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 Abstract - In the field of intelligent systems, research and 
design approaches vary from predefined architectures to self-
organizing systems. Regardless of the architectural approach, 
such systems may grow in size and complexity to levels where the 
capacities of people are strongly challenged. Such systems are 
commonly researched, designed and developed following several 
methods and with the help of a variety of software tools. In this 
paper we want to describe our research and development 
environment. It is composed of a set of tools that support our 
research and enable us to develop large scale intelligent systems 
used in our robots and in our test platforms. The main parts of 
our research and development environment are: the component 
models BBCM (Brain Bytes Component Model) and BBDM 
(Brain Bytes Data Model), the Middleware RTBOS (Real-Time 
Brain Operating System), the Monitoring system CMBOS 
(Control-Monitor Brain Operating System) and the Design 
Environment DTBOS (Design Tool for Brain Operating System). 
We will compare our research and development environment 
with others available on the market or still in research phase and 
we will describe some of our experiments.  
 

Index Terms - Parallel, Multithread, Multiprocessing, Real-
Time, Modularity. 
 

I.  INTRODUCTION 

 Researchers around the world are continuously building 
intelligent systems that speak, see, learn, navigate and operate 
under conditions where even humans can’t. Very few groups 
are focusing on building these systems in an integrated way 
with methods and tools that simplify handling the typical 
complexity and enable reuse. Researchers validate and 
implement their ideas through the usage of software 
technologies, given that, computers are, implicitly or 
explicitly, accepted as a general platform (very few 
researchers are building their own computing architectures 
like analog or neural computers). For these reasons we 
decided to introduce a new abstraction layer that on one side 
supports the design and the creation of large-scale systems 
and on the other side it is based on standard computers and 
standard operating systems. 
 A set of tools and computers alone cannot solve all the 
issues that usually emerge in researching and creating 
intelligent systems. It is clearly necessary to research the 
architectures, the methods and the approaches towards the 
creation of such large-scale systems. Here the effort is on the 

principles that regulate and organize the research work 
towards a coherent and consistent design and implementation 
of the many parts that an intelligent system is composed of. It 
is not the scope of this paper to illustrate and discuss such 
principles (for an introduction see [1]), while instead we will 
give an overview of the overall process we use in our software 
system research and the tools that supports us in the creation 
of real-time distributed embodied intelligent systems.  

 
A. Related Approaches 
 In the recent years, in the field of intelligent systems, 
robotics and real-time systems, researchers started to build 
software environments like the one we describe in this paper. 
The approaches vary mainly in the abstraction level and the 
pursued targets. On a basic abstraction level, a modular 
approach is proposed by [2], [3] using a “component model” 
(software packaging patterns). We believe that this is a crucial 
aspect for intelligent systems since building system out of 
components/modules, allows cutting complex problems into 
smaller pieces, reducing complexity, increasing reusability 
and decreasing dependency (see [4], [5]). In [6] the usage of a 
set of libraries that supports data communication is proposed. 
Communication is one of the most important issues in 
modular systems, especially when building component-based 
systems, suppose to simulate brain-like functions. In [7] the 
usage of image/matrix manipulation libraries in combination 
with their development systems is proposed. The advantage 
here is that components/modules can benefit of a low level 
library that may gives a significant acceleration for common 
image/sound manipulation or matrix operations. Approaches, 
which are closer to the one we propose in this paper, are 
described in [8], [9], [10], [11], [12] where the aim is placed 
on an integrated environment which includes designing and 
monitoring tools. In these papers many different approaches 
are pursued, custom to specific problems or to particular 
architectures.  
 Generally, the most visible shortcoming of the cited 
solutions is that each of them is specialized for a particular 
domain or for a specific purpose. Moreover, some of the 
solutions described, put too much focus on specific features, 
overloading them with too much functionality, which, in 
practice, are not really necessary. We believe that it is crucial 
to have one single research and development environment 
that, while giving freedom to design and implement any 



architecture (see [9] for similar arguments), provides all the 
necessary support for system decomposition, communication 
patterns, scalability into computers up to the support of 
execution with different sequential or parallel paradigms. 
Moreover, simplicity and modularity are, in this respect, a key 
point for the development and the usage of such research and 
development environments.  
 
