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Abstract. The choice of an adequate representation plays a major role in any 
kind of evolutionary design optimisation. A flexible and preferably adaptive 
description of the shape is advantageous in many aspects as it guarantees a wide 
variety of geometry changes while keeping a low number of parameters. In the 
past free form deformation methods which are well known from the field of 
computer graphics have already been combined successfully with evolutionary 
optimisation. In the present paper general free form deformation (FFD) 
techniques are compared to the so-called direct manipulation (DM) of free form 
deformations method which promises several advantages in a design 
optimisation of complex systems. A general optimisation framework which 
allows the combination of these representations with evolutionary algorithms is 
described in detail. Its applicability is illustrated in a turbine blade test scenario 
to analyze the effects of the representations in evolutionary design optimisation. 

1   Introduction 

A crucial step when applying Evolutionary Algorithms to design optimisation 
problems is the definition of a representation of the design to be optimised by a set of 
parameter. Since the representation is highly problem specific various representations 
have been proposed for different application areas. Splines probably represent the 
most commonly used method for shape descriptions. A set of control points is used to 
define a spline curve or a spline surface which represents the cross-section or the 
surface of a geometry. This representation has been successfully used predominantly 
for the optimisation of relatively simple structures like turbine blades [1], aircraft 
wings or heat exchangers [2]. A major drawback of spline representations is the fact, 
that a large number of parameters is required to represent very complex shapes, i.e., 
the complexity of the representation is directly related to the complexity of the design.  
Additionally, if computational fluid dynamics calculations are required to determine 
the quality of new shapes, new grids have to be calculated. While automatic grid 
generation is possible for simple shapes, it is difficult or sometimes even impossible 
for complex designs. For these cases, the generation of the computational grid is a 
difficult and time consuming manual process. In particular, in the context of 
evolutionary algorithms, manual grid generation does not seem to be feasible.  

An alternative representation that alleviates both problems (complex shapes and 
grid generation) is the free form deformation (FFD) method. In the FFD method 
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deformations of an initial design are described instead of the geometry itself. Therefore, 
the number of parameters is independent of the complexity of the shape. It is solely 
determined by the required flexibility of the deformation. FFD techniques have been 
introduced in the field of computer graphics and computer animation for object 
manipulation [3]. They have been applied to shape optimisation of aerodynamic 
problems by Perry et al. in [5] and together with evolutionary algorithms by Menzel et 
al. in [6]. It has been shown that FFD methods realize a good trade-off between shape 
flexibility and a low number of parameter which in turn results in a low dimensional 
search space for the optimisation. Furthermore, it has been demonstrated that the shape 
deformations defined by the FFD method can equally well be applied to deform a grid 
for computational fluid dynamics calculations. This way it is possible to omit the 
manual grid generation even for complex geometries. In many cases, design 
optimisation of complex shapes only becomes feasible when FFD methods are used for 
the representation.  

An FFD system, which is described in Section 2 in more detail, is generally 
defined by a lattice of control points. A modification of the control point positions 
results in a deformation of the geometry inside the control volume. For the 
optimisation it is important to minimize the number of parameters. This is achieved 
by a proper initialisation of the control volume because the number and position of 
control points determines the shape flexibility.  

One important aspect is to maximize the influence of the control points on the shape 
by placing control points close to the sensitive regions of the geometry. For the search 
process it is advantageous to generate a set of control points with which geometrical 
variations can be realized without the need for correlated changes of control points. 
Furthermore, the transformation should allow changes that are sufficiently local.  

Therefore, this step of constructing an optimal control volume requires experience 
of the designer with the representation and more crucially with the problem at hand. 
Using an online adaptation of the grid of control points, which has been suggested in 
[6], can alleviate the problem of an optimal initial grid, however at the expense of an 
additional burden on the search process that is likely to result in additional evaluations 
and increased computing time.  

Whereas the first problem addresses the dimensionality and flexibility of the 
representation, the second problem emerges purely due to the position of the control 
points in the design space. The position determines the structure of the search space 
and influences the optimisation process.  

