12. Statistic Grouping Quality for Rotation Errors: Plots of grouping qual-
ity against rotation error εo (0.05 to 0.5) for S = 3 (triangles), 4 (squares) and
20 (circles). Top row shows stimulus examples.

the kind of errors the AHL-learned CLM makes. In patterns
of triangles a triangle is often divided into three separate lines
which causes a typical quality of 0.33. Similar in patterns of
squares a square in often divided into two perpendicular groups
of two parallel lines which causes a typical quality of 0.5. Con-
sequently the interactions of feature pairs with the characteris-
tic inner angles of 60 respectively 90 degrees are not excitatory
enough. These errors can be reduced by decreasing the param-
eter λ to achieve a coarser segmentation of the data into bigger
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Fig. 13. Contour grouping for more complex objects of a fish and a bird.

groups.
Adaptation to more complex shapes and differentiation of

shapes: The previous experiments have shown that the AHL ap-
proach can achieve an impressive amount of generalization and
robustness, if the representation of the feature space F and the
pairwise proximity spaceD are consistent with the grouping be-
havior specified by the target labeling. For the artifical polygon
contours this consistency is a result of the high self-similarity
of the polygon shapes, where the rotation invariant interaction
function matches at each point of the contour.

In Fig. 13, we demonstrate the application of the contour
grouping approach on the more complex and non symmetric
contours of a bird and a fish. Therefore we apply sobel-x and
sobel-y filters on the two images in column one of Fig. 13
and extract salient edge features mr = (pr, ϕr). The sobel re-
sponses are thinned out to one pixel wide contours by non max-
imum suppression according to the intensity gradients strength
and orientation followed by a thresholding with 50% of the max-
imal intensity gradient strength and a subsampling of the result-
ing edge set by the factor 2. The orientation angles ϕ ∈ [0, π]
are extracted from the sobel-responses or = (sxr, syr) at the
remaining edge positions pr = (xr , yr) neglecting the unique
direction information such that the edge sets are invariant to a
black/white switching of the foreground and background color.

Training and test patterns are constructed by copying ran-
domly rotated and translated versions of the extracted edge sets
into a 2D coordinate system, where the maximal distance of an
edge to the center of its group is normalized to a fixed radius
R = 30 (see the second column of Figure 13).

Since the contour of the bird and the fish show varying shape
along the border line, the learning problem of extracting rele-
vant inter edge angles and distances is less consistent than be-
fore. The higher overlap between positive and negative inter-
action within the pairwise proximity space can be interpreted
as loss of higher order relation information in the AHL-learned
(λ = 2) interaction functions in column three of Figure 13. Both
interactions integrate several edge combinations typical for dif-

ferent points on the object contours, which makes them similar
to an ordinary edge clustering interaction expressed by excita-
tory connections for short ranged local distances at all feature
orientations. Thereby the interaction functions concentrate the
excitatory connections to different types of object specific edge
configurations.

The similarity to the edge clustering behavior weakens the
ability of the CLM to separate overlapping and close-by con-
tours, like it can be observed for the artifical polygon con-
tours. Column four of Fig. 13 shows two examples, where
CLM grouping performance reaches its limits (Q = 0.93 re-
spectively Q = 0.97). However, the interaction functions are
distinct enough from each other to differentiate the two types of
contours.

To show this, we merge the two interaction functions into a
single CLM network with layer specific interaction functions
fαrr′ , α = 1, . . . , L. As stated in [29], the theoretical conver-
gence and assignment properties of the CLM can be extended to
this case such that the CLM output labeling expresses more than
a simple segmentation of the input by classifying each group ac-
cording to the type of the layer the groups are assigned to.

Figure 14 demonstrates two examples for such a scenario.
The first row shows output labelings of a L = 12 layered CLM
on two patterns, each showing two clearly (locally) separable
contours of the fish and the bird in random orientation and fixed
position. The first six layers, indexed by F1, . . . , F6, apply the
fish interaction fF1,...,F6

rr′ = wfishffishrr′ from Figure 13 and
the other six layers, labeled by B1, . . . , B6 apply the respec-
tive bird interaction fB1,...,B6

rr′ = wbirdf birdrr′ . The scaling of the
interaction functions with the layer weights wfish and wbird is
chosen by hand. In the output labeling, the layers F1, . . . , F6
prefer the collection of the fish-shaped contours, while the lay-
ers B1, . . . , B6 prefer the bird-shaped contours.

