
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Integrated Research and Development
Environment for Real-Time Distributed Embodied
Intelligent Systems

Antonello Ceravola, Frank Joublin, Mark Dunn, Julian
Eggert, Christian Goerick

2006

Preprint:

This is an accepted article published in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. The final
authenticated version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Integrated Research and Development Environment for
Real-Time Distributed Embodied Intelligent Systems

Antonello Ceravola, Frank Joublin, Mark Dunn, Julian Eggert, Marcus Stein and Christian Goerick

Honda Research Institute Europe GmbH
Offenbach/Main, Germany

Antonello.Ceravola@honda-ri.de

 Abstract - In the field of intelligent systems, research and
design approaches vary from predefined architectures to self-
organizing systems. Regardless of the architectural approach,
such systems may grow in size and complexity to levels where the
capacities of people are strongly challenged. Such systems are
commonly researched, designed and developed following several
methods and with the help of a variety of software tools. In this
paper we want to describe our research and development
environment. It is composed of a set of tools that support our
research and enable us to develop large scale intelligent systems
used in our robots and in our test platforms. The main parts of
our research and development environment are: the component
models BBCM (Brain Bytes Component Model) and BBDM
(Brain Bytes Data Model), the Middleware RTBOS (Real-Time
Brain Operating System), the Monitoring system CMBOS
(Control-Monitor Brain Operating System) and the Design
Environment DTBOS (Design Tool for Brain Operating System).
We will compare our research and development environment
with others available on the market or still in research phase and
we will describe some of our experiments.

Index Terms - Parallel, Multithread, Multiprocessing, Real-
Time, Modularity.

I. INTRODUCTION

 Researchers around the world are continuously building
intelligent systems that speak, see, learn, navigate and operate
under conditions where even humans can’t. Very few groups
are focusing on building these systems in an integrated way
with methods and tools that simplify handling the typical
complexity and enable reuse. Researchers validate and
implement their ideas through the usage of software
technologies, given that, computers are, implicitly or
explicitly, accepted as a general platform (very few
researchers are building their own computing architectures
like analog or neural computers). For these reasons we
decided to introduce a new abstraction layer that on one side
supports the design and the creation of large-scale systems
and on the other side it is based on standard computers and
standard operating systems.
 A set of tools and computers alone cannot solve all the
issues that usually emerge in researching and creating
intelligent systems. It is clearly necessary to research the
architectures, the methods and the approaches towards the
creation of such large-scale systems. Here the effort is on the

principles that regulate and organize the research work
towards a coherent and consistent design and implementation
of the many parts that an intelligent system is composed of. It
is not the scope of this paper to illustrate and discuss such
principles (for an introduction see [1]), while instead we will
give an overview of the overall process we use in our software
system research and the tools that supports us in the creation
of real-time distributed embodied intelligent systems.

A. Related Approaches
 In the recent years, in the field of intelligent systems,
robotics and real-time systems, researchers started to build
software environments like the one we describe in this paper.
The approaches vary mainly in the abstraction level and the
pursued targets. On a basic abstraction level, a modular
approach is proposed by [2], [3] using a “component model”
(software packaging patterns). We believe that this is a crucial
aspect for intelligent systems since building system out of
components/modules, allows cutting complex problems into
smaller pieces, reducing complexity, increasing reusability
and decreasing dependency (see [4], [5]). In [6] the usage of a
set of libraries that supports data communication is proposed.
Communication is one of the most important issues in
modular systems, especially when building component-based
systems, suppose to simulate brain-like functions. In [7] the
usage of image/matrix manipulation libraries in combination
with their development systems is proposed. The advantage
here is that components/modules can benefit of a low level
library that may gives a significant acceleration for common
image/sound manipulation or matrix operations. Approaches,
which are closer to the one we propose in this paper, are
described in [8], [9], [10], [11], [12] where the aim is placed
on an integrated environment which includes designing and
monitoring tools. In these papers many different approaches
are pursued, custom to specific problems or to particular
architectures.
 Generally, the most visible shortcoming of the cited
solutions is that each of them is specialized for a particular
domain or for a specific purpose. Moreover, some of the
solutions described, put too much focus on specific features,
overloading them with too much functionality, which, in
practice, are not really necessary. We believe that it is crucial
to have one single research and development environment
that, while giving freedom to design and implement any

architecture (see [9] for similar arguments), provides all the
necessary support for system decomposition, communication
patterns, scalability into computers up to the support of
execution with different sequential or parallel paradigms.
Moreover, simplicity and modularity are, in this respect, a key
point for the development and the usage of such research and
development environments.