For both the dynamics of the search process and the design freedom, it would be 
desirable to directly specify shape variations instead of changing positions of control 
points in a grid that result in deformations of the “attached” shape as it is the case in 
standard FFD.  

Direct Manipulation of Free Form Deformation (DMFFD) allows this. DMFFD 
decouples the control point grid of the FFD from the design modifications. Instead of 
defining the parameter of the transformation function, a set of “handles” to the design – 
usually surface points – are defined. The effect is a well defined influence of parameter 
on the shape. Furthermore, the search dimension is independent of the control volume, 
keeping all other attributes of the underlying free form deformation.  

In this paper, we apply both methods, the standard free form deformation and the 
direct manipulation of Free Form Deformation, to a design optimization problem and 



354 S. Menzel, M. Olhofer, and B. Sendhoff 

compare the results with respect to quality, stability and convergence time. The 
optimization of a 2D transonic gas turbine stator blade does not represent the complex 
shape problem for which the FFD methods are actually most suitable. However, it 
indicates the strong and weak points of both representations and serves as a kind of 
intermediate benchmark problem.  

The remainder of this paper is organized as follows. In Section 2, FFD and 
DMFFD are described in more detail. The combination of both representations with 
evolutionary computation is illustrated in the turbine blade test scenario in Section 3 
and the effects of the representations are discussed. We conclude in Section 4. 

2   Direct Manipulation of Free Form Deformations 

2.1   Free Form Deformation (FFD) 

The basic idea of the free form deformation is depicted in Fig. 1 a). The sphere 
represents the object which is the target of the optimisation. It is embedded in a lattice 
of control points (CP).  Firstly, the coordinates of the object have to be mapped to the 
coordinates in the spline parameter space, a procedure which is called ‘freezing’. If 
the object is a surface point cloud of the design or a mesh which originates from an 
aerodynamic computer simulation (as in our example in Section 3) each grid point has 
to be converted into spline parameter space to allow the deformations. For this 
calculation various methods have been proposed, e.g. Newton approximation or 
similar gradient based methods [4], [7]. After freezing the object can be modified by 
moving a control point to a new position. The new control point positions are the 
inputs for the spline equations and the updated geometry is calculated. Since 
everything in the control volume is deformed, a grid from computational fluid 
dynamics that is attached to the shape is also adapted. Hence, the deformation affects 
not only the shape of the design but at the same time the grid points of the 
computational mesh which is needed for the Computational Fluid Dynamics (CFD) 
evaluations of the proposed designs. The new shape and the corresponding CFD mesh 
are generated at the same time without the need for an automated or manual re-
meshing procedure. This feature significantly reduces the computational costs and 
allows a high degree of automation [5], [6], [8]. Thus, by applying FFD the grid point 
coordinates are changed but the grid structure is kept. 

As mentioned in the introduction the main disadvantage is the sensitivity of the 
FFD method to the initial placement of the control points. An inappropriate set-up 
increases the necessary size of the parameter set and therefore the dimensionality of 
the search space. One of the reasons is for example that the influence of a control 
point on an object decreases with the distance from the object. Even a small object 
variation requires a large modification of the control point if the initial distance 
between object and control point is large (this also violates the strong causality 
condition that is important in particular for Evolution Strategies). This in turn often 
modifies other areas of the design space which has to be compensated for by the 
movement of other control points. Hence, often correlated mutations of control points 
are necessary for a local change of the object geometry. 

 To reduce the influence of the initial positions of the control points direct 
manipulation is introduced as a representation for evolutionary optimisation which 
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Fig. 1. a) Free Form Deformation [5]. The design is embedded within a lattice of control points. 
The modification of control points affects the shape as well as everything else inside the control 
volume. – b) Direct Manipulation of Free Form Deformations. The object point is chosen 
directly on the surface and the required movements of the control points to realize the target 
movement of the object point are calculated e.g. by the least squares method. The dotted control 
volume is invisible to the designer as s/he works directly on the object points; the control 
volume can be chosen arbitrarily. 

allows to determine variations directly on the shape. Therefore local deformations of 
the object depend only on the so called object point.  