The second row of Figure 14 shows another scenario with
more, simpler but also more similar shapes of the artifical letter
contours I, L, T and X. Note that their is a subsumption am-
biguity between the letter I and the other letters, and that the
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Fig. 14. Contour classification based on layer specific interaction functions. The
first column shows labeling results from a L = 6 + 6 layered CLM, where the
interaction function of layers 1-6 was trained on the fish contour and the layers
7-12 were trained on the bird contour. The second column shows the labeling
results from a L = 3 + 3 + 3 + 3 layered CLM, where always the interaction
functions of three layers were trained on the shape of one of the letters I, L, T
and X.

letter T and L only differ in the proportion where the two infe-
rior lines intersect. The output grouping of a L = 12 layered
CLM is shown for two patterns consisting of (orientationally)
uncorrelated and non overlapping instances of the letters I, L, T
and X in random orientation and fixed position. Always three
layers share the same interaction function respectively matrix
trained with AHL (λ = 0.5) on the respective letter contour:
f I1,...,I3rr′ = wIf Irr′ , f

L1,...,L3
rr′ = wLfLrr′ , f

T1,...,T3
rr′ = wT fTrr′

and fX1,...,X3
rr′ = wXfXrr′ . Under suitable layer weight wI , wL,

wT and wX , this network can differentiate the letters I, L, T and
X in random orientation, as long as the letters are uncorrelated
in rotation and locally separated (compare discussion of the tri-
angle interaction function in Figure 7 and 8).

These two examples demonstrate the principal abilities of the
CLM/AHL based contour grouping approach to group and dif-
ferentiate complex and similar shapes. A more detailed inves-
tigation of the pattern matching abilities of a multi-interaction
CLM architecture is beyond the scope of this work, because we
want to concentrate on the adaptivity of a single-interaction ar-
chitecture to grouping and segmentation problems.

A. Application to Cell Segmentation

In a more practical domain, we apply the two learning ap-
proaches in the area of medical image processing. The goal is
to derive an automatic method to estimate the number, positions
and form of fluorescent lymphocytes cells on microscope im-
ages of blood probes as component of a neural cell detection
system (NCDS), like in [12], [14], [15]. Examples of image
patches from [15] are shown in the top of Figure 18.

This task is difficult for standard segmentation algorithms

Input pattern Target labels

Sobel-x Sobel-y

Gradient strength Gradient orientation

Fig. 15. Feature extraction from fluorescence cell images.

based on contour detection, because changing environment pa-
rameters, like concentration of contrast medium or radioscopy
strength, make the corona of the cells highly irregular. This is
illustrated in Figure 15 where the sobel-x and sobel-y responses
are visualized for an example pattern. In contrast to the con-
tour grouping approach for the artifical contour data not only the
salient edge features are extracted for grouping, but each pixel
of the input image has to be labeled by the CLM.

The cells show a characteristic structure of dark gray values at
the center and brighter values at the border regions. Therefore
we try to bind regions with intensity gradients pointing from
inside to outside together.

As features we use directed edge vectors mr =
(pr,or), or = (sxr , syr), where the orientation vectors or are
given by the responses of sobel-x and sobel-y filters at the image
position pr. Again we assume that two features define a triangle
and want to define their proximity by their local distance and the
three angles within the triangle. However, since we now have
to distinguish equal and opposed directions of the features, we
have to improve the proximity functions by defining θ1, θ2, and
θ3 to be positive or negative whenever the orientation vectors or

and or′ point towards the intersection point I(mr,mr′) of the
two features or not respectively (see Figure 16). The angles θ1,
θ2, and θ3 are combined with the local distance ‖ pr − pr′ ‖ to
a four dimensional proximity space.
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Fig. 16. Proximity functions for directed edge features: The proximity func-
tions for oriented line segments have to be enhanced by additional case dif-
ferentiations for the directions of the features. The angles θ1, θ2, and θ3 are
counted positively, if both mr and mr′ point towards their intersection point
I(mr ,mr′). They are counted negatively, if both feature point away from
I(mr ,mr′). In the case that only one feature points towards I(mr ,mr′),
the angle at this feature is counted positive, while the others are counted nega-
tive. To preserve symmetry under feature exchange θ2 and θ3 are swapped, if
θ3 > θ2.