B. Our Approach
 In Software Engineering it is well known that the creation
of large-scale systems must be supported by a well defined
process. Such process defines the various phases a project is
composed of, the relation between such phases, the interaction
and the tools required to accomplish the necessary tasks. We
decided to employ such a process for our research in order to
take advantage from it and structure our work. Our overall
research and development process it’s represented in Figure 1.

Figure 1: Our research and development process.

 This process governs the life cycle of our systems
research. An iteration of the full process runs on the time scale
of about one year. Each step of this process is executed by
several actors and is actually governed by sub-processes that
determine the more fine grain actions. We distribute a set of
check points in the process to ensure a certain level of quality
at each step. The process starts with a conceptual phase where
we maturate and formalize the ideas we want to realise in our
systems. In this phase every researcher may use a different
approach to reach his results. But in the transition phase
(arrows in the graph) we coordinate and collect hypothesis
into one common form. This is very important in order to
cross-check the weak points or the unclear ones, or simply to
confirm what seems to be accepted by the researchers. Other
steps in the implementation phase are more concrete and
require the creation of software modules, the testing of the
functionality or the analysis of properties that modules should
have. For such steps we decided to develop a set of tools that
support the accomplishment of the related tasks. The major

novel contributions of our system are: a) the partition we have
created between components for algorithms (wrapping our
algorithms, BBCM) and components for data (wrapping the
communicated data between components, BBDM); b) the
ways threads, execution patterns and processes are defined
(controlled by RTBOS, Execution Patterns); c) the integration
of all parts of our system into one single environment. The
necessity of a) comes from the needs of controlling and
configuring connections between components in a direct way.
Additionally, components can ask for specific connection
properties directly to the data component to which they are
connected to. Moreover, through b) we do not require the
creator of components (for data or algorithms) to code
complex functions like input/output synchronization and /or
parallelization handling. Such properties are defined in the
application’s graph and can be modified and reviewed any
time without requiring a coding phase. The necessity of c)
comes from the requirement of having all parts of the system
working together with the minimum effort from the user point
of view.
 In section II we describe the steps of our process and the
tools we have created for supporting them; in section III we
review the history of the development of system hypothesis
using this process and tools. Section IV summarizes and
concludes the paper.

II. OUR PROCESS AND TOOLS

 Let’s revisit the process of Figure 1 and analyse each step
into more details:

 A. Define System Hypothesis
 This step belongs to the conceptual phase where the
research work is concentrated on the definition of a system
hypothesis. In this phase we elaborate the architecture, the
functionality and the methods we want to research on. The
goal here is to reach a coherent system hypothesis that
contains all the functionalities and the principles we want to
experiment on in an integrated concept.

B. Design System Instance
 In this last step of the conceptual phase we develop a
concrete design of the system. Here ideas and principles are
mapped to concrete functions (component hypothesis) and
relations (communication hypothesis). This step allows us
to understand what type of components is required in order to
develop the target system. Decomposing a system into
components requires a certain balance between generality and
specificity. The space of components can go from simple
operation like addition, multiplication, to more complex one
like filter banks, integrators, until components that perform
object recognition or speech synthesis. The main driving
forces to choose granularity are openness for extensions and
performance. The systems we target are real-time systems
working in real conditions in the real world. Decomposing a
system in too fine grain components may overload the
communication channels. This has to be balanced with the

choice of the employed communication paradigms.
Communication between several components that use the
memory channel of a single machine is much more convenient
(in certain circumstances) then a communication channel over
a network connection among computers. Here there is again a
wide spectrum of possibilities. Network communication
between computers can be implemented in many different
ways, e.g. TCP, UDP and Shared Memory Cards.
 In our experience we have had the needs to develop
components which implements simple operations, and
components that performs more complex functionality. The
goal of this step is to identify the components we need and the
communication patterns we want to employ for each part of
the graph of the system. There we also identify which
components can be reused and make a preliminary
decomposition into computers. This preliminary partition is
constrained by the actual availability of sensors and effectors.