2.2   Direct Manipulation of Free Form Deformations 

Direct manipulation of free form deformations as an extension to the standard FFD 
has been introduced in [9]. Instead of moving control points (CP), whose influence on 
the shape is not always intuitive, the designer is encouraged to modify the shape 
directly by specifying so called object points (OP).  

Although the initial setup of the control volume is similar to FFD, the control volume 
becomes invisible to the user and necessary correlated modifications are calculated 
analytically. In a first step, a lattice of control points has to be constructed and the 
coordinates of the object and the CFD mesh have to be frozen. But the control volume 
can be arbitrary, i.e., the number and positions of control points do not need to have any 
logical relationship to the embedded object, besides the fact that the number of control 
points determines the degree of freedom for the modification. In the next step, the 
designer specifies object points, which define handles to the represented object that can 
be repositioned. The shape is modified by directly changing the positions of these object 
points. The control points are determined analytically so that the shape variations 
(induced by the object point variations) are realized by the deformations associated with 
the new control point positions. In other words, the control points are calculated in such 
a way that the object points meet the given new positions under the constraint of 
minimal movement of the control points in a least square sense. Of course the object 
variations must be realizable by the deformations from the calculated new control point 
positions, i.e., if the number of control points is too small, some variations given by new 
object point positions might not be representable by a deformation.   

In Fig. 1 b) an object point has been specified at the top of the sphere. The designer 
is able to move this object point upwards without any knowledge of the “underlying” 

a) b) 
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control volume which can be initialized arbitrarily. The direct manipulation algorithm 
calculates the corresponding positions of the control points to mimic the targeted 
object point movement. The solution is shown in Fig. 1 b).  

Direct manipulation of free form deformation has several advantages when 
combined with evolutionary optimization as compared to standard FFD. The 
construction of the control volume and the number and distribution of control points 
are not as important as in standard FFD. Furthermore, the number of optimisation 
parameters equals the number of object points.  

3   FFD and Direct Manipulation of FFD in Evolutionary  
Design Optimisation 

3.1   General Remarks on the Optimisation Set-Up 

For a comparison of both representations a design optimisation test scenario has been 
set up. Four optimisation runs have been executed, one based on the standard free 
form deformation method and three using the direct manipulation technique.  

All optimisations were based on an evolutionary strategy with covariance matrix 
adaptation (CMA-ES), an algorithm which combines fast convergence (few function 
evaluations) with high performance and small population sizes. This is especially 
significant for optimisations in which CFD calculations are required for fitness 
evaluation. There are mainly three features of the CMA-ES which distinguish it from 
standard evolutionary strategy algorithms. Firstly, the stochastic influence in the 
mutation step is reduced by introducing only one stochastic source which is used for 
modifying both, the object as well as the strategy parameters. Secondly, the so-called 
cumulative step-size adaptation is applied which extracts information from past 
generations to speed up and stabilize the adaptation of the strategy parameter. Thirdly, 
an adaptation of the full covariance matrix of the probability density vector takes 
place instead of independent variances for each single parameter. Therefore, 
correlated mutations can be realized which can significantly increase the convergence 
speed of the algorithm [1, 9, 10]. 

In all four optimisations the population size has been set to 32 individuals and an 
approximation model has been applied. In a pre-evaluation step all 32 individuals 
have been evaluated with a neural network and only the 16 most promising ones have 
been simulated with CFD to determine the individual fitness. The fitness values have 
also been used to train the neural network. From the 16 CFD results the best 
individual has been selected and considered as the parent for the next generation, so a 
(1,32(16))-strategy has been applied. 

The details for each run can be found in Table 1. The number of parameters refers 
to the dimension of the search space. Their distribution on the design is depicted in 
Figure 3. The number of control points refers to the control point coordinates which 
can be modified in the FFD control volume. This is different from the total number of 
control point coordinates because points at the upper, lower and left border have to be 
constant due to CFD mesh consistency. Additionally, control points on the right edge 
of the control volume can be modified only in y-direction in order to fix the x-length 
of the design. For run 1 to run 3 the same FFD control mesh is used which is shown in 
Figure 3 in the upper left part for run 1. 
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Table 1. Type and number of parameters 

Run Type 
Number of 
parameters 

Number of  
control points 

1 control points 10 10 

2 object points 5 10 
3 object points 13 10 

4 object points 13 36 

3.2   Turbine Blade Test Scenario 

In this section, the results of a study on a turbine blade optimisation are presented, for 
details of the aerodynamic application and its parameters the reader is referred to [1]. 