The first two rows of Figure 18 show the complete data set
of the fluorescence cell images together with the desired hand-
labelings. Each image consists of 45 × 45 pixel, which results
in a number of 2025 features that should be grouped by a ten
layered CLM (one ground layer, nine figure layer).

To show that our test application has an adequate degree of
difficulty, we first try to solve it with a naive approach of di-
rect clustering of the feature vectors mr. We apply the standard
k-Means-algorithms in two ways on each pattern to generate a
set of feature prototypes: In the first case we apply the k-Means
with the number of prototypes equal to the layers in the CLM
(k = 10). In the second case we give the k-Means more prob-
lem knowledge by setting the number of prototype vectors to the
number of groups in the goal labeling (k = Li).

Then we use each of these sets of prototypes, to divide the
corresponding pattern by assigning each feature mr to its next
neighbor prototype. The results are shown in the last two rows
of figure 18. This approach fails as the resulting clusters in the
images show arbitrary shape which has no similarity to the struc-
ture of cells. The measured quality lies between 20 and 30%.

Therefore, we apply the algorithms QCO (κ = 100) and AHL
(at three different values for λ) to estimate an interaction func-
tion frr′ for the CLM from a single pattern and its target la-
beling. This function consists of 100 basis functions, whose
interaction coefficients are adapted from a hand labeling.

Figure 17 visualizes an example of an AHL (λ = 2) trained
interaction function. It shows the interaction field of all edges
lying on a 5 pixel wide lattice to the feature at position pr =
(0, 0) and orientation or = (1, 0). The colors of the displayed
sectors describe the interactions of features with the respective
position and orientation to the central feature. Light color shows
positive interaction and dark color shows negative interaction.

The interaction field shows long range inhibitory and short
range excitatory connections which describe the radius of the
cells. Further gradient pairs which point towards each other, like
they occur between the pixels of neighboring cells, inhibit each
other, while gradient pairs which point away from each other,

0−20 20

−20

20

0

−20

0 20−20

20

0

Fig. 17. Interaction field resulting from the application of AHL (λ = 2) on
pattern 1 and its target labeling. All features on a five pixel wide lattice are plot-
ted in the color corresponding to their interaction to the feature with position
pr = (0, 0) and orientation or = (1, 0). Light color shows positive inter-
action, dark color shows negative interaction. The plotted triangle sketches the
proximity triangle from Fig. 16.

like they can be observed between pixels in same cell, support
each other.

Figure 18 contrasts some of the results from the two algo-
rithms AHL and QCO to the results of the direct clustering,
while Figure 19 displays the statistics of the qualities of the dif-
ferent approaches according to the whole data set. The third row
of Figure 18 shows that, as a result of training with QCO on the
first pattern, the CLM is able to separate the different cell re-
gions from each other. This is indicated by an average grouping
quality of roughly 70% of the images. However, if we look at
the output labels, we see that these results are suboptimal, be-
cause the images are slightly oversegmented in cell regions that
are split in the output.

Now inspect the results of AHL in the fourth row of figure
18. In this training run, the weight λ is set to a perfect balance
of positive and negative interaction at λ = 1. The results show
that AHL has learned the correct grouping behavior since the
borders between different labels coincide with borders between
cells in the images. But there occur errors, where mainly in the
first three images different cells are merged to the same label.
Therefore the average grouping performance lies slightly below
that of QCO.

