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Continuous and robust saccade adaptation in
a real-world environment

Tobias Rodemann, Frank Joublin, Christian Goerick

To saccade with a camera system to an interesting visual stimulus requires a mapping from image coordinates (pixel positions)
to motor coordinates (e.g. pan and tilt angles). Because this relation can depend on many parameters, some of which might
be varying over time, it is advisable to learn this mapping. However, most of the existing solutions require a special calibration
procedure or at least a cooperating environment. In this work we describe a system, inspired from the human oculo-motor
system, that can continuously adapt the saccade control in a real-world environment. The focus is not on speed of adaptation or
the precision of saccades but on the robustness of the adaptation process. Our system can operate in feature-rich environments,
monitor its own performance, and is not impaired by external motion.
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1 Introduction

Learning is one of the most fundamental aspects of biological
systems and an area where technical devices are still inferior to
their biological counterparts. For the field of robotics and any
technical system which has to behave / act in real-world envi-
ronments the relation between sensory inputs and motor output
is of highest importance. A sensory-motor system that has been
studied extensively due to its relative simplicity is the saccade
control system [4]. The term saccade denotes feedforward con-
trolled eye movements toward a (visually) salient target. The
core problem of saccade control is to find the relation between
the position of a salient stimulus on the retina (or the pixel
position in a digitized image) and the corresponding gaze direc-
tions of the eye or a camera to focus on this object. The actual
relation depends on a number of parameters (internal and ex-
ternal camera and head parameters). Using a special calibration
procedure these parameters can be measured. The calibration
procedure has to be repeated whenever any relevant part of the
system has been changed. This can e.g. happen when the optics
of the camera or the overall design of the robot’s head is chan-
ged, or some software modules within the processing chain have
been modified (for example a rescaling of image sizes). With
increasing system complexity, more parameters have to be kept
track of and the chances to decalibrate the system get higher.
In addition to purposely made changes there is also the danger
of mechanical wear-down, minor mechanical or electrical errors,
and temperature sensitivity of some control elements. For bio-
logical systems the possible range of variations is even bigger,
especially over the lifespan of an individual. The possibility and
the potential of learning approaches for saccade control has been
shown before, see e.g. [2, 7, 9]. The focus in these approaches is
on speed of learning and precision, not on the robustness of the
learning process, that is, the ability to learn in various uncoope-
rative environments. The work of Bruske et al. [2] for example
uses a special 2-stage calibration procedure with a single salient
stimulus under direct control (a light source attached to a ro-
bot arm performing random movements). Nature can obviously
live without these constraints, showing a high flexibility in na-

tural environments. Experiments have shown [5] that humans
and animals are perfectly capable of readapting their saccade
control if their visual input is distorted, e.g. through prism len-
ses. This re-adaptation occurs during normal life in an every-day
environment. It is this remarkable adaptability that motivated
us for our research. In this work we present a system that can
learn and readapt a saccade mapping for a 2-degree-of-freedom
camera-head online in a real-world environment. The basic idea
of the system is to compare pre- and post-saccadic inputs and
find matching regions in the two images (see also [8]). By linking
these regions to the executed motor command it is possible to
learn the relation between motor coordinates and image coordi-
nates. However, this simple approach is hampered by a number
of factors related to working in a real-world environment:

1. External control of saccade targets. The control of sac-
cades is not given to the adaptation algorithm (e.g. no
random saccades), but rather determined by the objecti-
ves of the overall system, like scene exploration or object
recognition. So adaptation has to occur in parallel to and
independently of the control of the head.

2. Feature-rich environment. To find out where parts of an
image moved due to a saccade, one has to solve the corre-
spondence problem. This is far more difficult in a natural
environment which contains many objects but also large
homogeneous surfaces (e.g. walls).

3. External motion. A typical occurrence in real-world envi-
ronments is motion of external objects leading to a change
of the sensory input which is not related to saccadic mo-
tion.