B. Our Approach 
 In Software Engineering it is well known that the creation 
of large-scale systems must be supported by a well defined 
process. Such process defines the various phases a project is 
composed of, the relation between such phases, the interaction 
and the tools required to accomplish the necessary tasks. We 
decided to employ such a process for our research in order to 
take advantage from it and structure our work. Our overall 
research and development process it’s represented in Figure 1. 
 

 
Figure 1: Our research and development process. 

 
 This process governs the life cycle of our systems 
research. An iteration of the full process runs on the time scale 
of about one year. Each step of this process is executed by 
several actors and is actually governed by sub-processes that 
determine the more fine grain actions. We distribute a set of 
check points in the process to ensure a certain level of quality 
at each step. The process starts with a conceptual phase where 
we maturate and formalize the ideas we want to realise in our 
systems. In this phase every researcher may use a different 
approach to reach his results. But in the transition phase 
(arrows in the graph) we coordinate and collect hypothesis 
into one common form. This is very important in order to 
cross-check the weak points or the unclear ones, or simply to 
confirm what seems to be accepted by the researchers. Other 
steps in the implementation phase are more concrete and 
require the creation of software modules, the testing of the 
functionality or the analysis of properties that modules should 
have. For such steps we decided to develop a set of tools that 
support the accomplishment of the related tasks. The major 

novel contributions of our system are: a) the partition we have 
created between components for algorithms (wrapping our 
algorithms, BBCM) and components for data (wrapping the 
communicated data between components, BBDM); b) the 
ways threads, execution patterns and processes are defined 
(controlled by RTBOS, Execution Patterns); c) the integration 
of all parts of our system into one single environment. The 
necessity of a) comes from the needs of controlling and 
configuring connections between components in a direct way. 
Additionally, components can ask for specific connection 
properties directly to the data component to which they are 
connected to. Moreover, through b) we do not require the 
creator of components (for data or algorithms) to code 
complex functions like input/output synchronization and /or 
parallelization handling. Such properties are defined in the 
application’s graph and can be modified and reviewed any 
time without requiring a coding phase. The necessity of c) 
comes from the requirement of having all parts of the system 
working together with the minimum effort from the user point 
of view. 
 In section II we describe the steps of our process and the 
tools we have created for supporting them; in section III we 
review the history of the development of system hypothesis 
using this process and tools. Section IV summarizes and 
concludes the paper. 

II. OUR PROCESS AND TOOLS 

 Let’s revisit the process of Figure 1 and analyse each step 
into more details: 
 
 A. Define System Hypothesis 
 This step belongs to the conceptual phase where the 
research work is concentrated on the definition of a system 
hypothesis. In this phase we elaborate the architecture, the 
functionality and the methods we want to research on. The 
goal here is to reach a coherent system hypothesis that 
contains all the functionalities and the principles we want to 
experiment on in an integrated concept. 
 
B. Design System Instance 
 In this last step of the conceptual phase we develop a 
concrete design of the system. Here ideas and principles are 
mapped to concrete functions (component hypothesis) and 
relations (communication hypothesis).  This step allows us 
to understand what type of components is required in order to 
develop the target system. Decomposing a system into 
components requires a certain balance between generality and 
specificity. The space of components can go from simple 
operation like addition, multiplication, to more complex one 
like filter banks, integrators, until components that perform 
object recognition or speech synthesis. The main driving 
forces to choose granularity are openness for extensions and 
performance. The systems we target are real-time systems 
working in real conditions in the real world. Decomposing a 
system in too fine grain components may overload the 
communication channels. This has to be balanced with the 



choice of the employed communication paradigms. 
Communication between several components that use the 
memory channel of a single machine is much more convenient 
(in certain circumstances) then a communication channel over 
a network connection among computers. Here there is again a 
wide spectrum of possibilities. Network communication 
between computers can be implemented in many different 
ways, e.g. TCP, UDP and Shared Memory Cards.  
 In our experience we have had the needs to develop 
components which implements simple operations, and 
components that performs more complex functionality. The 
goal of this step is to identify the components we need and the 
communication patterns we want to employ for each part of 
the graph of the system. There we also identify which 
components can be reused and make a preliminary 
decomposition into computers. This preliminary partition is 
constrained by the actual availability of sensors and effectors.  
 