Since the groups in the result of AHL seem to be too large
and some regions are merged, we conclude that we have to shift
the balance between attraction and repulsion of the feature in
direction of a higher repulsion to get better results. In this case
this shift is done by trial and error, which is shown in the rows
five and six of figure 18. We see that we get better results for
λ = 2, where we no longer have a merging of different regions.
This enhances the average grouping performance of AHL such
that it outperforms the results of QCO. A further increase of
λ yields no significant improvement of the grouping behavior.

13



1 2 3 4 5 6 7 8 9 10

Pattern

Label

QCO(P1)

AHL(P1)
λ = 1

AHL(P1)
λ = 2
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Fig. 18. Fluorescence cell image segmentation: The first two rows show a set of ten training patterns together with their desired labeling. Rows three to six show
segmentation results of the learning approaches QCO and AHL from training only with pattern one. The last two rows show results from a direct feature clustering
with k-Means-Clustering.
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Fig. 19. Statistics of Grouping Quality: The diagrams describe the grouping
results of the algorithms QCO and AHL (for different values of λ) on the 10
cell images in Fig. 18. The x-axes enumerate the training pattern, while the
y-axes show the grouping quality from the test run over all ten patterns given by
average quality, standard deviation of quality and best and worst quality.

Instead we see in the sixth row of figure 18 that at λ = 3 we
reach a parameter region, where oversegmentation starts and the
labeled regions become too small.

V. DISCUSSION

The here applied feature binding mechanism of spatial coacti-
vation implemented by the CLM simulation algorithm competes
with a huge class of models, like Locally Excitatory Globally
Inhibitory Oscillator Networks (LEGION) [1], [25], Multiple-
Object Adaptive Grouping of Image Components (MAGIC)
[13] and the Spiking Laterally Interconnected Synergetically
Self-Organizing MAP (SLISSOM) [3] which are based on the
mechanism of temporal correlation.

In these models the feature representative neurons are imple-
mented by oscillatory units, where excitatory lateral connections
provide synchronization of neurons in the same group, while
inhibitory connections result in a desynchronization of differ-
ent groups. Though different groups are active at different time
phases of the network simulation in these models a single out-
put layer is sufficient to describe the grouping result. However,
as it was discussed in the framework of LEGION by Wang &
Terman [25] a single layer has only a limited capacity of rep-
resenting groups at different phase shifts depending on the con-
crete timing of the inhibitory and excitatory neurons fire rates.
The segmentation of patterns with a higher number of groups
than the present capacity of the network demands an adaptation
of the models parameters. To overcome these limits Wang &
Terman suggest a multistage architecture with multiple layers.

In the CLM the capacity for different groups is directly spec-
ified by the number of layers. If the number of groups, defined
by the lateral interaction weights, exceeds the number of lay-
ers, the consistency conditions (3) imply that the groups with
the least inter-group inhibition are merged in the same layer. In
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this case the capacity of the CLM can be increased by providing
additional layers, until layers stay unused.

The competitive connections between the layers of the CLM
provide a direct possibility to combine several grouping behav-
iors in the same network. Applying layer specific lateral inter-
action matrices with components fαrr′ , α = 1, . . . , L the WTA
loops of the network not only implement an assignment of the
groups to different layers, but also assign each group to the layer
it best fits in. Such an architecture opens new learning prob-
lems, like an automatic scaling of the interaction functions with
layer weights wα or the adjustment of layer specific segmenta-
tion control parameters λα.

If this model is extended further by symmetric inter-layer
weights fαβrr′ , expressing the compatibility of the assignment of
feature mr to label αwith the assignment of feature mr′ to label
β, it can be compared with the method of relaxation labeling in-
troduced by Rosenfeld et al [21]. For this method it is preferred
to use positive weights fαβrr′ to apply an iterative update for the
assignment probabilities xrα under the constraint

∑
α xrα = 1,

which attracts states of consistent labeling. However, there exist
also implementations that can deal with negative compatibilities
e.g. [9], which can be trained and interpreted as correlation or
mutual information between assignments [18], [19].