4. Limited error tolerance. While saccade control is one of
the less critical motor control actions, still it is advisable
to make sure that the mapping, after being decalibrated,
doesn’t become worse through the adaptation, or, that
the latter even causes a decalibration by itself.

Our approach can deal with these problems using a confidence
measure (section 3.3), motion detection (section 3.4), and ad-
aptation control (section 3.5).

2 Implementation framework

The saccade adaptation system is part of a larger project of
an integrated system for active sensing and pattern recognition
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[3], called BASS (brain-like active sensing system). The system
consists of a neck and a camera system (see Fig. 2, left) that
provides images, a preprocessing stage for saliency computation,
an object identification system, modules for gaze target selecti-
on, modules for the memory trace, and the modules for online-
adaptation of gaze control (Fig. 1). The neck has 2 degrees of
freedom (pan and tilt angles) but the rest of the system is con-
sidered to be fixed. We are working only with the left camera
for our saccade system. An important subtask for the system is
the fovealization of objects with the target of object recogni-
tion. Saccade targets are chosen based on the computation of
saliency maps for e.g. color, edges, or motion, while also using
an inhibition-of return type mechanism [6] to avoid visiting the
same locations again and again. This implies that the target of
the gaze selection changes from one saccade to the next, which
is another important constraint for the adaptation scheme. The
position of salient objects has to be transformed into motor coo-
dinates to fovealize the objects. This coordinate transformation
is exactly the one that has to be learned for the saccade control -
a mapping from 2D image coordinates to 2D motor coordinates.

Abbildung 1: Schematic description of the BASS system. The
interaction with the environment is done via sensory (image ac-

quisition) and motor (head control) modules. From the images
saliency maps are computed and transformed into motor coordi-
nates by the visuo-motor mapping module. The latter contains
the sensory-motor mapping that is adapted in the visuomotor

mapping learning module. Based on saliency and view point me-

mory a gaze target is selected.

3 Methods

The mapping W (x, y) we have to learn is the correspondence
between image point (x, y) (pixel coordinates) and motor coordi-
nate ~M = (φ, θ) (corresponding to pan (φ) and tilt (θ) positions
of the head motor element). The map entry W (x, y) contains a
motor command vector (φ, θ) that moves an object originally at
position (x, y) into the fovea. The range of x, y is given by the
size of the image (in pixels), the range of gaze directions by the
chosen operation range of the head motor. We learn the sensory-
motor relation by comparing changes in the position of objects
induced by changes in the motor position of the head. We do
not pick a specific object beforehand and look where it ends up
after the saccade, but rather where the image patch that ends
up in the fovea after the saccade was before the saccade. That
means we identify the image position that was moved into the

fovea by the issued motor command. Therefore we can directly
associate sensory and motor coordinates without any need for
inter- or extrapolation. This approach requires a feature-rich vi-
sual input as found in almost all natural environments. We now
shortly describe the basic concept of the learning algorithm and
then elaborate more on the details.

3.1 Image Correspondences

Our working environment contains a large number of objects,
textured background, and various sources of illumination, see
Fig. 2 (right panel). To find the correspondence between an
image patch in the pre-saccadic image and the content of the
fovea of the post-saccadic image we compute a correspondence
function C(x, y) between the fovea and pre-saccadic image pat-
ches at all positions (x, y). The correspondence between the
post-saccadic foveal patch ~rf and pre-saccadic image patch
~r(x, y) around image position (x, y) is given by:

C(x, y) =
~rf · ~r(x, y)

||~rf || · ||~r(x, y)||
. (1)

It turned out that performance is best if image patches are
not normalized for brightness and contrast, which led to fre-
quent mismatches in our tests (also note that there is no au-
tomatic white-balancing in our cameras). We used image pat-
ches of dimension 51 x 51 pixels (full image size 348 x 256
pixels). The point of maximum correspondence (xmax, ymax) =
argmax

x,y

C(x, y) is then taken to be the position of the image

patch that was moved by the executed motor command ~Me to
the fovea. We thus have to learn the association between ~Me

and (xmax, ymax).