C. Design Component
 The implementation phase starts with the design of
components. In our philosophy we clearly separate processing
from communication, to allow for experimenting with
different systems architectures, connectivity graphs and
communication means without touching the internals of the
processing algorithms. Therefore, we decided to encapsulate
the processing (algorithms) into components. We have defined
the BBCM (Brain Bytes Component Model) specification, a
very simple but powerful component model that implements
the interface shown in Figure 2a.

Figure 2: BBCM and BBDM interface.

 All communication with a component is performed via
this interface, which in the case of input and output are simple
memory blocks handed over to the component from the
outside. Events are data-less function calls. The BBCM has
been implemented in the languages C, C++ and Matlab.
 The data being communicated usually follow a data
component specification for data types. It is called BBDM
(Brain Bytes Data Model) which allow us to wrap any data
type in standard components with a well defined interface (see
Figure 2b).
 The two component models (BBCM and BBDM) have
been designed to work together (but they do not depend on

each other). Furthermore a C BBCM and a C++ BBCM
component can be used and can be connected together in the
same source code file. The proposed standardization level is
on the one side sufficiently strict in order to be a suitable basis
for additional tools relieving much of the implementation
burden from the researchers, and on the other side sufficiently
flexible in order to allow for experimenting with different
processing and communication paradigms.

D. Implement Component
 This step consists in creating and coding the different
components. It can be performed by the researcher or
outsourced to external companies. This step is supported by
different tools and conventions:
 Coding and naming conventions: we decided to employ
a set of conventions for our software. Through the coding
conventions we improve readability and ensure a certain level
of quality. Here we tried to keep the set of conventions as
small as possible in order to minimize the effort to learn and
use them. We support their usage by web tools.
 Image and sound libraries: one of our main fields of
research is image, sound and speech understanding and robot
manipulation. For this reason we have created VLW (Visual
Library Wrapper), and SLW (Sound Library Wrapper);
libraries that support image and sound manipulation (e.g.
arithmetic operations, filtering, transformation, conversions).
These libraries are wrappers around existing libraries,
providing a standard interface to our software. The wrapped
libraries are: the IPP library [13], the Media Lib library [14]
and a plain C version used in platforms that do not support
IPP or Media Lib. These libraries are heavily used for
building the algorithms wrapped in our BBCM components.
 Template generator: since we often create components,
we decided to use automatic code generators that generate the
template for a BBCM or BBDM component from a simple
textual description of its interface. We created SMDL (Simple
Macro Descriptive Language), a language for transforming
any document into a template. The usage of automatic code
generators has many benefits, like:

- The generated code always conforms to our standards
(conventions and libraries);

- The generated code is less prone to errors;
- Large amounts of source code can be generated in a

fraction of time;

E. Compile, Test and Install
 This traditional step is supported by several standard and
custom tools that remove some of the load usually associated
with this step in a multiplatform environment:
 Versioning system: we are currently using SVN
(Subversion [15]) for source code versioning. This tool (open-
source, freely available on the internet) handles directory and
source code file versioning in a local or networked
configuration.

 Multiplatform makefile system: we have based our
build system on the GNU make [16]. Our build system is
composed by two sets of files: a file makefile (read-only for
users) which contains all rules we need for building, installing
and handling the versioning system for all our modules; a file
makeVar which contains user settings (include paths, libraries
and compiler options). Our build system is multi-platform and
supports until now projects for C, C++, PHP and Matlab
CMEX.
 Multiplatform deployment structure: in order to store
and share our components, modules and applications we have
created a multi-platform installation directory structure. This
directory structure (that looks the same for all platforms we
use) stores include files, object files, libraries, binaries,
documentation and configuration files. In order to avoid the
common problem of parallel development on a single source
tree, we opt for a solution where we share compiled code
(components, libraries …). Every installed module contains
the following configuration files: packageVar (for compiler
settings and paths) and a file TcshSrc (for execution settings).
To include a module just the respective packageVar and
TcshSrc have to be used. By this way the required compiler
and execution settings are inherited. Moreover, our build
system gives support for this multi-platform installation tree
when compiling and installing modules.