Another class of familiar architectures are the Contextual-
Constraint Based Hopfield Neural Cube (CCBHNC) [2], the
Competitive Hopfield Neural Networks (CHNN) [4] and the
Columnar Competitive Model (CCM) [23]. Those networks
show the same layer-wise organization of neurons as the CLM
with the difference that they consist of binary neurons. There-
fore the winner-takes-all-process within the columns of the net
is implemented by a simple maximum selection rule, where in
a column only the neuron with maximal input stays active such
that there is no need for explicit vertical interactions J . Instead
the lateral connections, like in the case of relaxation labeling, are
extended by a subset of cross layer connections fαβrr′ . In [2], [4]
and [23] these connections are chosen strictly negative, based on
distances between features.

In contrast to CHNN, CCBHNC and CCM the CLM uses
both excitatory and inhibitory lateral connections which allow
to change the segmentation level of the output by shifting the
interaction weights into the negative or positive quadrant. The
linear threshold neurons of the CLM encode real valued network
states which provide a richer dynamics than binary recurrent
networks, e.g. the self-inhibitory annealing of the simulation
algorithm (see appendix I) implements an graduate activation
the winner-takes-all behavior within the columns of the CLM to
avoid local minima in the CLM energy (2) which correspond to
suboptimal grouping states.

In terms of learning the here provided AHL approach shows
similarities to the learning approach for the SLISSOM respec-
tively its basis architecture the LISSOM [22]. There in a first
stage a self-organizing map adapts the input weights from a fea-
ture extracting sensory layer. After the neurons of the network
have reached stable firing rates, the lateral interaction weights
and the input weights from the sensory layer are adapted by
Hebbian learning in form of shifting the weights stepwise to-
wards the correlation of the average firing rates of the connected
neurons.

In AHL the SOM-learning step is performed within a pairwise
proximity space. The following sampling of positive and neg-
ative feature pairs shall approximate the correlation matrix re-
sulting from averaging Hebbian learning steps on a sequence of
layer difference vectors specified in the target state of the CLM.
The differences to the SLISSOM are that the prototype vectors
of the unsupervised SOM learning steps are not necessarily con-
nected to form a feature map and that the input vectors that are
adapted by the principle of Hebbian learning are specified in a
supervised way from the target labeling.

Surely the construction of suitable proximity functions, as
it is demonstrated in this work, faces the same problems like
designing heuristics for complete interaction functions. How-
ever, these problems occur on a much simpler level, where
grouping principles can be described by the underlying distance
functions of elementary features, e.g. smoothness and conti-
nuity by angles between edges, similarity of color by distances
in color spaces and similarity of texture by distance of Gabor
jets responses, while the further parameters, like the range and
strength of excitatory and inhibitory connections and the weight-
ing of different proximity principles, are extracted from the tar-
get labeling.

As the contour grouping examples have shown, the proximity
functions can be used to specify generalization properties, like
invariance to rotation and translation, as they are demanded in
[11] for a robust shape differentiation method. Other demands,
like the invariance to scale or the adaptation to highly complex
contours, are not so straightforward to achieve from our bottom-
up approach which employs only on local features from an early
perceptual processing stage.

VI. CONCLUSION

We have shown the successful application of our new ap-
proximate Hebbian learning (AHL) approach for the compet-
itive layer model architecture. Apriori knowledge about the
desired grouping behavior enters this learning approach basi-
cally in two ways. Firstly, an appropriate parameterized feature
model has to be selected. Secondly, a number of symmetric dis-
tance functions have to be defined for making pairwise compar-
isons between parameterized feature vectors. These distances
are then the basis for actually learning the similarity measure
between pairs of features from a labeled training set and incor-
porate apriori assumptions about translation and rotation invari-
ance of the derived similarity function. This strongly improves
the generalization capability of the approach and leads to good
segmentation results even from single hand-labeled training im-
ages. Differences in the dimensional properties of the set of
distance functions are captured by the AEV vector quantization
that effectively adapts the resolution of the pairwise similarity
function to the different scaling of feature parameters, like ori-
entation angle or spatial distance. We note that this vector quan-
tization method can also be replaced by a simple interval binning
of feature parameters, if the feature parameters have a uniform
interval distribution on the training set.