C. Design Component  
 The implementation phase starts with the design of 
components. In our philosophy we clearly separate processing 
from communication, to allow for experimenting with 
different systems architectures, connectivity graphs and 
communication means without touching the internals of the 
processing algorithms. Therefore, we decided to encapsulate 
the processing (algorithms) into components. We have defined 
the BBCM (Brain Bytes Component Model) specification, a 
very simple but powerful component model that implements 
the interface shown in Figure 2a.  
 

 
Figure 2: BBCM and BBDM interface. 

 
 All communication with a component is performed via 
this interface, which in the case of input and output are simple 
memory blocks handed over to the component from the 
outside. Events are data-less function calls. The BBCM has 
been implemented in the languages C, C++ and Matlab. 
 The data being communicated usually follow a data 
component specification for data types. It is called BBDM 
(Brain Bytes Data Model) which allow us to wrap any data 
type in standard components with a well defined interface (see 
Figure 2b). 
 The two component models (BBCM and BBDM) have 
been designed to work together (but they do not depend on 

each other). Furthermore a C BBCM and a C++ BBCM 
component can be used and can be connected together in the 
same source code file. The proposed standardization level is 
on the one side sufficiently strict in order to be a suitable basis 
for additional tools relieving much of the implementation 
burden from the researchers, and on the other side sufficiently 
flexible in order to allow for experimenting with different 
processing and communication paradigms. 
 
D. Implement Component 
 This step consists in creating and coding the different 
components. It can be performed by the researcher or 
outsourced to external companies. This step is supported by 
different tools and conventions: 
 Coding and naming conventions: we decided to employ 
a set of conventions for our software. Through the coding 
conventions we improve readability and ensure a certain level 
of quality. Here we tried to keep the set of conventions as 
small as possible in order to minimize the effort to learn and 
use them. We support their usage by web tools. 
 Image and sound libraries: one of our main fields of 
research is image, sound and speech understanding and robot 
manipulation. For this reason we have created VLW (Visual 
Library Wrapper), and SLW (Sound Library Wrapper); 
libraries that support image and sound manipulation (e.g. 
arithmetic operations, filtering, transformation, conversions). 
These libraries are wrappers around existing libraries, 
providing a standard interface to our software. The wrapped 
libraries are: the IPP library [13], the Media Lib library [14] 
and a plain C version used in platforms that do not support 
IPP or Media Lib. These libraries are heavily used for 
building the algorithms wrapped in our BBCM components. 
 Template generator: since we often create components, 
we decided to use automatic code generators that generate the 
template for a BBCM or BBDM component from a simple 
textual description of its interface. We created SMDL (Simple 
Macro Descriptive Language), a language for transforming 
any document into a template. The usage of automatic code 
generators has many benefits, like: 
 

- The generated code always conforms to our standards 
(conventions and libraries); 

- The generated code is less prone to errors; 
- Large amounts of source code can be generated in a 

fraction of time;  
 
E. Compile, Test and Install 
 This traditional step is supported by several standard and 
custom tools that remove some of the load usually associated 
with this step in a multiplatform environment: 
 Versioning system: we are currently using SVN 
(Subversion [15]) for source code versioning. This tool (open-
source, freely available on the internet) handles directory and 
source code file versioning in a local or networked 
configuration. 



 Multiplatform makefile system: we have based our 
build system on the GNU make [16]. Our build system is 
composed by two sets of files: a file makefile (read-only for 
users) which contains all rules we need for building, installing 
and handling the versioning system for all our modules; a file 
makeVar which contains user settings (include paths, libraries 
and compiler options). Our build system is multi-platform and 
supports until now projects for C, C++, PHP and Matlab 
CMEX. 
 Multiplatform deployment structure: in order to store 
and share our components, modules and applications we have 
created a multi-platform installation directory structure. This 
directory structure (that looks the same for all platforms we 
use) stores include files, object files, libraries, binaries, 
documentation and configuration files. In order to avoid the 
common problem of parallel development on a single source 
tree, we opt for a solution where we share compiled code 
(components, libraries …). Every installed module contains 
the following configuration files: packageVar (for compiler 
settings and paths) and a file TcshSrc (for execution settings). 
To include a module just the respective packageVar and 
TcshSrc have to be used. By this way the required compiler 
and execution settings are inherited. Moreover, our build 
system gives support for this multi-platform installation tree 
when compiling and installing modules. 
 