 

Fig. 2. The generation cycle in evolutionary design optimisation, see [6] 

In Figure 2, the general workflow of the design optimisation is depicted and is now 
explained in more detail for run1, i.e., the standard free form deformation technique. 
A control volume consisting of 4x4 control points has been set up in which the turbine 
blade is embedded, see Figure 3. For easier visualization the CFD mesh is not plotted. 
However, we should keep in mind that during the deformation step the blade 
geometry as well as the CFD mesh are modified which allows the omission of the 
costly re-meshing process. 

The control points CP1-CP4 can be freely moved in the x-y plane during the 
optimisation, while CP5 and CP6 are only allowed to move in vertical direction as 
stated above. After the encoding of these parameters (x and y coordinates of points 
CP1 to CP4 and the y-coordinate of CP5 and CP6) in the chromosome of the parent 
individual the control point positions are optimized. This includes the mutation of the 
control points, the deformation of the CFD grid based on the free form deformation 
algorithm and the execution of the CFD flow solver. As described in the previous 
section, the ES-CMA is used together with a neural network meta-model. 
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Fig. 3.  Number and distribution of optimisation parameters. run1: 10 parameters (P1-P4: x, y; 
P5, P6: y); run2: 5 parameters (P1, P2: x, y; P3: y); run3: 13 parameters (P1-P6: x, y; P7: y); run4: 
13 parameters (P1-P6: x, y; P7: y). The closed line marks the initial designs, the dashed lines the 
optimized ones. The control volume is only drawn for run1. The control volumes for run2 and 
run3 are the same as for run1. Run4 has been modified in such a way that two rows and 
columns of control points have been inserted corresponding to a simple knot insertion 
algorithms as explained in [7]. For run4 the modifications at the leading and trailing edge are 
shown in a higher resolution to illustrate the occurring deformations. Initial circular or ellipsoid 
arcs are not kept after deformation because they turn out to be inferior to other leading and 
trailing edge geometries.  

Run 2, 3 and 4 are identical besides that the direct manipulation of free form 
deformations is applied to modify the control points directly. The two major 
differences are the following:  

1. The chromosomes contain object point positions (Pi) instead of control point 
positions (CPi) as parameter sets. 

2. The control points are calculated based on the encoded object points with the 
method for direct manipulation. Here the object points given in Figure 3 are 
used in the three runs. Based on the calculated control points the deformations 
of the design and CFD grid are updated in the same way as in run 1. 

The results, i.e. the fitness progression, of this optimisation of all optimisation runs 
are summarized in Figure 4. 
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Fig. 4.  The progress of the fitness of the runs 1 - 4 

One major drawback of the direct manipulation method as presented in Section 2 is 
that the calculation of the control points is not unique in every case and constraints 
necessary for the deformation of the CFD grid are neglected. Especially negative 
volumes can emerge which can be described as loops in the design space. 

This constraint is usually fulfilled by keeping the order of control points during the 
deformation step. However, when using direct manipulation the effect can occur that 
a targeted movement of an object point can only be achieved if large control point 
modifications are applied. These modifications can result in a change of the order of 
control points with the effect of producing grid cells with negative volumes. Methods 
for repairing and improving the structure of control points are therefore topic of our 
current research. To guarantee valid CFD meshes in the present optimisations the 
order of control points is checked after every mutation step. If the order of the control 
points is changed the mutation is repeated until a valid individual is generated. 

3.3   Experimental Results 

Figure 4 summarizes the results of the optimisations. Base run 1 that uses the standard 
FFD representation resulted in a converged fitness of 0.62 which means a 37% gain 
compared to the fitness of the initial turbine blade of 0.98. 