F. Creation of System Graph
 At this step of the implementation phase the
communication hypothesis and the implemented components
are used to build the system graph. In order to improve the
design and to simplify the creation of our applications we
have developed DTBOS (Design Tool for Brain Operating
System).

Figure 3: Design environment DTBOS. White circles
identify planed extensions of the tool.

 DTBOS is a RAD-like development environment that allows
importing RTBOS Modules (CD/DM) into a toolbar with
which users can draw applications in a graphical way.
CM/DMs are drawn like boxes with input/output ports;
connections can be created by just dragging links from one
port to another. DTBOS can read and save files in the same

script format (CML, C Macro Language) accepted by
RTBOS.
 Moreover, with DTBOS we can debug our applications
through a playback functionality that reads an RTBOS log
session and shows, through an animation, the executed
modules step by step. A diagram of DTBOS is shown in
Figure 3.

G. Run, Monitor and Debug
 The last step of the implementation phase consists of the
execution of the system, the debugging and the test in
simulated and real-world conditions. The following tools
support this step:
 Distributed middleware for real-time applications: we
have created RTBOS (Real-Time Brain Operating System), a
distributed middleware for multi-platform real-time modular
applications. The requirements from the beginning were to
provide in integration environment that is suitable for vision,
audition, internal prediction and decisions as well as
behaviour generation and control of actuators. The sensory
streams demand for a high data bandwidth, the internal
processes for a high connectivity and the control aspects for a
low latency and a strict determinism in processing and
communication. The internal mechanisms account for those
requirements by providing low overhead communication and
data sharing mechanisms as well as deterministic thread
control. An RTBOS application is defined by a set of:
Computing Modules (CM), Data Modules (DM), a
Connectivity Graph and Execution Patterns. A CM is an
RTBOS Module that encapsulates a BBCM component; a DM
is an RTBOS Module that encapsulates a BBDM component;
a Connectivity Graph defines the connections between CM
and DM while an Execution Pattern determines the ways CMs
are executed. We have identified several patterns, which can
be defined for arbitrary sub-partitions of the system instance.

Figure 4: Run-time environment RTBOS.

 The major Execution Patterns are: Parallel – which
executes each CM in a separated thread. This execution
pattern is necessary for executing parts of the system in
parallel with each other. It is the basic execution pattern since
our underlying hypothesis is an asynchronous system that can
be synchronized if necessary. Sequential – which executes all
CMs in a sequence, all in one single thread. The choice of the

execution pattern allows for a fine grained control of the
computing resource allocation.
 When RTBOS starts an application, it loads the CM/DM
modules defined in the CML script file; connects them
following the Connectivity Graphs, initializes all modules and
then executes the full application (Setup engine in Figure 4).
The parallelism of an RTBOS application may employ threads
(within a machine) or processes (across machines). RTBOS,
through the concept of Execution Patterns simplifies
drastically the design and the creation of parallel applications.
Moreover, RTBOS handles automatically data allocation,
communication and synchronization between threads and
processes even across computer boundaries.
 The script file defining the applications follows a simple
language definition providing a set of commands for
managing applications as described above. The script file is
plain text and can be quickly edited by any text editor. Since it
is following a language specification it can be parsed and
produced by other tools like the design environment DTBOS.
This feature leads to a higher acceptance for both researchers
preferring to work with configuration files and researchers
preferring GUIs.
 Monitoring control system: we have created also the
monitoring system CMBOS (Control Monitor system for
Brain Operating System). CMBOS is a demon process that
runs in a monitoring machine. This demon, from one side
accepts requests for data monitoring, while on the other side
opens automatically the appropriate user interface to show the
requested data to be monitored. CMBOS contains a set of
already defined user interfaces that show 2D graphs, counters,
images and others types of visualization tools. Users can
implement new visualization tools and new data types to
expand the functionality of CMBOS.

Figure 5: Control and monitoring system CMBOS.