F. Creation of System Graph 
 At this step of the implementation phase the 
communication hypothesis and the implemented components 
are used to build the system graph. In order to improve the 
design and to simplify the creation of our applications we 
have developed DTBOS (Design Tool for Brain Operating 
System). 
 

 
Figure 3: Design environment DTBOS. White circles 
identify planed extensions of the tool. 
 
 DTBOS is a RAD-like development environment that allows 
importing RTBOS Modules (CD/DM) into a toolbar with 
which users can draw applications in a graphical way. 
CM/DMs are drawn like boxes with input/output ports; 
connections can be created by just dragging links from one 
port to another. DTBOS can read and save files in the same 

script format (CML, C Macro Language) accepted by 
RTBOS. 
 Moreover, with DTBOS we can debug our applications 
through a playback functionality that reads an RTBOS log 
session and shows, through an animation, the executed 
modules step by step. A diagram of DTBOS is shown in 
Figure 3.  
 
G. Run, Monitor and Debug 
 The last step of the implementation phase consists of the 
execution of the system, the debugging and the test in 
simulated and real-world conditions. The following tools 
support this step: 
 Distributed middleware for real-time applications: we 
have created RTBOS (Real-Time Brain Operating System), a 
distributed middleware for multi-platform real-time modular 
applications. The requirements from the beginning were to 
provide in integration environment that is suitable for vision, 
audition, internal prediction and decisions as well as 
behaviour generation and control of actuators. The sensory 
streams demand for a high data bandwidth, the internal 
processes for a high connectivity and the control aspects for a 
low latency and a strict determinism in processing and 
communication. The internal mechanisms account for those 
requirements by providing low overhead communication and 
data sharing mechanisms as well as deterministic thread 
control. An RTBOS application is defined by a set of: 
Computing Modules (CM), Data Modules (DM), a 
Connectivity Graph and Execution Patterns. A CM is an 
RTBOS Module that encapsulates a BBCM component; a DM 
is an RTBOS Module that encapsulates a BBDM component; 
a Connectivity Graph defines the connections between CM 
and DM while an Execution Pattern determines the ways CMs 
are executed. We have identified several patterns, which can 
be defined for arbitrary sub-partitions of the system instance.  
 

 
Figure 4: Run-time environment RTBOS.  

 
 The major Execution Patterns are: Parallel – which 
executes each CM in a separated thread. This execution 
pattern is necessary for executing parts of the system in 
parallel with each other. It is the basic execution pattern since 
our underlying hypothesis is an asynchronous system that can 
be synchronized if necessary. Sequential – which executes all 
CMs in a sequence, all in one single thread. The choice of the 



execution pattern allows for a fine grained control of the 
computing resource allocation. 
 When RTBOS starts an application, it loads the CM/DM 
modules defined in the CML script file; connects them 
following the Connectivity Graphs, initializes all modules and 
then executes the full application (Setup engine in Figure 4). 
The parallelism of an RTBOS application may employ threads 
(within a machine) or processes (across machines). RTBOS, 
through the concept of Execution Patterns simplifies 
drastically the design and the creation of parallel applications. 
Moreover, RTBOS handles automatically data allocation, 
communication and synchronization between threads and 
processes even across computer boundaries.  
 The script file defining the applications follows a simple 
language definition providing a set of commands for 
managing applications as described above. The script file is 
plain text and can be quickly edited by any text editor. Since it 
is following a language specification it can be parsed and 
produced by other tools like the design environment DTBOS. 
This feature leads to a higher acceptance for both researchers 
preferring to work with configuration files and researchers 
preferring GUIs. 
 Monitoring control system: we have created also the 
monitoring system CMBOS (Control Monitor system for 
Brain Operating System). CMBOS is a demon process that 
runs in a monitoring machine. This demon, from one side 
accepts requests for data monitoring, while on the other side 
opens automatically the appropriate user interface to show the 
requested data to be monitored. CMBOS contains a set of 
already defined user interfaces that show 2D graphs, counters, 
images and others types of visualization tools. Users can 
implement new visualization tools and new data types to 
expand the functionality of CMBOS. 
 