Abbildung 2: Left: The stereo cameras on a pan-tilt head ele-
ment. Right: Example snap-shot of the visual environment used
for testing our adaptation mechanism.

3.2 Adaptation Algorithm

After finding the corresponding image patches we update the
connection matrix W (x, y). For an executed motor-command
~Me = (φe, θe) and correspondence position (xmax, ymax) we do

the following adaptation step:

∆W (x, y) = −α·κ·G(x, y, xmax, ymax)(W (x, y)− ~Me) , (2)

with α as the learning step size and κ as the confidence va-
lue (see section 3.3). To improve performance we adapt al-
so vectors in the vicinity of the best matching one. We ta-
ke a Gaussian neighborhood function G(x, y, xmax, ymax) =
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exp
“

− (x−xmax)2+(y−ymax)2

σ2

”

, which reduces the degree of ad-

aptation with increasing distance from the best matching vector.
In this equation σ is the width of the adaptation region (a system
parameter). In section 3.5 we explain how to set σ dynamically.

3.3 Confidence Measure

One of the cornerstones of our approach is to assign a confidence
value to each adaptation step, reducing the adaptation, or even
canceling it altogether in case of a low confidence. The main
source of errors for our approach is due to mismatches in the
correspondence measurement process. Therefore we introduce
the confidence measure κ. First we compute a sigmoidal of the
maximum correspondence value cmax from eqn. 1:

κ
′ =

1

1 + exp(−cs · (cmax − ct))
. (3)

This is a sigmoidal function with threshold value ct and a slope
cs. We received good results for cs = 20 and ct = 0.75. This
step reinforces correspondence values above ct and suppresses
those below. To reduce the confidence in case of multiple good
matches (a common problem for homogeneous patches) we per-
form a normalization (division) of the confidence value by the
number of entries in the correspondence map with a value above
a threshold T = 0.9 · cmax:

κ = κ
′ ·

1
P

x,y
N(x, y)

, N(x, y) =



1 : C(x, y) > T

0 : else
.

(4)
The confidence measure κ is used in equation 2 to modulate the
adaptation step size.

3.4 External Motion

Apart from mismatches in the correspondence search there is
another factor that quickly leads to errors in the adaptation pro-
cess: external motion. Our BASS system is designed to interact
with humans in a natural way and therefore the environment
is not static but rather contains many moving objects. We ob-
served that this strongly impairs the adaptation. Therefore we
added a motion detection system that signals external motion.
This system compares two consecutive camera images (using
the same camera as for the adaptation) and when the difference
exceeds a threshold value, the following adaptation step is can-
celed. Motion detected during the ego-motion of the camera is
not taken into account.

3.5 Adapting the Adaptation

Two parameters control the adaptation process: the step-size of
adaptation α and the width σ of the population that is adapted.
For the step size α a constant value of 0.8 led to good results,
i.e. a rapid adaptation as can be seen in Fig. 3. To adapt the po-
pulation width σ we compute the saccade error E: the difference
(in pixels) between the pre-saccadic position of the object that
was moved to the fovea and the position that was set as the tar-
get by the gaze selection system. To be invariant to image size
we divided the saccade by the maximum possible saccade length
Emax (half image diagonal = 216 pixels). We have chosen this
normalization instead of e.g. dividing by the intended saccade

length because for our application the absolute saccade error is
more important than the relative one, since we want to get the
target patch into a fovea region. We use the mean saccade er-
ror Ē (E averaged over the last 10 saccades) as a measure to
modify the adaptation width:

σ = σ
max ·

1

(1 + exp(−s · (Ē − t)))
. (5)

In this equation σmax is the maximum adaptation width (a pa-
rameter that has to be set in relation to the size of the image), s

the slope of the sigmoid, and t the threshold of the sigmoid. In-
creasing saccade errors Ē lead to an increased adaptation width
σ. In our experiments we used σmax = 30% of the size of the
image, s = 20 and t = 0.2. The result is that the mapping will
be very flexible when the saccades are far off target, but will be
modified only locally when the performance is good. Learning
was very robust over many trials and different initial conditions.
However, allowing σ to get too high (> 30%) made the learning
process unstable.