H. Closing the Loop
 Base on the described overall process we have now
introduced all tools for supporting our work. In close
collaboration with the researchers we are continuously
working on the refinement and the extension of the covered
concepts. We have already started the integration of all the
mentioned tools into one single environment. Our target is to

make DTBOS the central interface, the only tool that users
would need to know. From DTBOS it will be possible to
create new BBCM/BBDM components, edit them, compile
them, import them automatically in the toolbar, use them to
draw applications, execute the RTBOS session and open
CMBOS monitoring sessions directly through the DTBOS
interface (see Figure 3).
 All our tools have been designed to work on several
platforms. We currently support Linux, Sun Solaris, Windows
(native and CygWin) and VxWorks. We are interested in
expanding the list of supported platforms in order to improve
stability, portability and performance.

III. OUR APPLICATIONS AND EXPERIMENTS

 The tools reported on in this paper have been growing
together with our scientific research systems over the last four
years. The valuable feedback from the researchers concerned
with their own functional methods and algorithms has found
its way directly into the conceptual improvements of the tools.
The tools, especially RTBOS have been tested on benchmark
problems in order to examine the theoretical performance. As
a result of these experiments we could estimate the overhead
introduced by RTBOS compared to a hand coded system. It is
approximately one percent of the overall processing time,
assuming extremely simple processing elements spending very
little time on actual computation. This assumption represents a
theoretical worst case setting for middleware systems.
 We will now report on the performance of the tools in
real-time real world settings. There are three major areas of
applications and experiments to report on, others are subject to
current research with publications under preparation.

A. Interactive Vision System
 The first area is concerned with an interactive vision
system composed of: image acquisition, saliency computation
(from several cues: colour, intensity, saturation, motion,
disparity), visuo-motor mapping & learning, gaze selection,
object recognition and learning and camera head control.

Figure 6: DTBOS graph of our current active vision system.
a) Online object recognition and learning sub-system. b) gaze

control sub-system.

 This system is able to accomplish the following tasks:
visuo-motor mapping learning, interactive attention
modulation, object fixation and recognition, scene

exploration, simple feature based object search. Some of the
corresponding work has been published in [17], [18], [19]. In
total 13 researchers have been contributing to and working
with this system over the past four years in an incremental
fashion.
 The system has a brain-like systems architecture, the
current connectivity graph with the respective subsystems is
shown in Figure 6. It has now been growing over the last four
years, reaching a number of 202 BBCM instances as
processing modules and 157 BBDM instances as data
modules. The average number of instances per coded BBCMs
is around two, while the average number of instances per
coded BBDMs is five. Those numbers are a mild estimate for
the reuse of components within one systems instance. There
are several variations of the system with at least six current
computation threads up to a fully parallel system with the
number of threads in the order of the number of processing
modules. The execution time for the gaze selection
computation cycle is in the order 200ms, the time for the
online learning between 80 and 320ms, and the time for the
actuator control is between 500ms. The current version runs
distributed across several CPUs located on two SMP machines
connected via dedicated GigaBit Ethernet.
 For this system clearly the connectivity / communication
and the number of processing modules to manage are the
challenges for software environment, less the latency
constraints for the processing.

B. Binaural Sound Localization System
 More emphasis on the latency constraints is put in the
second area, which is concerned with a real-time binaural
sound localization system. The system performs the estimation
of the pan angle of incoming sound events and the control of
the gaze direction of a robot head based on this estimation in
real-time. It is composed of the following stages: sound
acquisition; 3 streams for sound position computation (IIT,
IID and IED); integration stage and head control. The
corresponding work is being published in [20] and [21].

Figure 7: DTBOS graph of our visually guided whole body
interaction system. a) vision sub-system. b) behaviour
control sub-system.

 The main two subsystems are the hardware interface and
the sound localization computation. The hardware interface
performs the stereo acquisition of the sound streams and the
control of the ASIMO head, while the sound localization

computation performs a parallel estimation of the sound
source pan angle. The stream cycle is 50ms for both
subsystems and the number of threads is ten. The total number
of BBCM instances is 222, and the total number of BBDM
instances is 275. Again, the two subsystems are executed
distribute across several CPUs located on two SMP machines
connected via dedicated GigaBit Ethernet. The connectivity
graph of the system is sketched in Figure 8. In total seven
researchers are contributing to this system.