 
Figure 5: Control and monitoring system CMBOS. 

 
H. Closing the Loop 
 Base on the described overall process we have now 
introduced all tools for supporting our work. In close 
collaboration with the researchers we are continuously 
working on the refinement and the extension of the covered 
concepts. We have already started the integration of all the 
mentioned tools into one single environment. Our target is to 

make DTBOS the central interface, the only tool that users 
would need to know. From DTBOS it will be possible to 
create new BBCM/BBDM components, edit them, compile 
them, import them automatically in the toolbar, use them to 
draw applications, execute the RTBOS session and open 
CMBOS monitoring sessions directly through the DTBOS 
interface (see Figure 3). 
 All our tools have been designed to work on several 
platforms. We currently support Linux, Sun Solaris, Windows 
(native and CygWin) and VxWorks. We are interested in 
expanding the list of supported platforms in order to improve 
stability, portability and performance. 

III. OUR APPLICATIONS AND EXPERIMENTS 

 The tools reported on in this paper have been growing 
together with our scientific research systems over the last four 
years. The valuable feedback from the researchers concerned 
with their own functional methods and algorithms has found 
its way directly into the conceptual improvements of the tools. 
The tools, especially RTBOS have been tested on benchmark 
problems in order to examine the theoretical performance. As 
a result of these experiments we could estimate the overhead 
introduced by RTBOS compared to a hand coded system. It is 
approximately one percent of the overall processing time, 
assuming extremely simple processing elements spending very 
little time on actual computation. This assumption represents a 
theoretical worst case setting for middleware systems.  
 We will now report on the performance of the tools in 
real-time real world settings. There are three major areas of 
applications and experiments to report on, others are subject to 
current research with publications under preparation.  
 
A. Interactive Vision System 
 The first area is concerned with an interactive vision 
system composed of: image acquisition, saliency computation 
(from several cues: colour, intensity, saturation, motion, 
disparity), visuo-motor mapping & learning, gaze selection, 
object recognition and learning and camera head control.  
 

 
Figure 6: DTBOS graph of our current active vision system. 
a) Online object recognition and learning sub-system. b) gaze 

control sub-system. 
 
 This system is able to accomplish the following tasks: 
visuo-motor mapping learning, interactive attention 
modulation, object fixation and recognition, scene 



exploration, simple feature based object search. Some of the 
corresponding work has been published in [17], [18], [19]. In 
total 13 researchers have been contributing to and working 
with this system over the past four years in an incremental 
fashion.  
 The system has a brain-like systems architecture, the 
current connectivity graph with the respective subsystems is 
shown in Figure 6. It has now been growing over the last four 
years, reaching a number of 202 BBCM instances as 
processing modules and 157 BBDM instances as data 
modules. The average number of instances per coded BBCMs 
is around two, while the average number of instances per 
coded BBDMs is five. Those numbers are a mild estimate for 
the reuse of components within one systems instance. There 
are several variations of the system with at least six current 
computation threads up to a fully parallel system with the 
number of threads in the order of the number of processing 
modules. The execution time for the gaze selection 
computation cycle is in the order 200ms, the time for the 
online learning between 80 and 320ms, and the time for the 
actuator control is between 500ms. The current version runs 
distributed across several CPUs located on two SMP machines 
connected via dedicated GigaBit Ethernet.  
 For this system clearly the connectivity / communication 
and the number of processing modules to manage are the 
challenges for software environment, less the latency 
constraints for the processing.  
 
B. Binaural Sound Localization System 
 More emphasis on the latency constraints is put in the 
second area, which is concerned with a real-time binaural 
sound localization system. The system performs the estimation 
of the pan angle of incoming sound events and the control of 
the gaze direction of a robot head based on this estimation in 
real-time. It is composed of the following stages: sound 
acquisition; 3 streams for sound position computation (IIT, 
IID and IED); integration stage and head control. The 
corresponding work is being published in [20] and [21].  
 