4 Results

We evaluated our adaptation algorithm within the complete
BASS system in the described real-world environment. As a test
we let the system adapt from a random initialization. The sac-
cades were chosen to explore the environment and track salient
objects. Within less than 100 saccades the map was structured
and the system showed correct saccade behavior. We then in-
troduced a (software) prism effect that inverted the image on
the horizontal axis (upside-down). The system quickly adapted
without any user interference or parameter changes and also rea-
dapted when the prism was removed. Figure 3 shows an example
run of our algorithm. The system performed the saccading and
object recognition task in parallel to the learning, which was ne-
ver disabled and worked without problems for many hours. The
final accuracy of the system after a longer adaptation period
(ca. 1000 saccades) is in the order of 10 pixels. This someti-
mes requires a second corrective saccade to fovealize a target,
as it is also observed for the human eye [1]. This residual error
is largely invariant of adaptation parameters (e.g. α) and due
to the fact that for our system setup precision is inherently li-
mited because we can’t determine the exact 3D position of the
target which would be necessary for a correct mapping. Further-
more we used a comparatively small motor map with a limited
resolution (1 degree). However, for our purposes the achieved
precision of the saccades was satisfying. We did another test to
evaluate the impact of external motion on the learning process.
Using a learned mapping, humans began interacting normally
with the system. We tracked the mean saccade error with and
without the external motion detection system, see Fig. 4. It is
obvious that undetected external motion can (temporarily) dis-
rupt the adaptation process, when motion is unaccounted for.
Using the motion detector to modulate adaptation, the saccade
movements are largely unaffected by external motion.

5 Summary and Conclusion

We have presented a saccade adaptation in an integrated system
for visual interaction in a real-world environment. The described
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Abbildung 3: Mapping vectors for an example run of the saccade
learning algorithm. Grid-points denote positions in motor space,
while edges represent neighborhood relations in retinal space.
Mapping vectors are initialized randomly and adapt to form a
regular grid within a few 10 steps (top row). At step 100 an
up-down inverting prism is added and the mapping quickly ad-
apts to the new situation by flipping around (bottom row). The
prism is removed at step 150 and the mapping flips again. The
development of the mean saccade error is depicted in the middle
row.
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Abbildung 4: Development of the mean saccade error (in percent
of Emax (216 pixels)) during system interaction with humans.
The mean is computed over the last 10 saccades. The left panel
shows the result without a motion detection system, the right
panel with a motion detector. It is obvious, that the latter makes
the adaptation process more robust. Note that the saccade error
is generally higher during interaction with a user as saccades
tend to be larger and more diverse in terms of target positions.
With a disabled saccade adaptation the mean saccade error is
around 12% in this scenario (Error baseline in figure).

system shows a reasonably quick learning with a satisfying le-
vel of precision. In contrast to many competing approaches we
didn’t focus on speed of adaptation or precision of the mapping
but on the robustness of the process and its applicability for real
online-adaptation. All required computations can easily run in
real-time on standard PC hardware (less than 100 ms per sacca-
de). The advantage of our approach compared to standard offline
calibration procedures is that the system is usable without ma-
nual recalibration in case of hardware modifications (e.g. mainte-
nance), smaller mechanical damages or software modifications.
This can save lots of time and also makes special calibration
set-ups unnecessary. This is specifically important for the field
of robotics where calibration approaches require a deactivation
of the robot. Our proposed solution allows a recalibration during
operation.
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