Compared to earlier approaches to segmentation and feature
binding, where feature compatibility functions have to be de-
signed by careful manual tuning, our hybrid learning approach
provides a strong simplification for real practical applications.

15



This method also enables the learning of appropriate similarity
functions in high-dimensional abstract feature spaces, where no
intuition on the functional form of the feature similarity is avail-
able. Possible further applications, which are, however, beyond
the scope of this paper, can be found in general pairwise data
clustering problems that need not be related to computer vision
or perceptual grouping.
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APPENDIX

I. IMPLEMENTATION OF CLM-DYNAMICS

The CLM-dynamics can be implemented as:

1. Initialize all xrα with small random
values around

xrα(t = 0) ∈ [hr/L− ε, hr/L+ ε].
Initialize T with the largest eigenvalue
of the matrix {frr′}.
Choose J = maxr

∑
r frr′.

2. Do N ·L times: Choose (r, α) randomly and
update xrα = max(0, ξ), where

ξ :=
J(hr−

P
β 6=α xrβ)+

P
r′ 6=r frr′xr′α

J−frr+T

3. Decrease T by T := ηT, with 0 < η < 1.
Go to step 2 until convergence.

The pseudo temperature T controls an additional self-
inhibitory term added to (1), see [30]. Starting at Tc =
λmax{frr′}, which is the maximal eigenvalue of the matrix of
lateral weights, an annealing process is implemented by decreas-
ing T to zero. To run the algorithm without annealing simply set
T = 0.

II. THE QUADRATIC OPTIMIZATION APPROACH(QCO)

The idea of QCO [28] is, that we can directly substitute the
definition of the basis functions (13) into the consistency con-
ditions (5) to get a set of dimension reduced consistency condi-
tions of the form:
∑

j

cjZ
k
j < 0 for all k = (i, r |mr ∈ Ri, β 6= αi(r)) (28)

where k is a super-index for the consistency conditions run-
ning over all combinations of pattern i, feature r, and label
β 6= αi(r). The values Zkj describe the information from the
training set and the basis interactions by a projection of the tar-
get layer vectors (yα̂ − yβ) onto the basis functions gjrr′ :

Zkj = Zirβj =
∑

r′|αi(r′)=β
gjrr′ −

∑

r′|αi(r′)=αi(r)
gjrr′ . (29)

If we write the values Zkj as vectors Zk = (Zk1 , . . . , Z
k
K), each

vector Zk corresponds exactly with one consistency condition
in (5), we therefore call them consistency vectors.
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Fig. 20. Geometry Representation of the Learning Problem of QCO: the con-
sistency vectors Zk describe the learning problem, to fulfill the kth consistency
condition, we have to chose the vector of learning parameters c from the op-
posite half space of the weight state space. Therefore each new consistency
condition restricts the area of suitable interaction weights further (thick lines).

If we consider these vectors in the weight space of learning
parameters cj , we get a simple geometrical interpretation of the
learning problem (see Figure 20). To fulfill the kth consistency
condition, we have to choose c = (c1, . . . , cK)T from the oppo-
site half space of Zk. Therefore each new consistency condition
restricts the area of suitable interaction weights c. In order to
achieve a better generalization to further yet unseen patterns,
we can restrict this area further by the introduction of a positive
margin variable κ > 0 in (28).

∑

j

cjZ
k
j + κ < 0 for all k = (i, r |mr ∈ Ri, β 6= αi(r)).

(30)
In [26], [28], the optimization problem, to satisfy (30), is solved
by minimizing the quadratic error

EQCO =
∑

k


∑

j

cjZ
k
j + κ




2

. (31)

This approach is more restrictive than the original learning
problem (30), because it demands that all consistency condi-
tions are fulfilled in the same manner. Applications of a similar
approach for designing BSB associative memories have shown
that it is competitive to more sophisticated optimization methods
[17]. The minimum of (31) is found by gradient descent under
additional constraints |cj | ≤ 1. These constraints prevent the in-
teraction coefficients from obtaining large values, which might
disturb the group formation process, e.g. if one basis function
describes a pure self interaction girr′ = δrr′ it follows that all
Zki are equal to one such that the minimum of (31) can be found
trivially by setting ci to κ and all other parameters cj , j 6= i to
zero. The result would be frr′ = κδrr′ which obviously can not
result in reasonable grouping since all lateral interactions are set
to zero. However, if |cj | ≤ 1 this trivial solution is not allowed
for κ > 1 such that all cj have to be adapted to find a minimum
of (31).