Figure 8: DTBOS graph of our real-time binaural sound
localization system. a) sound localization computation

parallelized on three processors computing 30 frequency
channel each. b) the hardware interface.

 While the previously presented vision system is very
asynchronously oriented, the auditory system is more
synchronous. The reason is that the visual setting is from the
signal type more continuous allowing for a more loose kind of
synchronization, while the auditory setting is composed of
rare events that have to be tightly synchronized in order to
meaningfully fuse the different analysis streams into one
stable pan angle estimation. Both kinds of processing
paradigms could be equally well implemented by the proposed
tools.

C. Visually Guided Whole Body Interaction System
 The third area is concerned with a visually guided whole
body interaction system for our robot ASIMO. The system
allows ASIMO to gaze, looking for close objects, selecting
one and trying to approach the selected target by whole body
motions. Parts of this work are being published in [22] and
[23]. This system is composed by three main sub-systems:
ASIMO; a vision sub-system and a behaviour control sub-
system. The vision sub-system receives images form the
ASIMO stereo camera and creates a set of possible targets.
The control sub-system selects one target and then controls
the behaviours that ASIMO has to execute. Behaviours are
currently: walking, grasping and tracking. The vision
subsystem has a stream cycle of 150ms, the control system has

a stream cycle of 5ms. The total number of instantiated
BBCMs is 29, the total number of instantiated BBDMs is 35.
The connectivity graph is sketched in Figure 7.
 The system is distributed across three different machines.
The mixture of environment sensing and systems control puts
the hardest constraints on the tools, especially on RTBOS.
 Additional to the experience within the three different
fields there are some general observations we would like to
report on now. We could experience that the limits of our
tools are reached if we are close to the limits of the underlying
operating systems and hardware. Those limits are mainly due
to general purpose schedulers and limited network bandwidth.
For us this is a mild indicator that the overall overhead
introduced by our tools is small.
 Major parts of our systems have been contributed by non-
systems programmers. With the aid of the offered tools they
were able to create and manage real-time multi-threaded parts
of the systems.
 The overall reuse of components across the different
fields depends on the level of granularity of the components.
Generally speaking, the reuse is higher for fined grained
components like simple arithmetic functions on the inputs. For
example, there is a large overlap of the simple components
between the visual components of the first and the third area,
but exact numbers have to be determined.
 The chosen decomposition of the systems as well as the
means for working visually and monitoring various systems
properties allows for real research on systems level. As
pointed out in the paragraph on the auditory systems different
kinds of processing and communication paradigms can be
created and managed with the same tools. For example, in the
area of the active vision system we could investigate different
synchronization mechanisms without touching the internals of
the processing modules.

IV. SUMMARY

 In this paper we described the research and development
process that allow us to incrementally improve our real-time
distributed embodied intelligent system hypotheses and in
parallel progress with our integrated software development
environment. During the last four years we gained experience
integrating such systems and the design decision we took
during this process allowed us to quickly and reliably develop
complex interactive systems. We are now confident that such
approach is mandatory to deal with increasing complexity.

ACKNOWLEDGMENT

 The work presented in this paper is the result of a tight
cooperation among our researchers. Work that would have
never been the same without the doubts of Heiko Wersing, the
bugs found and created by Tobias Rodemann, the curiosity of
Inna Mikhailova, the patients of our students and the support
and technical skills of our external contractors.

REFERENCES
[1] Antonello Ceravola and Christian Goerick, “An Integrated Approach

Towards Researching and Designing Real-Time Brain-Like Computing

Systems”, submitted on The First International Symposium on Nature-
Inspired Systems for Parallel, Asynchronous and Decentralised
Environment, 2006, Bristol, England.

[2] Frank Lüders, “Adopting a Software Component Model in Real-Time
systems Developments”, Proceedings of the 28th Annual NASA/IEEE
Software Engineering Workshop, IEEE Computer Society Press, 2004.