 
Figure 7: DTBOS graph of our visually guided whole body 
interaction system. a) vision sub-system. b) behaviour 
control sub-system. 
 
 The main two subsystems are the hardware interface and 
the sound localization computation. The hardware interface 
performs the stereo acquisition of the sound streams and the 
control of the ASIMO head, while the sound localization 

computation performs a parallel estimation of the sound 
source pan angle. The stream cycle is 50ms for both 
subsystems and the number of threads is ten. The total number 
of BBCM instances is 222, and the total number of BBDM 
instances is 275. Again, the two subsystems are executed 
distribute across several CPUs located on two SMP machines 
connected via dedicated GigaBit Ethernet. The connectivity 
graph of the system is sketched in Figure 8. In total seven 
researchers are contributing to this system.  
 

 
Figure 8: DTBOS graph of our real-time binaural sound 
localization system. a) sound localization computation 

parallelized on three processors computing 30 frequency 
channel each. b) the hardware interface. 

 
 While the previously presented vision system is very 
asynchronously oriented, the auditory system is more 
synchronous. The reason is that the visual setting is from the 
signal type more continuous allowing for a more loose kind of 
synchronization, while the auditory setting is composed of 
rare events that have to be tightly synchronized in order to 
meaningfully fuse the different analysis streams into one 
stable pan angle estimation. Both kinds of processing 
paradigms could be equally well implemented by the proposed 
tools.  
 
C. Visually Guided Whole Body Interaction System 
 The third area is concerned with a visually guided whole 
body interaction system for our robot ASIMO. The system 
allows ASIMO to gaze, looking for close objects, selecting 
one and trying to approach the selected target by whole body 
motions. Parts of this work are being published in [22] and 
[23]. This system is composed by three main sub-systems: 
ASIMO; a vision sub-system and a behaviour control sub-
system. The vision sub-system receives images form the 
ASIMO stereo camera and creates a set of possible targets. 
The control sub-system selects one target and then controls 
the behaviours that ASIMO has to execute. Behaviours are 
currently: walking, grasping and tracking. The vision 
subsystem has a stream cycle of 150ms, the control system has 



a stream cycle of 5ms. The total number of instantiated 
BBCMs is 29, the total number of instantiated BBDMs is 35. 
The connectivity graph is sketched in Figure 7.  
 The system is distributed across three different machines. 
The mixture of environment sensing and systems control puts 
the hardest constraints on the tools, especially on RTBOS.  
 Additional to the experience within the three different 
fields there are some general observations we would like to 
report on now. We could experience that the limits of our 
tools are reached if we are close to the limits of the underlying 
operating systems and hardware. Those limits are mainly due 
to general purpose schedulers and limited network bandwidth. 
For us this is a mild indicator that the overall overhead 
introduced by our tools is small. 
 Major parts of our systems have been contributed by non-
systems programmers. With the aid of the offered tools they 
were able to create and manage real-time multi-threaded parts 
of the systems.   
 The overall reuse of components across the different 
fields depends on the level of granularity of the components. 
Generally speaking, the reuse is higher for fined grained 
components like simple arithmetic functions on the inputs. For 
example, there is a large overlap of the simple components 
between the visual components of the first and the third area, 
but exact numbers have to be determined. 
 The chosen decomposition of the systems as well as the 
means for working visually and monitoring various systems 
properties allows for real research on systems level. As 
pointed out in the paragraph on the auditory systems different 
kinds of processing and communication paradigms can be 
created and managed with the same tools. For example, in the 
area of the active vision system we could investigate different 
synchronization mechanisms without touching the internals of 
the processing modules. 

IV. SUMMARY 

 In this paper we described the research and development 
process that allow us to incrementally improve our real-time 
distributed embodied intelligent system hypotheses and in 
parallel progress with our integrated software development 
environment. During the last four years we gained experience 
integrating such systems and the design decision we took 
during this process allowed us to quickly and reliably develop 
complex interactive systems. We are now confident that such 
approach is mandatory to deal with increasing complexity. 
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