The QCO-approach is computationally expensive because all
consistency conditions (5) have to be transformed by equations
(29) and (30) to the space of learning parameters cj , before the
optimization step according to the error function (31) is per-
formed.
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III. EXAMPLE FOR THE CONSTRUCTION OF THE
INTERACTION MATRIX

Assume a set of six arbitrary features mr, r = 1, . . . , 6 that
have to be separated into three groups containing three, two,
and one features. We describe this problem by assigning each
feature to a label α(r) ∈ 1, 2, 3, where we assume, that the
features are ordered according to their label, such that we get
the labeling vector:

αord =
[

1 1 1 2 2 3
]T
. (32)

Using this labeling in (4), we generate a three layered target state
of the CLM, containing the layer vectors:

yord1 =
[

1 1 1 0 0 0
]T

yord2 =
[

0 0 0 1 1 0
]T

yord3 =
[

0 0 0 0 0 1
]T
.

(33)

Now compute the block-diagonal correlation matrix for the dif-
ference vectors between these layer vectors according to (7) as

F̂ =




4 4 4 −2 −2 −2
4 4 4 −2 −2 −2
4 4 4 −2 −2 −2
−2 −2 −2 4 4 −2
−2 −2 −2 4 4 −2
−2 −2 −2 −2 −2 4



. (34)

The negative entries of F̂ are scaled against the positive ones by
the factor λ = 1

3−1 . For any other ordering of the six features,
we simply have to permute the rows and the columns of (34)
in the same way as the features to make the interaction matrix
consistent with the new labeling according to (5).

IV. AHL LEARNING ALGORITHM

We are given a set of training patterns P i, where each train-
ing pattern consists of a set of N i features mi

r, with a target
labeling αi(r) = αi(mi

r). The distances in the proximity space
are computed by a set of P similarity functions dp(mr,mr′),
p = 1, . . . , P .

We first compute the individual mean µp and variance σp for
each distance function on the training set:

µp =
1∑
iN

2
i

∑

i

∑

r,r′

dp(m
i
r,m

i
r′),

σp =

√
1∑
iN

2
i

∑

i

∑

r,r′

(dp(mi
r,m

i
r′)− µp)2.

The distances are then normalized by their variance using

ap =

{ 1
σp

: σp > 0

1 : σp = 0
,

and we define Dirr′
p = apdp(m

i
r,m

i
r′) as the normalized dis-

tance for all p, i, r, r′. The set of distance vectors Dirr′ =
(Dirr′

1 , . . . , Dirr′
p )T is quantized using a set of K prototypes

d̃j ∈ RP , j = 1, . . . ,K. The Voronoicell set Vj of prototype
d̃j is defined as

Vj = {(i, r, r′)| ‖ Dirr′−d̃j ‖<‖Dirr′−d̃k ‖ for all k 6= j},

which carries the training pairs assigned to this prototype. This
can be further subdivided into a set V +

j , where features are as-
signed to the same layer, and V −j , where they are in different
layers 1:

V +
j = {i, r, r′ ∈ Vj |αi(r) = αi(r′)},
V −j = {i, r, r′ ∈ Vj |αi(r) 6= αi(r′)}.

The algorithm can be performed using simple vector quantiza-
tion or the more advanced AEV algorithm for resetting unused
prototype vectors. For AEV, an activation score Aj is computed
for each prototype, based of the population of the Voronoi cell
set Vj . Based on an activation threshold ΘAEV , and a given
update probability PAEV prototypes are then reinitialized.

The target of the learning are the coefficients c+
j and c−j of

the basis interaction prototypes, derived from the vector quanti-
zation in the proximity space.