[3] Matthias Scheutz, Virgil Andronache, “Architectural Mechanisms for
Dynamic Changes of Behavior Selections Strategies in Behavior-Based
Systems”, Systems, Man and Cybernetics, Part B, IEEE Transactions,
2004.

[4] Richard N.Langlois, “Modularity in Technology, Organization, and
Society”, University of Connecticut - Department of Economics, 1999.

[5] Peter Carruthers “Moderately massive modularity”, in A. O’Hear (ed.),
Mind and Persons, Cambridge University Press, 2003

[6] Brian Gerkey, Richard T. Vaughan and Andrew Howard, “The
Player/Stage Project: Tools for Multi-Robot and Distributed Sensor
Systems”, in 11th International Conference on Advanced Robotics,
Coimbra, Portugal (ICAR'03), 2003

[7] Giorgio Metta, Paul Fitzpatrick and Lorenzo Natale, “YARP: Yet Another
Robot Platform”, International Journal on Advanced Robotics Systems,
2005.

[8] Real-Time Innovation, “ControlShell User’s Manual, Version 7.0”, Real-
Time Innovation Inc., California, 2001.

[9] Issa A.D. Nesnas, “CLARAty: Towards Standardized Abstractions for
Robotic Systems”, workshop on Principle and Practice of Software
Development in Robotics, ICRA 2005, Barcelona, Spain, 2005.

[10] Christian Schlegel, “A Component Approach for Robotics Software:
Communication Patterns in the OROCOS Context”, workshop on
Principle and Practice of Software Development in Robotics, ICRA 2005,
Barcelona, Spain, 2005.

[11] Kazuo Tanie, “Standardization of Robotic Components and Future
Robotics Business”, IROS 2004, AIST – Japan, 2004.

[12] Olivier Stasse, Yasuo Kuniyoshi, “PredN: Achieving efficiency and code
re-usability in a programming system for complex robotic ap-plications”,
International Conference on Robotics and Automation (ICRA), San
Francisco, CA, USA , 2000.

[13] http://www.intel.com/cd/software/products/asmo-na/eng/perflib/index.
htm.

[14] http://www.sun.com/processors/vis/mlib.html.
[15] http://svnbook.red-bean.com.
[16] http://www.gnu.org/software/make/manual/make.html.
[17] Tobias Rodemann, Frank Joublin and Edgar Körner, “Saccade Adaptation

on a 2 DoF Camera Head”, Horst-Michael Groß and Klaus Debes and
Hans-Joachim Böhme, Fortschrittsberichte des VDI, 2004.

[18] Christian Goerick, Heiko Wersing, Inna Mikhailova and Mark Dunn,
“Peripersonal space and object recognition for humanoids”, Proceedings
of the IEEE/RSJ International Conference on Humanoid Robots
(Humanois 2005), Tsukuba, Japan, 2005.

[19] S. Kirstein, H. Wersing and E. Körner, “Rapid Online Learning of Objects
in a Biologically Motivated Recognition Architecture”, in 27th Pattern
Recognition Symposium DAGM, 2005.

[20] Martin Heckmann, Tobias Rodemann, Frank Joublin, Christian Goerick
and Björn Schölling, “Auditory Inspired Binaural Robust Sound Source
Localization in Echoic and Noisy Environments”, submitted in
Proceedings of the International Conference on Intelligent Robots &
Systems (IROS), 2006.

[21] Tobias Rodemann, Martin Heckmann, Björn Schölling, Frank Joublin and
Christian Goerick, “Real-time sound localization with a binaural head-
system using a biologically-inspired cue-triple mapping”, submitted in
Proceedings of the International Conference on Intelligent Robots &
Systems (IROS), 2006.

[22] Micheal Gienger, Herbert Janßen and Christian Goerick, “Task-Oriented
Whole Body Motion for Humanoid Robots”, Proceedings of the
IEEE/RSJ International Conference on Humanoid Robots (Humanois
2005), Tsukuba, Japan, 2005.

[23] Micheal Gienger, Herbert Janßen and Christian Goerick, “Exploiting Task
Intervals for Whole Body Robot Control”, submitted in Proceedings of
the International Conference on Intelligent Robots & Systems (IROS),
2006.