According to Figure 3 three object points have been chosen for run 2. It resulted in 
a fitness of 0.7 but it needed less than half the number of generations and the 
optimization run is very stable. This is due to the reduced number of parameter which 
is only 5 (2 object points movable in x- and y-, 1 object point movable in y-direction) 
but it also shows that the flexibility of the design is limited by the choice of object 
points. This demonstrates that an optimisation using direct manipulation is limited by 
two factors. On the one hand a low number of object points restricts the flexibility of 
the design because these are the parameters which are optimized. On the other hand 
the number of control points limits the degree of realizable shape variations because 
the control points actually induce the targeted object point modifications through the 
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defined deformations. If the number of control points is too low the targeted object 
points movements cannot be achieved. 

 In run 3 the number of object points (OP) has been increased to 7, i.e. 13 
optimisation parameters (6 OP movable in x- and y-, 1 OP movable in y-direction) to 
improve the flexibility of the design. The fitness decreased to 0.5. This is an 
improvement compared to the optimisation run 1. This improvement is particularly 
interesting because the optimisation is based on the same control point grid as run 1. 
Even if the number of parameter for the optimisation is larger in run 3 the parameter 
for the deformations are identical because they are limited by the control point grid. 
Since the number and distribution of control points did not change between both runs 
the optimisation of run 1 must have converged to a local optimum. The structure of 
the search space seems to be changed by the direct manipulation in a way that the 
local maximum is circumvented in this optimisation run.  

As a consequence, for this optimisation it can be seen that the usage of object 
points has been more successful. The fitness decreased faster and also at an earlier 
generation which is particularly important when dealing with time consuming 
evaluation functions like CFD simulations.  

To analyze whether the performance could be even more increased by allowing 
more flexibility in the possible deformations two rows and columns of control points 
have been inserted into the control volume, resulting in 36 control points in run 4 
while the number of object points was kept at 7. The fitness improved due to the 
control point insertion only slightly to 0.45. This is also a promising observation 
because the number of optimisation parameters is still 13 and the course of the fitness 
is quite similar to the one of run 3. Hence, the increase of flexibility by control point 
insertion did not affect the convergence behaviour.  

4   Conclusions 

In this paper, the standard free form deformation technique as well as direct 
manipulation of free form deformation have been combined with evolutionary 
optimisation. Both representations provide a fair trade-off between a low number of 
parameter and shape flexibility. To compare the performance a test scenario has been 
set up: a two dimensional turbine blade optimisation.  The test scenario is a trade-off 
between a simple shape approximation benchmark problem and a truly complex shape 
optimization which is too computationally expensive for the comparison presented 
here. The expensive computational CFD simulations did not allow to perform several 
optimisations for averaging. By changing the representation and applying different 
numbers of object points the effect of the representation on the design optimisation 
has been studied.  

In summary, we have shown that in this optimisation the usage of the new direct 
manipulation with free form deformation method has been advantageous.  

If only 3 object points are chosen like in run 2 the convergence speed improved 
drastically and resulted still in a good performance index compared to the 
optimisation of the control points in run 1. This can be explained by the lower number 
of parameters in the optimisation. If the number of object points is increased like in 
run 3 and at the same time keeping the control points fixed, the fitness can be further 
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improved although the possible transformations are kept constant in all three 
experiments. Here obviously the re-structuring of the search space by the introduction 
of the direct manipulation methods is beneficial.  

Even an increase of control points in the control volume as it has been done in run 
4 did not slow down the optimisation. This is a very promising result since the 
influence of the number of control points did not affect the convergence speed but the 
number of object points did. As a consequence one could argue to choose a high 
number of control points in the optimisation to achieve a high flexibility of the 
transformation and less constraints for the modification due to restrictions in the 
transformation. This definitely decreases the effect of the control point position and 
reduced the necessary prior knowledge about the optimisation problem while setting 
up the control volume. 

Therefore, direct manipulation is a very promising representation because it 
provides the advantages of the standard free form deformation techniques while 
adding its own advantages as the arbitrary initialization of control volumes as well as 
the more direct impact of the object points on the geometry which improves the 
efficiency of the evolutionary algorithm. 
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