The AHL learning algorithm is implemented by:

Initialize (d̃j)p(t = 0) = N (apµp, 1) 2;
For iterations i = 0, . . . , N

perform step 1 to 3:

1. For all j ∈ 1, . . . ,K:
set d̃j(t+ 1) = 1

Aj(t)

∑
i,r,r′∈Vj(t) Dirr′(t),

where Aj(t) =
∑
i,r,r′∈Vj(t) 1;

2. For all j ∈ 1, . . . ,K:
compute Vj(t+ 1), based on

the new prototypes d̃j(t+ 1);
3. AEV step with PAEV = 1− i

N :

For all j ∈ 1, . . . ,K with AjP
k Ak

< ΘAEV :

choose s ∈ [0, 1] randomly;
if s < PAEV (t):

set (d̃j)p ∈ N (apµp, 1);
otherwise:

choose another prototype d̃n;
place d̃j near d̃n:

(d̃j)p ∈ N ((d̃n)p, 0.01);

For all j ∈ 1, . . . ,K:
compute:

c+j =
∑
i,r,r′∈V +

j
1 and c−j =

∑
i,r,r′∈V −j 1;

For all j ∈ 1, . . . ,K:
normalize:

c+j := c+j /
∑K
i=1 c

+
i and c−j := c−j /

∑K
i=1 c

−
i ;

The AEV step is omitted by removing step 3 from the algo-
rithm. For all the simulations in this contribution we choose

1Feature-pairs, where both features are assigned to the background (like in
Fig. 18) or one feature is not assigned to any label, should be treated as assigned
to different labels to prevent spurious support in the the background.

2N (µ, σ) is a normal distribution with mean µ and variance σ.
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ΘAEV = 1
2K and perform eleven iterations of step 1 to 5

(N = 10). Finally, we note that all summations over (i, r, r′)
that run over all feature pairs from the training patterns, can be
approximated by a randomly selected subset. In all presented
simulations the size of this subset is 10000 feature pairs.

If we want to apply the learned interaction to a new test pat-
tern PT with NT features mr, r = 1, . . .NT , we compute the
lateral interactions as:

frr′ = f(mr,mr′) = c+I(mr ,mr′ )
− λc−I(mr ,mr′ )

,

where I(mr,mr′) is the index of the corresponding proximity
prototype

I(mr,mr′) = argminj

(∑

p

(apdp(mr,mr′)− (d̃j)p)
2

)
.

The separation strength λ can be chosen according to the dis-
cussion in section III-E.

V. QUALITY MEASURE

We measure the grouping quality Q of the CLM for a hand-
labeled test patternPT by comparing the goal labeling αG(r) ∈
{1, . . . , LG} with the labeling from the CLM-output αC(r) ∈
{1, . . . , LC}. Therefore we initialize the components of the
LG × LC Matrix O(0) with the number of features that are as-
signed in the goal-labeling to αG and in the CLM-answer to
αC . Starting from Q = 0, we assume, that the maximum entry
of O, which is the largest overlap between a group in the goal
labeling and the CLM labeling, is labeled correctly, and add it
to Q. Since this group must be separated from all other groups,
the features in the same column and row of this entry must be
labeled incorrectly. We delete all these values from O and seek
iteratively the next largest overlap between the goal labeling and
the CLM labeling in the remaining submatrix of O, until all en-
tries of O are equal to zero. Finally, we normalize Q with the
total number of features in the pattern such thatQ lies within the
interval [0, 1] and we can interprete it as percentage of overlap
between goal labeling and CLM-labeling. The quality measure
is implemented in the following way:
Initialize
Q := 0

O
(0)

αGαC = #{mr| αG(r) = αG ∧ αC(r) = αC}.
for (t = 0; t < LG)

(αGMAX , α
C
MAX ) = argmax(αG,αC)O

(t)
αGαC

Q := Q+O
(t)

αGMAXα
C
MAX

for all (αG, αC)

O
(t+1)
αG,αC =

{
O

(t)

αG,αC : αG 6= αGMAX ∧ αC 6= αCMAX

0 : else

Q := Q
#mr
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